景元书1,,,
胡保文2,
谢新乔2,
李湘伟2,
朱云聪2
1.气象灾害预报预警与评估协同创新中心/南京信息工程大学应用气象学院 南京 210044
2.红塔烟草(集团)有限责任公司原料部 玉溪 653100
基金项目: 国家自然科学基金项目41575111
江苏省高校优势学科建设工程(PAPD)项目2017-NY-038
红塔烟草集团有限责任公司项目S-6019001
详细信息
作者简介:朱安琪, 研究方向为农业气象、生态环境。E-mail: 2499295176@qq.com
通讯作者:景元书, 主要从事农业气象和生态环境研究。E-mail: jingyshu@163.com
中图分类号:S572;P49计量
文章访问数:144
HTML全文浏览量:10
PDF下载量:110
被引次数:0
出版历程
收稿日期:2020-10-23
录用日期:2020-12-16
刊出日期:2021-05-01
Ecological prediction model of main chemical components of Yuxi flue-cured tobacco 'K326'
ZHU Anqi1,,JING Yuanshu1,,,
HU Baowen2,
XIE Xinqiao2,
LI Xiangwei2,
ZHU Yuncong2
1. Collaborative Innovation Center of Meteorological Disaster Forecasting Warning and Assessment/College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
2. Raw Material Department, Hongta Tobacco Co., Ltd., Yuxi 653100, China
Funds: the National Natural Science Foundation of China41575111
the Priority Academic Discipline Development ofJiangsu Higher Education Institutions2017-NY-038
Hongta Tobacco Group Co., Ltd. ProjectS-6019001
More Information
Corresponding author:JING Yuanshu, E-mail: jingyshu@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为了解烟叶化学成分与生态因子之间的定量化关系,提高烤烟品质评价的智能化程度,使用2009—2017年玉溪市9个烤烟‘K326’典型定位点烟叶主要化学成分(烟碱、总糖、还原糖、总氮、钾、氯)数据与对应不同生育期的生态因子(气象和土壤)数据,分析得到生态因子影响综合指数,在此基础上建立了烟叶各化学成分机理生态预测模型。根据2018年生态因子数据,预测了各定位点烟叶主要化学成分含量,并与实测值进行比较。同时,使用相同的90个烤烟定位点数据,利用最大信息系数(maximum information coefficient,MIC)筛选输入变量,使用经过灰狼算法优化的BP神经网络建立智能算法的烟叶化学成分生态预测模型。机理算法的生态预测模型R2平均值为0.29,RMSE平均值为0.13,只有还原糖RMSE略大于0.2;智能算法的生态预测模型R2均大于0.95,RMSE均小于0.1。结果表明智能算法的生态模型预测效果优于机理算法的生态模型,能够为烤烟品质提升与调优栽培管理提供一定理论支撑。
关键词:烤烟‘K326’/
化学成分/
生态因子/
预测模型
Abstract:Due to national policies and adjustments to the industrial structure, the tobacco industry has implemented "quality optimization, planting regionalization, and technological intelligence" process requirements. To better meet these requirements, understand the quantitative relationships between tobacco chemical components and ecological factors, and improve the intelligence degree of flue-cured tobacco quality evaluation, it is necessary to develop an ecological prediction model of the chemical composition of tobacco leaves that corresponds with the actual production of Yuxi flue-cured tobacco. While prior research has only considered the impact of a single ecological factor (weather or soil) on the chemical composition of tobacco leaves, this study used the main chemical components (nicotine, total sugar, reducing sugar, total nitrogen, potassium, and chlorine) of flue-cured tobacco 'K326' in nine typical locations from 2009 to 2017 in the Yuxi area and ecological data (weather and soil) corresponding to the different growth periods. These factors were analyzed to obtain a comprehensive index of the influential ecological factors and to establish an ecological prediction model of the chemical composition mechanisms of tobacco leaves. Using the ecological data from 2018, the content of main chemical components in the tobacco leaves was predicted and compared with the observed values. Data from 90 flue-cured tobacco samples were used