删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

猕猴桃种植户应对气象灾害的行为及影响因素研究——以2018年陕西省冷冻灾害为例

本站小编 Free考研考试/2022-01-01

程淑俊,
颜俨,
姜志德,
西北农林科技大学经济管理学院 杨凌 712100
基金项目: 国家自然科学基金面上项目71573212

详细信息
作者简介:程淑俊, 主要研究方向为生态农业、资源经济。E-mail: chengsj@nwafu.edu.cn
通讯作者:姜志德, 研究方向为农业资源经济与环境管理、低碳经济。E-mail: jiangzhide@nwafu.edu.cn
中图分类号:F325.2

计量

文章访问数:199
HTML全文浏览量:10
PDF下载量:162
被引次数:0
出版历程

收稿日期:2020-06-27
录用日期:2020-09-14
刊出日期:2021-03-01

Kiwifruit farmers' behavior and its' influencing factors of coping with meteorological disasters: A case study of Shaanxi freezing disaster in 2018

CHENG Shujun,
YAN Yan,
JIANG Zhide,
College of Economics and Management, Northwest A & F University, Yangling 712100, China
Funds: the National Natural Science Foundation of China71573212

More Information
Corresponding author:JIANG Zhide, E-mail: jiangzhide@nwafu.edu.cn


摘要
HTML全文
(0)(4)
参考文献(23)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:气象灾害已成为造成农业歉收和农业生产波动的主要原因,为厘清农户灾害应对行为及影响因素,利用中国猕猴桃主产区陕西省关中地区两个典型县(周至县和眉县)的226份调查数据,对猕猴桃种植户灾害应对行为决策及行为强度进行测度与综合分析,并运用Double-hurdle模型进一步分析了农户行为决策及影响因素。结果表明:1)农户在灾害前后的行为存在差异,灾前主要采取树主干涂白包裹及果园熏烟等方式,灾后主要采用剪去受冻枝条及向树体喷洒营养液等方式。2)农户应灾强度总体较低,且存在县域差异。在12种应对措施中,190位种植户仅采取1~3种应对措施,占采取应对措施人群的85.43%,平均采取措施2.1种;周至县农户采取应对行为的农户比例较高,且行为强度高于眉县农户。3)农户应对行为受其内在禀赋特征及外在环境因素的共同影响,且影响方向有正有负。户主的文化程度、种植猕猴年限、参加技术培训的次数等变量正向影响农户的应对行为决策及强度;乡镇距离变量负向影响农户的应对行为决策及强度。政府应拓宽农户获取信息与知识的渠道,引导农户积极应对自然灾害,确保种植业收入稳定及持续发展。
关键词:气象灾害/
应对行为/
行为强度/
Double-hurdle模型/
影响因素/
猕猴桃种植户
Abstract:Meteorological disasters have become the main cause of agricultural harvest failures and fluctuations in agricultural production. To investigate farmers' disaster response behaviors and influencing factors, we used data from 226 microscopic surveys conducted in two counties (Zhouzhi County and Mei County) in the Guanzhong region, Shaanxi Province, China's main kiwifruit production area. We comprehensively analyzed the kiwifruit farmers' disaster response decision-making and behavior, and used Double-hurdle model to analyze the influencing factors. The results showed the following: 1) before and after the disaster, differences were noted in the farmers' behaviors. Before the disaster, farmers painted the main trunks white and used smoke generation in the orchard. After the disaster, farmers cut off frozen branches and sprayed nutrient solution on the trees. 2) The disaster response intensities of the farmers were generally low and country specific differences were noted. Among the 12 kinds of response measures, 190 farmers only used 1-3 kinds, accounting for 85.43% of the farmers undertaking response measures, with an average of 2.1 kinds of measures. Zhouzhi County had a higher proportion of farmers who used response measures, and the behavior intensity was higher than that of farmers in Mei County. 3) Farmers' coping behaviors were influenced by their inherent endowment characteristics and external environmental factors, and the direction of influence was both positive and negative. Variables such as the education level of household head, the number of years the household head had been planting kiwifruit, and the extent of technical training positively affected the farmers' decision-making and behavior intensity. Variables such as the township distance negatively affected the decision-making and intensity of the farmers' coping behaviors. The government should broaden the channels for farmers to obtain information and knowledge and guide them to actively respond to natural disasters. Responding to meteorological disasters is a necessary measure to ensure stable income and sustainable development of the planting industry.
Key words:Meteorological disasters/
Coping behavior/
Behavior intensity/
Double-hurdle model/
Influencing factors/
Kiwi growers

