删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

聚乙烯微塑料对玉米根际土壤微生物群落结构的影响

本站小编 Free考研考试/2022-01-01

丁峰1,,
赖金龙2,
季晓晖3,
罗学刚1, 2,,
1.西南科技大学生命科学与工程学院 绵阳 621010
2.西南科技大学生物质材料教育部工程研究中心 绵阳 621000
3.陕西理工大学化学与环境科学学院 汉中 723000
基金项目: 国民核生化灾害防护国家重点实验室公开基金项目SKLNBC2019-21

详细信息
作者简介:丁峰, 主要研究方向为环境污染生物效应与生物修复研究。E-mail:1946533708@qq.com
通讯作者:罗学刚, 主要研究方向为环境污染生物效应与生物修复研究。E-mail:lxg@swust.edu.cn
中图分类号:S154.31

计量

文章访问数:112
HTML全文浏览量:24
PDF下载量:35
被引次数:0
出版历程

收稿日期:2020-08-17
录用日期:2021-01-17
网络出版日期:2021-06-22
刊出日期:2021-06-01

Effects of polyethylene microplastics on the microbial community structure of maize rhizosphere soil

DING Feng1,,
LAI Jinlong2,
JI Xiaohui3,
LUO Xuegang1, 2,,
1. College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
2. Engineering Research Center of Biological Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621000, China
3. College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723000, China
Funds: the Open Fund Project of the National Key Laboratory of National Nuclear and Biochemical Disaster ProtectionSKLNBC2019-21

More Information
Corresponding author:LUO Xuegang, E-mail:lxg@swust.edu.cn


摘要
HTML全文
(3)(2)
参考文献(36)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为了研究聚乙烯类微塑料对玉米根际土壤微生物群落结构的影响,以玉米为试材,以平均分子量为2000、5000、10万的聚乙烯粉末模拟土壤中的微塑料污染,设置5个处理:不添加聚乙烯(CK)、添加分子量为2000(T1)、5000(T2)、10万以上(T3)的聚乙烯且种植玉米、未添加聚乙烯未种植玉米(CK0),分析玉米抽穗期各部位矿质元素代谢和根际土壤微生物群落结构差异。结果显示,矿质元素含量在玉米各部位存在差异,Fe、Cu主要集中在玉米根部,Ca、Mn、Mg在叶中分布最多,K主要集中在茎中;添加不同分子量聚乙烯微塑料后,不同部位的矿质元素较CK增加,且T1处理下增加最多。微生物多样性分析显示,不同分子量聚乙烯微塑料对玉米根际微生物群落组成影响不同。T1处理下除变形杆菌纲、伯克氏菌科细菌丰度增加外,其他细菌丰度较CK均减少;T3处理下,细菌和真菌的丰度较CK都有较大幅度的增加。总体来看,添加聚乙烯后,玉米不同部位矿质元素含量较CK显著增加,2000分子量聚乙烯能够显著降低土壤中细菌和真菌的丰度,10万以上分子量聚乙烯使得土壤中细菌和真菌丰度增加,各处理中与环境污染物降解相关的微生物增多。
关键词:微塑料/
聚乙烯/
分子量/
根际微生物/
群落结构/
矿质元素/
玉米
Abstract:The use of agricultural polyethylene films results in polyethylene microplastic accumulation in the soil, causing microplastic pollution, which has attracted the attention of scholars worldwide. To study the effects of polyethylene microplastics on the microbial community structure of crop rhizosphere soil, corn was grown with different polyethylene powders (average molecular weights:2000, 5000, and ≥ 100 000) to simulate microplastic pollution in agricultural soil. There were five treatments in this experiment:planting maize without polyethylene (CK), planting maize with 2000 (T1), 5000 (T2), and ≥ 100 000 (T3) molecular weight polyethylene powder, and non-planting maize without polyethylene (CK0). Differences in mineral element metabolism in different parts of maize plant at the heading stage and variation in the rhizosphere soil microbial community structure were analyzed. The results showed that the mineral element content differed in different parts of maize. Iron and copper were mainly concentrated in the roots; calcium, manganese, and magnesium were most abundant in the leaves; and potassium was mainly concentrated in the stems. After adding the polyethylene microplastics of different molecular weights, the mineral elements in different parts of the plant increased compared with CK; the increase was greatest under the 2000 molecular weight polyethylene treatment. Microbial diversity analysis showed that the polyethylene microplastics had different effects on the microbial community composition in the maize rhizosphere. Except for Proteobacteria and Burkholderiaceae, the abundance of bacteria decreased under the 2000 molecular weight polyethylene treatment compared to CK. The abundance of bacteria and fungi increased under the ≥ 100 000 molecular weight polyethylene treatment compared to CK. In general, the mineral elements contents in different parts of the maize plant increased compared with CK after the addition of polyethylene. Two-thousand molecular weight polyethylene reduced the abundance of bacteria and fungi in the soil, whereas ≥ 100 000 molecular weight polyethylene increased the abundance of bacteria and fungi in the soil; the number of microorganisms related to the degradation of environmental pollutants in each treatment increased, which helped the soil cope with microplastics stress.
Key words:Microplastics/
Polyethylene/
Molecular weight/
Rhizosphere microorganism/
Community structure/
Mineral elements/
Corn