to calculate the maximum information coefficient (MIC) to screen the input variables; this method ensures the integrity of the input parameters and is not limited to specific function types (e.g., a linear function) as long as there is a significant functional relationship between the ecological factors and chemical components. To overcome the shortcomings of the back-propagation (BP) neural network (i.e., it is easy to fall into local minima and slow convergence speed), the Grey Wolf optimizer was used in the modeling process to optimize the weights and thresholds of the neural network. To establish an intelligent algorithm for the tobacco leaf chemical composition ecological prediction model, the absolute error was used to intuitively show the difference between the simulated value of the BP neural network optimized by the Grey Wolf algorithm and that before optimization. The results showed that the prediction model of the mechanism algorithm could judge the degree of influence of the ecological factors on the tobacco chemical composition and indicate whether the influence was positive (promoting effect) or negative (adverse effect) by the size and the positive and negative values of the comprehensive index. The average R2 value of the ecological prediction model of the mechanism algorithm was 0.29, the average root mean square error (RMSE) was 0.13, and only the RMSE of the reducing sugar was slightly greater than 0.2. These results indicated that the model understood the chemical composition characteristics of Yuxi flue-cured tobacco under particular ecological conditions in a given year. The absolute error of the ecologyical prediction model of the optimized intelligent algorithm was significantly smaller than that before optimization, indicating a better simulation effect for the optimized intelligent algorithm of the ecological prediction model. All R2 values were greater than 0.95, and the R2 values of the other prediction models (except for total nitrogen) were as high as 0.99. This suggested a very high degree of fit and that the model did well to explain the variability in the chemical composition; each RMSE was less than 0.1, and some values were less than 0.01, suggesting accurate prediction results.
Key words:Flue-cured tobacco 'K326'/
Chemical compositions/
Ecological factors/
Prediction model
HTML全文
图1玉溪烤烟‘K326’烟碱含量(a, b)、总糖含量(c, d)、还原糖含量(e, f)、总氮含量(g, h)、钾含量(i, j)和氯含量(k, l)的智能算法生态预测模型结果和绝对误差
Figure1.Results and absolute errors of ecological prediction model based on intelligent algorithm for contents of nicotine (a, b), total sugar (c, d), reducing sugar (e, f), total nitrogen (g, h), potassium (i, j) and chlorine (k, l) of tobacco cultivar 'K326' in Yuxi
下载: 全尺寸图片幻灯片
表1玉溪烤烟‘K326’化学成分与生态因子的相关性
Table1.Correlation between chemical components of Yuxi flue-cured tobacco 'K326' and ecological factors
生态因子Ecological factor | 相关系数Correlation coefficient | |||||
烟碱Nicotine | 总糖Total sugar | 还原糖Reducing sugar | 总氮Total nitrogen | 钾Potassium | 氯Chlorine | |
4—9月降水量Precipitation from April to September | 0.016 | ?0.577** | 0.209* | 0.309** | 0.346** | ?0.523** |