HTML全文

表1样本农户采取的应对猕猴桃冷冻害措施分布
Table1.Distribution of response measures taken by sample farmers to deal with kiwifruit freezing damage
措施分类
Measure classification
具体措施
Specific measures
采用频数
Number of adoption
采用频率
Frequency of adoption (%)
主动应对措施
Proactive measures
树体涂白或包裹 Tess white painting or wrapping 20 8.85
修剪树体 Tree pruning 2 0.88
喷防冻剂 Antifreeze spraying 16 7.08
涂营养液 Nutrient solution painting 3 1.33
果园熏烟 Orchard fumigation 36 15.93
购买农业保险Buy agricultural insurance 49 21.68
无 None 136 60.18
被动应对措施
Passive measures
增施肥料 Increasing fertilizer 12 5.31
灌水 Irrigation 8 3.54
剪枝 Pruning 175 77.43
嫁接 Grafting 10 4.42
涂营养液 Nutrient solution painting 66 29.20
喷防冻剂 Antifreeze spraying 24 10.62
无 None 38 16.81


下载: 导出CSV
表2影响农户行为的变量类别及具体变量的描述性统计分析
Table2.Variable categories and descriptive statistical analysis of specific variables affecting farmer's behavior
变量
Variable
变量说明
Variable description
均值
Mean
标准差
Standard deviation
最小值
Min.value
最大值
Max.value
户主个人禀赋Head
endowment
文化水平(X1)
Education level (X1)
没上学=1;小学=2;初中=3;高中=4;大专及以上=5
Not attending school=1;primary school=2;junior high school=3;senior high school=4;college and above=5
2.97 1.32 1.00 5.00
种植年限(X2)
Years of planting (X2)

Year
6.24 7.57 0.00 30.00
气候条件感知(X3)
Climatic condition perception (X3)
很好=1;不错=2;一般=3;不好=4;很不好=5
Very good=1;good=2;general=3;bad=4;very bad=5
2.86 1.06 1.00 5.00
参与技术培训次数(X4)
Times of technical training (X4)

Times
2.23 2.92 0.00 30.00
与村民交流频率(X5)
Frequency of communication with villagers (X5)
从不=1;次数较少=2;一般=3;次数较多=4;很频繁=5
Never=1;less times=2;normal=3;more times=4;very frequently=5
3.95 1.11 1.00 5.00
上网频率(X6)
Internet frequency (X6)
从不=1;次数较少=2;一般=3;次数较多=4;很频繁=5
Never=1;less times=2;normal=3;more times=4;very frequently=5
2.45 1.67 1.00 5.00
家庭禀赋
Family
endowment
农业劳动力数量(X7)
Number of agricultural labor (X7)

People
2.03 0.79 1.00 5.00
种植面积(X8)
Planting area (X8)
平方米
Square meter
3713.52 2286.78 66.67 20 000.01
土地细碎化程度(X9)
Land fragmentation degree (X9)

Piece
2.49 1.12 1.00 8.00
种植收入(X10)
Planting income (X10)
万元
Ten thousand Yuan
2.17 2.55 0.10 14.00
村地距离(X11)
Village distance (X11)
千米Kilometer 0.75 0.70 0.00 7.50
遭灾情况(X12)
Disaster situation (X12)
很频繁=1;次数较多=2;一般=3;次数较少=4;从没有=5
Very frequently=1;more times=2;normal=3;less times=4;never=5
3.04 1.03 1.00 5.00
种地类型(X13)
Farmland type (X13)
平地=1;非平地=0
Flat=1;non-flat=0
0.82 0.39 0.00 1.00
亲戚中是否有村干部(X14)
Is there a village cadre Relatives (X14)
是=1;否=0
Yes=1;no=0
0.20 0.40 0.00 1.00
村庄环境
Village
environment
乡镇距离(X15)
Township distance (X15)
千米
Kilometer
3.00 1.75 1.00 8.00
是否示范村(X16)
Whether is the model village (X16)
是=1;否=0
Yes=1;no=0
0.44 0.50 0.00 1.00
技术员人数(X17)
Number of technicians (X17)