HTML全文


图1不同分子量聚乙烯微塑料处理下玉米土壤细菌(A)和真菌(B)主成分分析
CK0为既未添加微塑料也未种植植物处理, CK为未添加微塑料处理, T1、T2和T3为添加分子量为2000、5000和10万以上的微塑料处理。
Figure1.Principal component analysis of bacteria (A) and fungus (B) of corn soil containing polyethylene microplastics with different molecular weights
CK0 is treatment of not-planting corn without microplastics; CK is treatment of no adding microplastic; T1, T2 and T3 are treatments of adding microplastic with molecular weight of 2000, 5000 and above 100-thousand, respectively.


下载: 全尺寸图片幻灯片


图2不同分子量聚乙烯微塑料处理下玉米土壤细菌群落(A)和真菌群落(B)基于纲水平的分布
CK0为既未添加微塑料也未种植植物处理, CK为未添加微塑料处理, T1、T2和T3为添加分子量为2000、5000和10万以上的微塑料处理。
Figure2.Distribution of bacterial community (A) and fungal community (B) at class level in corn soils containing polyethylene microplastics with different molecular weights
CK0 is treatment of not-planting corn without microplastics; CK is treatment of no adding microplastic; T1, T2 and T3 are treatments of adding microplastic with molecular weight of 2000, 5000 and above 100-thousand, respectively.


下载: 全尺寸图片幻灯片


图3不同分子量聚乙烯微塑料处理下土壤细菌群落(A)和真菌群落(B)基于科水平的分布
CK0为既未添加微塑料也未种植植物处理, CK为未添加微塑料处理, T1、T2和T3为添加分子量为2000、5000和10万以上的微塑料处理。
Figure3.Distribution of bacterial community (A) and fungal community (B) at family level of in corn soils containing polyethylene microplastics with different molecular weights
CK0 is treatment of not-planting corn without microplastics; CK is treatment of no adding microplastic; T1, T2 and T3 are treatments of adding microplastic with molecular weight of 2000, 5000 and above 100-thousand, respectively.


下载: 全尺寸图片幻灯片

表1不同分子量聚乙烯微塑料对玉米不同部位矿质元素含量的影响
Table1.Effect of polyethylene microplastics with different molecular weights on mineral elements contents of differentorgans of corn ?mg?kg?1
器官
Organ
处理
Treatment
KCaMgFeCuMn

Roots
CK8090.75±1.03d876.75±1.03d1909.88±2.68d1113.13±1.34d51.61±0.16d61.50±0.35d
T18987.75±1.15aB1260.63±3.86bB2109.63±5.82cB1649.63±1.08aA61.04±0.22cA124.39±0.17aA
T28505.75±3.51bB1160.25±1.65cB2168.75±1.95bB1474.25±0.60bA71.51±0.22aA118.73±0.18bB
T38319.88±1.75cB1361.50±1.65aB2710.75±3.40aB1382.5±1.77cA68.91±0.18bA106.70±0.20cB