4—9月日照时数Sunshine hours from April to September | ?0.354** | 0.514** | 0.053 | ?0.521** | ?0.355** | 0.217* |
4—9月平均气温Average temperature from April to September | ?0.250* | 0.221* | 0.371** | ?0.273** | ?0.140 | ?0.129 |
最高气温Maximum temperature | ?0.142 | 0.217* | 0.336** | ?0.276** | ?0.036 | ?0.098 |
最低气温Lowest temperature | ?0.313** | 0.178 | 0.401** | ?0.243* | ?0.184 | ?0.179 |
日较差Daily range | 0.327** | 0.085 | ?0.110 | ?0.078 | 0.285** | 0.152 |
相对湿度Relative humidity | 0.128 | ?0.206 | 0.205 | 0.029 | 0.239* | 0.060 |
最小湿度Minimum humidity | 0.135 | ?0.501** | 0.034 | 0.334** | 0.197 | ?0.207 |
7月平均气温Average temperature in July | ?0.132 | 0.218* | 0.326** | ?0.222* | ?0.212* | ?0.103 |
伸根期降水量Precipitation during root extension period | 0.247* | ?0.562** | 0.011 | 0.338** | 0.156 | ?0.562** |
伸根期日照时数Sunshine hours during root extension period | 0.147 | 0.095 | ?0.110 | ?0.055 | ?0.220* | ?0.041 |
伸根期平均气温Average temperature during root extension period | ?0.186 | 0.206 | 0.298** | ?0.228* | ?0.234* | ?0.139 |
旺长期降水量Precipitation during prosperous period | 0.076 | ?0.020 | ?0.086 | 0.076 | ?0.438** | 0.102 |
旺长期日照时数Sunshine hours during prosperous period | ?0.508** | 0.337** | 0.160 | ?0.437** | 0.115 | 0.238* |
旺长期平均气温Average temperature during prosperous period | ?0.306** | 0.220* | 0.398** | ?0.310** | 0.005 | ?0.122 |
成熟期降水量Precipitation during maturity period | ?0.028 | ?0.437** | 0.252* | 0.192 | 0.590** | ?0.373** |
成熟期日照时数Sunshine hours during maturity period | ?0.204 | 0.505** | ?0.078 | ?0.457** | ?0.367** | 0.292** |
成熟期平均气温Average temperature during maturity period | ?0.206 | 0.230* | 0.363** | ?0.262* | ?0.152 | ?0.107 |
土壤pH Soil pH | ?0.243* | 0.378** | ?0.070 | ?0.270** | ?0.343** | 0.269* |
土壤有机质含量Soil organic matter content | 0.027 | ?0.230* | ?0.041 | ?0.061 | 0.130 | ?0.026 |
土壤有效磷含量Soil available phosphorus content | ?0.215* | 0.243* | 0.064 | ?0.107 | ?0.255* | 0.185 |
土壤速效钾含量Soil available potassium content | ?0.009 | 0.121 | ?0.207 | 0.004 | ?0.329** | 0.087 |
土壤全氮含量Soil total nitrogen content | 0.430** | ?0.263* | ?0.348** | 0.230* | 0.073 | 0.072 |
*: P < 0.05; **: P < 0.01. |
下载: 导出CSV
表2气象因子与土壤因子对烟叶化学成分贡献率
Table2.Contribution rates of meteorological factors and soil factors to the chemical composition of tobacco leaves
烟碱Nicotine | 总糖Total sugar | 还原糖Reducing sugar | 总氮Total nitrogen | 钾Potassium | 氯Chlorine | |
气象因子Meteorological factor (c) | 0.7951 | 0.8486 | 0.8207 | 0.7769 | 0.7537 | 0.7418 |
土壤因子Soil factor (d) | 0.2049 | 0.1514 | 0.1793 | 0.2231 | 0.2463 | 0.2582 |
下载: 导出CSV
表3玉溪烤烟‘K326’烟叶化学成分最适含量值(C0)
Table3.Optimal content values (C0) of chemical componentsof Yuxi flue-cured tobacco 'K326'?
烟碱Nicotine | 总糖Total sugar | 还原糖Reducing sugar | 总氮Total nitrogen | 钾Potassium | 氯Chlorine |
2.5 | 28 | 22 | 2.5 | 2 | 0.3 |
下载: 导出CSV
表4玉溪烤烟‘K326’化学成分含量预测结果
Table4.Prediction results of chemical composition content of flue cured tobacco 'K326' in Yuxi
统计量Statistic | 烟碱Nicotine | 总糖Total sugar | 还原糖Reducing sugar | 总氮Total nitrogen | 钾Potassium | 氯Chlorine |