People
7.48 7.26 0.00 27.00
市场条件Market
conditions
猕猴桃销售价格(X18)
Kiwi sales price (X18)
¥·kg?1 2.71 1.30 0.50 10.00
销售情况(X19)
Sales situation (X19)
从不滞销=1;滞销较少=2;一般=3;滞销较多=4;十分频繁=5
Never unsalable=1;less unsalable=2;general=3;more unsalable=4;very frequent=5
2.17 1.20 1.00 5.00
控制变量
Control variable
是否预知(X20)
Whether foresee (X20)
是=1;否=0
Yes=1;no=0
0.24 0.43 0.00 1.00
是否受灾(X21)
Whether is affected (X21)
是=1;否=0
Yes=1;no=0
0.90 0.30 0.00 1.00
地域差别(X22)
Regional difference (X22)
周至县=1;眉县=0
Zhouzhi County=1;Mei County=0
0.45 0.50 0.00 1.00


下载: 导出CSV
表3农户应对猕猴桃冷冻害行为综合得分情况
Table3.Comprehensive scores of farmers' behaviors in response to freezing damage of kiwifruit
类别
Category
分值
Score
是否受灾 Whether it was affected 总计
Total
受灾 Affected (n=206) 未受灾 Unaffected (n=22)
周至县
Zhouzhi County (n=102)
眉县
Mei County (n=102)
周至县
Zhouzhi County (n=1)
眉县
Mei County (n=21)
主动应对行为
Proactive coping behavior
0 47 73 0 16 126
1 44 19 1 5 69
2 5 5 0 0 10
3 6 1 0 0 7
4 0 4 0 0 4
5 0 0 0 0 0
6 0 0 0 0 0
均值 Mean 1.31 1.66 1.00 1.00 1.40
被动应对行为
Passive coping behavior
0 15 19 1 3 38
1 50 50 0 10 110
2 23 26 0 5 54
3 11 5 0 2 18
4 3 2 0 1 6
5 0 0 0 0 0
6 0 0 0 0 0
均值 Mean 1.62 1.51 0.00 1.67 1.57
综合应对行为
Comprehensive coping behavior
0 8 16 0 3 27
1 28 42 1 6 77
2 34 24 0 9 67
3 17 8 0 1 26
4 9 5 0 2 16
5 6 3 0 0 9
6 0 4 0 0 4
均值 Mean 2.27 2.01 1.00 1.94 2.12


下载: 导出CSV
表4农户应对灾害行为影响因素的回归模型结果
Table4.Model regression results of the influencing factors of farmers' behavior in response to disaster
影响因素
Influencing factor
模型1:主动应对行为
Model 1:Proactive coping behavior
模型2:被动应对行为
Model 2:Passive coping behavior
模型3:整体应对行为
Model 3:Overall coping behavior
决策选择模型
Decision choice model
行为强度模型
Behavior intensity model
决策选择模型
Decision choice model
行为强度模型
Behavior intensity model
决策选择模型
Decision choice model
行为强度模型
Behavior intensity model
X1 -0.226***(0.000) 0.355***(0.000) 0.104(0.150) 0.028(0.470) -0.020(0.797) 0.031(0.641)
X2 -0.023***(0.002) 0.041***(0.000) -0.013(0.158) -0.001(0.951) -0.032***(0.002) 0.004(0.685)
X3 -0.116**(0.020) -0.011(0.828) -0.273***(0.000) -0.058*(0.089) -0.082(0.248) -0.225***(0.000)
X4 0.094***(0.000) 0.081***(0.000) 0.055(0.110) 0.045***(0.000) -0.014(0.646) 0.163***(0.000)
X5 0.129**(0.011) -0.158*** (0.001) -0.167**(0.013) -0.005(0.881) 0.089(0.198) -0.123(0.042)
X6 0.081**(0.013) -0.058*(0.071) -0.027(0.468) -0.089***(0.000) -0.042(0.325) -0.031***(0.438)
X7 0.049(0.455) 0.124*(0.078) 0.108(0.178) 0.021(0.658) 0.052(0.557) 0.224***(0.005)
X8 -0.048***(0.004) -0.048***(0.165) 0.001(0.988) -0.022(0.288) -0.055***(0.003) 0.024(0.500)
X9 -0.021(0.677) 0.312***(0.000) -0.223***(0.000) 0.177**(0.000) 0.070***(0.287) 0.226**(0.001)
X10 0.008(0.241) 0.010(0.243) -0.001***(0.000) -0.001(0.293) -0.001***(0.000) -0.001(0.219)
X11 -0.071(0.129) 0.208***(0.000) 0.015***(0.783) -0.081***(0.006) 0.012(0.838) -0.068(0.173)
X12 -0.094(0.071) 0.100**(0.047) -0.001(0.990) -0.038(0.334) 0.072(0.317) -0.055(0.387)
X13 -0.178(0.160) 0.233*(0.088) 0.174(0.240) -0.093(0.322) 0.347(0.122) -0.235(0.140)
X14 0.204(0.104) -0.187(0.187) 1.439***(0.000) -0.126(0.154) 1.191***(0.000) -0.038(0.803)
X15 0.003**(0.832) -0.084***(0.000) 0.056***(0.004) -0.044***(0.000) 0.056***(0.008) -0.076***(0.000)
X16 -0.119(0.363) -0.427***(0.007) 0.724**(0.000) -0.651*** (0.000) 0.713***(0.000) -0.829***(0.000)
X17 -0.002(0.766) 0.021**(0.013) 0.026**(0.006) -0.003(0.603) 0.016(0.126) 0.001(0.934)
X18 -0.036(0.333) -0.047(0.213) -0.061(0.153) 0.033(0.212) -0.110**(0.019) 0.069(0.130)
X19 -0.039(0.379) -0.056(0.203) 0.015(0.782) 0.001(0.981) 0.142**(0.030) -0.068(0.187)
cons 0.320(0.481) -1.309(0.011) 2.809(0.000) 2.677(0.000) 1.351(0.032) 3.080(0.000)
Log likelihood -740.209 -1074.5043 -1340.3597
Wald Chi 144.99 144.29 126.68
Obs 855 855 855
各影响因素的意义见表 2。*、**和***分别表示在P < 10%、P < 5%和P < 1%水平上显著, 括号内为P值。The meaning of influencing factor is shown in the table 2. *, **, and *** indicate significant at P < 10%, P < 5%, and P < 1%, respectively; and the value in bracket is P value.