实测值平均值Average of measured value (%) | 2.53 | 28.50 | 22.10 | 2.19 | 2.10 | 0.45 |
预测值平均值Average of predicted value (%) | 2.23 | 30.60 | 24.50 | 2.89 | 2.23 | 0.42 |
RMSE | 0.09 | 0.16 | 0.20 | 0.16 | 0.09 | 0.07 |
下载: 导出CSV
表5玉溪烤烟‘K326’化学成分与生态因子的最大信息系数
Table5.Maximum information coefficients of chemical components and ecological factors of flue cured tobacco 'K326'in Yuxi
生态因子Ecological factor | 最大信息系数Maximum information coefficient | |||||
烟碱Nicotine | 总糖Total sugar | 还原糖Reducing sugar | 总氮Total nitrogen | 钾Potassium | 氯Chlorine | |
4—9月降水量Precipitation from April to September | 0.7211 | 0.5119 | 0.5837 | 0.6645 | ||
4—9月日照时数Sunshine hours from April to September | 0.5968 | 0.5106 | 0.6041 | 0.5164 | ||
4—9月平均气温Average temperature from April to September | 0.6528 | 0.7976 | 0.6919 | 0.6862 | 0.8918 | 0.7605 |
最高气温Maximum temperature | 0.7780 | 0.8251 | 0.8937 | 0.8467 | 0.7264 | 0.7593 |
最低气温Lowest temperature | 0.6645 | 0.9599 | 0.6535 | 0.8834 | 0.9279 | 0.8947 |
日较差Daily range | 0.6929 | 0.7422 | 0.5588 | 0.7003 | 0.9435 | |
相对湿度Relative humidity | 0.9400 | 0.6840 | 0.8753 | 0.9461 | 0.9694 | 0.7328 |
最小湿度Minimum humidity | 0.7362 | 0.8542 | 0.7519 | 0.7493 | 0.7841 | 0.6663 |
7月平均气温Average temperature in July | 0.5835 | 0.5669 | 0.5607 | 0.6004 | ||
伸根期降水量Precipitation during root extension period | 0.6975 | 0.6895 | ||||
伸根期日照时数Sunshine hours during root extension period | 0.5443 | 0.6661 | ||||
伸根期平均气温Average temperature during root extension period | 0.5038 | 0.5634 | 0.5366 | 0.5776 | 0.6446 | 0.7373 |
旺长期降水量Precipitation during prosperous period | 0.5979 | 0.6308 | 0.5921 | |||
旺长期平均气温Average temperature during prosperous period | 0.5938 | 0.5564 | 0.5084 | 0.6346 | 0.5302 | |
成熟期降水量Precipitation in maturity period | 0.5968 | 0.7059 | 0.4998 | |||
成熟期日照时数Sunshine hours during maturity period | 0.6758 | 0.5298 | 0.4989 | 0.5715 | 0.6282 | |
成熟期平均气温Average temperature during maturity period | 0.5357 | 0.5919 | 0.6308 | 0.6375 | 0.6806 | 0.5840 |
土壤全氮含量Soil total nitrogen content | 0.7240 | 0.6159 | 0.7455 |
下载: 导出CSV
表6两种算法的玉溪烤烟‘K326’化学成分生态预测模型验证
Table6.Verification of ecological prediction models of chemical compositions based on mechanism algorithm and intelligent algorithm of tobacco cultivar 'K326' in Yuxi
化学成分Chemical composition | 机理算法Mechanism algorithm | 智能算法Intelligent algorithm | ||||
R2 | RMSE | R2 | RMSE | |||
烟碱Nicotine | 0.2621 | 0.0914 | 0.9986 | 0.0134 | ||
总糖Total sugar | 0.3735 | 0.1622 | 0.9992 | 0.0559 | ||
还原糖Reducing sugar | 0.1368 | 0.2041 | 0.9998 | 0.0173 | ||
总氮Total nitrogen | 0.2091 | 0.1557 | 0.9499 | 0.0302 | ||
钾Potassium | 0.3814 | 0.0873 | 0.9925 | 0.0187 | ||
氯Chlorine | 0.3682 | 0.0746 | 0.9956 | 0.0041 |
下载: 导出CSV
参考文献
[1] | 刘先超, 马君红, 刘健康, 等. 四川地区生态因素与烟叶化学成分的关系[J]. 西南农业学报, 2014, 27(6): 2644-2649 https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201406072.htm LIU X C, MA J H, LIU J K, et al. Relationship between ecological factors and chemical components of tobacco leaves in tobacco planting area of Sichuan[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(6): 2644-2649 https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201406072.htm |
[2] | 刘燕, 阙劲松, 于良君, 等. 烤烟致香物质含量的主要影响因素及其提高的可能途径[J]. 中国农学通报, 2013, 29(22): 83-89 doi: 10.11924/j.issn.1000-6850.2012-3985 LIU Y, QUE J S, YU L J, et al. The main factors influencing the content of aromatic substance in flue-cured tobacco leaves and possible measures for improving its content[J]. Chinese Agricultural Science Bulletin, 2013, 29(22): 83-89 doi: 10.11924/j.issn.1000-6850.2012-3985 |
[3] | 薛宝燕, 沈嘉, 姜超强, 等. 两种典型环境对烤烟香型风格及致香物质的影响[J]. 中国烟草科学, 2016, 37(3): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV201603001.htm XUE B Y, SHEN J, JIANG C Q, et al. Influence of two typical environments on flavor type and aroma substances of flue-cured tobacco[J]. Chinese Tobacco Science, 2016, 37(3): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV201603001.htm |
[4] | 时鹏, 申国明, 向德恩, 等. 恩施烟区主要气候因子与烤烟烟叶化学成分的关系[J]. 中国烟草科学, 2012, 33(4): 13-16 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV201204006.htm SHI P, SHEN G M, XIANG D E, et al. Relationships between main climatic factors and chemical components of flue-cured tobacco leaves in Enshi[J]. Chinese Tobacco Science, 2012, 33(4): 13-16 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV201204006.htm |
[5] | 石俊雄, 陈雪, 雷璐. 生态因子对贵州烟叶主要化学成分的影响[J]. 中国烟草科学, 2008, 29(2): 18-22 doi: 10.3969/j.issn.1007-5119.2008.02.005 SHI J X, CHEN X, LEI L. Effects of ecological factors on chemical components of tobacco leaves in Guizhou[J]. Chinese Tobacco Science, 2008, 29(2): 18-22 doi: 10.3969/j.issn.1007-5119.2008.02.005 |
[6] | 陈伟, 王三根, 唐远驹, 等. 不同烟区烤烟化学成分的主导气候影响因子分析[J]. 植物营养与肥料学报, 2008, 14(1): 144-150 doi: 10.3321/j.issn:1008-505X.2008.01.023 CHEN W, WANG S G, TANG Y J, et al. Analysis of the dominant climatic factors influencing the chemical compositions of flue-cured tobacco in different tobacco-growing areas[J]. Plant Nutrition and Fertilizer Science, 2008, 14(1): 144-150 doi: 10.3321/j.issn:1008-505X.2008.01.023 |
[7] | 刘冰洋, 张小全, 张鋆鋆, 等. 气象因子对高香气烤烟品种主要香味前体物含量的影响[J]. 中国生态农业学报, 2016, 24(9): 1214-1222 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201609015.htm LIU B Y, ZHANG X Q, ZHANG Y Y, et al. Effects of meteorological factors on aroma precursors contents of high aroma flue-cured tobacco[J]. Chinese Journal of Eco-Agriculture, 2016, 24(9): 1214-1222 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201609015.htm |
[8] | 赵阿娟, 文婧, 丁春霞, 等. 长沙植烟区土壤理化性质与烟叶常规化学成分相关性分析[J]. 作物研究, 2018, 32(6): 511-515 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYJ201806014.htm ZHAO A J, WEN J, DING C X, et al. Correlation analysis between physicochemical properties of soil and chemical composition of tobacco leaf in Changsha tobacco growing area[J]. Crop Research, 2018, 32(6): 511-515 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYJ201806014.htm |
[9] | 薛剑波, 符云鹏, 尹永强. 影响烟草中烟碱含量的因素及调控措施[J]. 安徽农业科学, 2005, 33(6): 1053-1055 doi: 10.3969/j.issn.0517-6611.2005.06.066 XUE J B, FU Y P, YIN Y Q. Factor and controlling measures influencing the nicotine content in tobacco leaf[J]. Journal of Anhui Agricultural Sciences, 2005, 33(6): 1053-1055 doi: 10.3969/j.issn.0517-6611.2005.06.066 |