下载: 导出CSV

参考文献(23)
[1]TSCHOEGL L, BELOW R, GUHA-SAPIR D. An analytical review of selected data sets on natural disasters and impacts[C]//Paper Prepared for UNDP/CRED Workshop on Improving Compilation of Reliable Data on Disaster Occurrence and Impact. Bangkok: CRED, 2006
[2]严奉宪, 李潘坡, 朱增城. 基于农户尺度的灾害脆弱性实证研究——以湖北省监利县为例[J]. 农业技术经济, 2011, (10): 24-30 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJS201110002.htm
YAN F X, LI P P, ZHU Z C. An empirical study on disaster vulnerability based on peasant household scale: A case study of Jianli County, Hubei Province[J]. Journal of Agrotechnical Economics, 2011, (10): 24-30 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJS201110002.htm
[3]SMIT B, BURTON I, KLEIN R J T, et al. An anatomy of adaptation to climate change and variability[J]. Climatic Change, 2000, 45(1): 223-251 doi: 10.1023/A:1005661622966
[4]吕亚荣, 陈淑芬. 农民对气候变化的认知及适应性行为分析[J]. 中国农村经济, 2010, (7): 75-86 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJJ201007013.htm
LYU Y R, CHEN S F. Analysis of farmers' cognition and adaptive behavior to climate change[J]. Chinese Rural Economy, 2010, (7): 75-86 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJJ201007013.htm
[5]SMIT B, BURTON I, KLEIN R J T, et al. The science of adaptation: A framework for assessment[J]. Mitigation and Adaptation Strategies for Global Change, 1999, 4(3/4): 199-213 doi: 10.1023/A:1009652531101
[6]高杨, 牛子恒. 风险厌恶、信息获取能力与农户绿色防控技术采纳行为分析[J]. 中国农村经济, 2019, (8): 109-127 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJJ201908007.htm
GAO Y, NIU Z H. Risk aversion, information acquisition ability and farmers' adoption behavior of green control techniques[J]. Chinese Rural Economy, 2019, (8): 109-127 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJJ201908007.htm
[7]冯晓龙, 陈宗兴, 霍学喜. 基于分层模型的苹果种植农户气象灾害适应性行为研究[J]. 资源科学, 2015, 37(12): 2491-2500 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201512019.htm
FENG X L, CHEN Z X, HUO X X. Influencing factors of apple farmer adaptation to meteorological disasters[J]. Resources Science, 2015, 37(12): 2491-2500 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201512019.htm
[8]吴春雅, 刘菲菲. 气候变化背景下稻农洪涝适应性工程措施采用行为研究——基于鄱阳湖生态经济区调查[J]. 农业技术经济, 2015, (3): 15-24 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJS201503002.htm
WU C Y, LIU F F. Research on the adoption behavior of engineering measures for flood adaptation of rice farmers under the background of climate change: Based on the survey of Poyang Lake ecological economic zone[J]. Agrotechnical Economics, 2015, (3): 15-24 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJS201503002.htm
[9]李卫, 薛彩霞, 姚顺波, 等. 农户保护性耕作技术采用行为及其影响因素: 基于黄土高原476户农户的分析[J]. 中国农村经济, 2017, (1): 44-57 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJJ201701004.htm
LI W, XUE C X, YAO S B, et al. The adoption behavior of households' conservation tillage technology: An empirical analysis based on data collected from 476 households on the Loess Plateau[J]. Chinese Rural Economy, 2017, (1): 44-57 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJJ201701004.htm
[10]刘洪彬, 吕杰. 大城市郊区农户对耕地质量保护认知行为差异及其影响因素——基于PSER分析框架的实证检验[J]. 南京农业大学学报: 社会科学版, 2017, 17(6): 71-81 https://www.cnki.com.cn/Article/CJFDTOTAL-NJNS201706007.htm
LIU H B, LYU J. Study on differences and influencing factors of cultivated land quality protection cognitive behavior of farmers in suburbs of big city by analysis framework of PSER[J]. Journal of Nanjing Agricultural University: Social Sciences Edition, 2017, 17(6): 71-81 https://www.cnki.com.cn/Article/CJFDTOTAL-NJNS201706007.htm
[11]冯晓龙, 刘明月, 仇焕广, 等. 资产专用性与专业农户气候变化适应性生产行为——基于苹果种植户的微观证据[J]. 中国农村观察, 2018, (4): 74-85 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNCG201804006.htm
FENG X L, LIU M Y, QIU H G, et al. The impacts of asset specificity on specialized farmers' adaptation to climate change: Evidence from Apple farmers in Shaanxi Province[J]. China Rural Survey, 2018, (4): 74-85 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNCG201804006.htm