[10] | 崔志燕, 陈富彩, 张玲, 等. 不同施磷水平对烟叶氮磷钾含量、光合特性和产质量的影响[J]. 河南农业大学学报, 2016, 50(2): 171-175 https://www.cnki.com.cn/Article/CJFDTOTAL-NNXB201602005.htm CUI Z Y, CHEN F C, ZHANG L, et al. Effects of different phosphorus fertilizer applications on content of nitrogen, phosphorus and potassium, photosynthetic characteristics and yield of flue-cured tobacco[J]. Journal of Henan Agricultural University, 2016, 50(2): 171-175 https://www.cnki.com.cn/Article/CJFDTOTAL-NNXB201602005.htm |
[11] | 王学杰, 李承荣, 王政, 等. 奉节烟区植烟土壤养分状况及其与烟叶内在质量的相关性[J]. 贵州农业科学, 2016, 44(12): 28-32 doi: 10.3969/j.issn.1001-3601.2016.12.007 WANG X J, LI C R, WANG Z, et al. Status of tobacco-growing soil nutrients in Fengjie production area and its relationship with quality of flue-cured tobacco leaves[J]. Guizhou Agricultural Sciences, 2016, 44(12): 28-32 doi: 10.3969/j.issn.1001-3601.2016.12.007 |
[12] | 梁兵, 黄坤, 阙劲松, 等. 红河植烟区烟叶品质与土壤中微量元素含量关系研究[J]. 西南农业学报, 2017, 30(4): 824-829 https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201704019.htm LIANG B, HUANG K, QUE J S, et al. Relationship between quality of tobacco leaves and middle-micro elements in Honghe tobacco soil[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(4): 824-829 https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201704019.htm |
[13] | 聂铭, 周冀衡, 杨荣生, 等. 基于粒子群优化BP神经网络的烤烟钾氯比预测模型[J]. 烟草科技, 2014, 47(6): 49-53 doi: 10.3969/j.issn.1002-0861.2014.06.011 NIE M, ZHOU J H, YANG R S, et al. A model of BP neural network optimized on particle swarm algorithm for predicting ratio of potassium to chlorine in flue-cured tobacco[J]. Tobacco Science & Technology, 2014, 47(6): 49-53 doi: 10.3969/j.issn.1002-0861.2014.06.011 |
[14] | 邵惠芳, 许自成, 李东亮, 等. 基于BP神经网络建立烤烟感官质量的预测模型[J]. 中国烟草学报, 2011, 17(1): 19-25 doi: 10.3969/j.issn.1004-5708.2011.01.004 SHAO H F, XU Z C, LI D L, et al. The establishment of BP neural network based models for predicting tobacco leaf sensory quality[J]. Acta Tabacaria Sinica, 2011, 17(1): 19-25 doi: 10.3969/j.issn.1004-5708.2011.01.004 |
[15] | 张明乾, 刘立博, 赵羡波, 等. BP神经网络烟叶化学成分预测模型构建[J]. 贵州农业科学, 2020, 48(2): 136-139 https://www.cnki.com.cn/Article/CJFDTOTAL-GATE202002029.htm ZHANG M Q, LIU L B, ZHAO X B, et al. Establishment of prediction model for tobacco chemical composition based on BP neural network[J]. Guizhou Agricultural Sciences, 2020, 48(2): 136-139 https://www.cnki.com.cn/Article/CJFDTOTAL-GATE202002029.htm |
[16] | 钟楚, 李蒙, 朱勇. 基于气象因子影响的云南烤烟主要化学成分预测[J]. 西南农业学报, 2013, 26(2): 535-540 doi: 10.3969/j.issn.1001-4829.2013.02.028 ZHONG C, LI M, ZHU Y. Forecasting for main chemical compositions of flue-cured tobacco in Yunnan based on effects of meteorological factors[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(2): 535-540 doi: 10.3969/j.issn.1001-4829.2013.02.028 |
[17] | 郑培根, 刘梓修. 偏相关系数的定义及计算[J]. 江西财经学院学报, 1986, (1): 75-79 https://www.cnki.com.cn/Article/CJFDTOTAL-DDCJ198601021.htm ZHENG P G, LIU Z X. Definition and calculation of partial correlation coeffcient[J]. Contemporary Finance & Economics, 1986, (1): 75-79 https://www.cnki.com.cn/Article/CJFDTOTAL-DDCJ198601021.htm |
[18] | GUO Z H, WU J, LU H Y, et al. A case study on a hybrid wind speed forecasting method using BP neural network[J]. Knowledge-Based Systems, 2011, 24(7): 1048-1056 doi: 10.1016/j.knosys.2011.04.019 |
[19] | RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524 doi: 10.1126/science.1205438 |
[20] | 孙弋清. 基于进退法的神经网络隐含层节点数的确定方法[J]. 现代商贸工业, 2018, 39(35): 197-199 https://www.cnki.com.cn/Article/CJFDTOTAL-XDSM201835092.htm SUN Y Q. The method to determine the number of hidden layer nodes of neural network based on the advance and retreat method[J]. Modern Business Trade Industry, 2018, 39(35): 197-199 https://www.cnki.com.cn/Article/CJFDTOTAL-XDSM201835092.htm |
[21] | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61 doi: 10.1016/j.advengsoft.2013.12.007 |
[22] | RINALDI M, LOSAVIO N, FLAGELLA Z. Evaluation and application of the OILCROP-SUN model for sunflower in southern Italy[J]. Agricultural Systems, 2003, 78(1): 17-30 doi: 10.1016/S0308-521X(03)00030-1 |
[23] | JAMIESON P D, SEMENOV M A. Modelling nitrogen uptake and redistribution in wheat[J]. Field Crops Research, 2000, 68(1): 21-29 doi: 10.1016/S0378-4290(00)00103-9 |
[24] | 张晓兵, 夏琛, 项波卡, 等. 基于灰色关联分析的云南烟叶化学成分适宜性评价[J]. 烟草科技, 2011, 44(10): 32-35 doi: 10.3969/j.issn.1002-0861.2011.10.008 ZHANG X B, XIA C, XIANG B K, et al. Suitability evaluation of chemical components in Yunnan tobacco with grey incidence analysis[J]. Tobacco Science & Technology, 2011, 44(10): 32-35 doi: 10.3969/j.issn.1002-0861.2011.10.008 |
[25] | 李熙全, 代飞. 主要生态因素对烟叶质量影响研究进展[J]. 安徽农业科学, 2013, 41(2): 531-532, 537 doi: 10.3969/j.issn.0517-6611.2013.02.024 LI X Q, DAI F. Research progress on the influence of main ecological factors on tobacco quality[J]. Journal of Anhui Agricultural Sciences, 2013, 41(2): 531-532, 537 doi: 10.3969/j.issn.0517-6611.2013.02.024 |
[26] | 文建川, 景元书. 烟草化学成分与气象因子关系研究进展[J]. 河南农业科学, 2019, 48(4): 1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-HNNY201904002.htm WEN J C, JING Y S. Research progress on the relationship between tobacco chemical composition and meteorological factors[J]. Journal of Henan Agricultural Sciences, 2019, 48(4): 1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-HNNY201904002.htm |
[27] | 姬兴杰, 孟寒冬, 左璇, 等. 河南烟区主要气候因子与烤烟烟叶化学成分的关系[J]. 中国烟草科学, 2017, 38(1): 35-41 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV201701006.htm JI X J, MENG H D, ZUO X, et al. Relationships between main climatic factors and chemical components of flue-cured tobacco leaves in Henan tobacco-growing areas[J]. Chinese Tobacco Science, 2017, 38(1): 35-41 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV201701006.htm |
[28] | 易建华, 彭新辉, 邓小华, 等. 气候和土壤及其互作对湖南烤烟还原糖、烟碱和总氮含量的影响[C]//中国烟草学会六届三次理事会暨学术年会论文集. 长沙, 2011: 112-119 YI J H, PENG X H, DENG X H, et al. Effects of climate, soil and their interactions on reducing sugar, nicotine and total nitrogen contents of flue-cured tobacco in Hunan[C]. Sixth Third Council and Annual Conference of the Chinese Tobacco Society. Changsha, 2011: 112-119 |