[12]TAZEZE A, HAJI J, KETEMA M. Climate change adaptation strategies of smallholder farmers: The case of Babilie District, East Harerghe Zone of Oromia Regional State of Ethiopia[J]. Journal of Economics and Sustainable Development, 2012, 3(14): 1-13 http://www.researchgate.net/publication/313199983_Climate_change_adaptation_strategies_of_smallholder_farmers_The_case_of_Babilie_district_East_Harerghe_zone_of_Oromia_regional_state_of_Ethiopia
[13]GROTHMANN T, PATT A. Adaptive capacity and human cognition: The process of individual adaptation to climate change[J]. Global Environmental Change, 2005, 15(3): 199-213 doi: 10.1016/j.gloenvcha.2005.01.002
[14]罗小锋, 李文博. 农户减灾需求及影响因素分析——基于湖北省352户农户的调查[J]. 农业经济问题, 2011, 32(9): 65-71 https://www.cnki.com.cn/Article/CJFDTOTAL-NJWT201109011.htm
LUO X F, LI W B. Analysis of farmers' needs and influencing factors for disaster reduction: Based on a survey of 352 households in Hubei Province[J]. Journal of Agricultural Economics, 2011, 32(9): 65-71 https://www.cnki.com.cn/Article/CJFDTOTAL-NJWT201109011.htm
[15]MADDISON D J. The Perception of and Adaptation to Climate Change in Africa[R]. Washington, DC: World Bank Publications, 2007
[16]朱红根, 周曙东. 南方稻区农户适应气候变化行为实证分析——基于江西省36县(市)346份农户调查数据[J]. 自然资源学报, 2011, 26(7): 1119-1128 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201107003.htm
ZHU H G, ZHOU S D. Factors influencing southern rice farmers adapting to climate change behavior-Based on 346 household survey data of 36 counties in Jiangxi Province[J]. Journal of Natural Resources, 2011, 26(7): 1119-1128 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201107003.htm
[17]ARCHER E, MUKHALA E, WALKER S, et al. Sustaining agricultural production and food security in Southern Africa: An improved role for climate prediction?[J]. Climatic Change, 2007, 83(3): 287-300 doi: 10.1007/s10584-006-9192-5
[18]张紫云, 王金霞, 黄季焜. 冻灾的发生、政策支持及农户适应性措施的采用[J]. 中国人口·资源与环境, 2014, 24(S2): 483-488 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ2014S2122.htm
ZHANG Z Y, WANG J X, HUANG J K. Frost, policy support and farmers' adoption of adaptation measures[J]. China Population Resources and Environment, 2014, 24(S2): 483-488 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ2014S2122.htm
[19]冯晓龙, 霍学喜, 陈宗兴. 气候变化与农户适应性行为决策[J]. 西北农林科技大学学报: 社会科学版, 2017, 17(5): 73-81 https://www.cnki.com.cn/Article/CJFDTOTAL-NLXS201705011.htm
FENG X L, HUO X X, CHEN Z X. Climate change and farmer's adaptive behavior decision[J]. Journal of Northwest A & F University: Social Science Edition, 2017, 17(5): 73-81 https://www.cnki.com.cn/Article/CJFDTOTAL-NLXS201705011.htm
[20]钟彩虹, 黄宏文. 中国猕猴桃科研与产业四十年[M]. 合肥: 中国科学技术大学出版社, 2018
ZHONG C H, HUANG H W. Forty Years of Chinese Kiwifruit Research and Industry[M]. Hefei: Press of University of Science and Technology of China, 2018
[21]屈振江, 柏秦凤, 梁轶, 等. 气候变化对陕西猕猴桃主要气象灾害风险的影响预估[J]. 果树学报, 2014, 31(5): 873-878 https://www.cnki.com.cn/Article/CJFDTOTAL-GSKK201405025.htm
QU Z J, BAI Q F, LIANG Y, et al. Potential impacts of climate change on the main meteorological disaster risk of kiwifruit in Shaanxi Province[J]. Journal of Fruit Science, 2014, 31(5): 873-878 https://www.cnki.com.cn/Article/CJFDTOTAL-GSKK201405025.htm
[22]孔祥智, 方松海, 庞晓鹏, 等. 西部地区农户禀赋对农业技术采纳的影响分析[J]. 经济研究, 2004, 39(12): 85-95 https://www.cnki.com.cn/Article/CJFDTOTAL-JJYJ200412010.htm
KONG X Z, FANG S H, PANG X P, et al. Analysis of the effect of household endowments on the agricultural technology adoption decision in West China[J]. Economic Research Journal, 2004, 39(12): 85-95 https://www.cnki.com.cn/Article/CJFDTOTAL-JJYJ200412010.htm
[23]储成兵. 农户病虫害综合防治技术的采纳决策和采纳密度研究——基于Double-Hurdle模型的实证分析[J]. 农业技术经济, 2015, (9): 117-127 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJS201509012.htm
CHU C B. Research on the adoption decision and density of integrated pest control technology for farmers: An empirical analysis based on Double-Hurdle model[J]. Journal of Agrotechnical Economics, 2015, (9): 117-127 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJS201509012.htm

相关话题/经济 气象 资源 农业 技术