Stems
CK8509.00±3.47d415.25±2.84b173.89±1.95d361.63±0.65d5.25±0.25b19.50±0.04d
T110 102.50±1.47aA415.25±2.65bC234.21±2.41cC693.88±4.04bB4.75±0.25bB47.79±0.18cC
T29152.13±1.89bA422.63±2.56aC369.04±3.07aC571.45±0.05cC6.38±0.41aB67.38±0.22aC
T38528.50±0.62cA413.50±1.46bC279.10±2.72bC782.38±1.88aB6.63±0.41aB49.63±0.85bC

Leaves
CK6152.38±1.78d2825.75±2.84c3705.00±7.91b575.50±0.61d5.63±0.41ab140.00±1.41c
T17430.00±2.47aC2967.25±3.11aA4458.75±5.44aA657.88±1.47bC5.13±0.22bB119.38±0.54dB
T26621.50±1.97cC2633.25±3.12dA3638.75±2.16cA916.75±1.44aB5.25±0.25abC176.63±0.96aA
T36852.00±2.03bC2865.38±2.75bA3567.50±7.50dA608.00±1.06cC6.00±0.35aB144.63±1.88bA
CK为未添加微塑料处理, T1、T2和T3为添加分子量为2000、5000和10万以上的微塑料处理。不同小写字母表示同一部位下各处理在P < 0.05水平差异显著, 不同大写字母表示在同一处理中不同部位间在P < 0.05水平差异显著。CK is treatment of no-adding microplastic; T1, T2 and T3 are treatments of adding microplastic with molecular weight of 2000, 5000 and above 100-thousand, respectively. Different lowercase letters indicate significant differences at P < 0.05 level among different treatments in the same organ, and different capital letters indicate significant differences at P < 0.05 level among different organs in the same treatment.


下载: 导出CSV
表2不同分子量聚乙烯微塑料对玉米土壤细菌和真菌多样性的影响
Table2.Effects of polyethylene microplastics with different molecular weights on diversity indexes of soil bacteria and fungi of corn
微生物
Microbia
处理
Treatment
OTUChao1ShannonSimpsonCoverage
细菌
Bacteria
CK03464±905040.50±143.3110.19±0.060.990.94
CK3495±1395090.49±191.6210.27±0.080.990.94
T13231±1954669.13±276.699.86±0.300.990.94
T23401±195012.52±41.7610.02±0.010.990.94
T33474±675117.35±82.7210.18±0.030.990.94
真菌
Fungus
CK01167±651569.83±33.486.88±0.200.970.98
CK1210±521636.88±63.116.84±0.320.970.97
T11198±191567.52±14.416.85±0.050.970.98
T21229±171618.75±43.956.85±0.170.960.98
T31244±201621.71±33.996.92±0.080.970.98
CK0为既未添加微塑料也未种植植物处理, CK为未添加微塑料处理, T1、T2和T3为添加分子量为2000、5000和10万以上的微塑料处理。CK0 is treatment of not-planting corn without microplastics; CK is treatment of no adding microplastic; T1, T2 and T3 are treatments of adding microplastic with molecular weight of 2000, 5000 and above 100-thousand, respectively.


下载: 导出CSV

参考文献(36)
[1]侯军华, 檀文炳, 余红, 等.土壤环境中微塑料的污染现状及其影响研究进展[J].环境工程, 2020, 38(2):16-27 https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202002002.htm
HOU J H, TAN W B, YU H, et al. Microplastics in soil ecosystem:a review on sources, fate and ecological impact[J]. Environmental Engineering, 2020, 38(2):16-27 https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202002002.htm
[2]刘旭.典型黑土区耕地土壤微塑料空间分布特征[D].哈尔滨: 东北农业大学, 2019: 1-9
LIU X. Spatial distribution of microplastics in mollisol farmland of northeast China[D]. Harbin: Northeast Agricultural University, 2019: 1-9
[3]RILLIG M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46(12):6453-6454 http://europepmc.org/abstract/med/22676039
[4]罗文雅.长三角地区不同水域环境中微塑料污染特征研究[D].上海: 华东师范大学, 2019: 1-5
LUO W Y. Microplastic pollution in different waters from Yangtze River Delta, China[D]. Shanghai: East China Normal University, 2019: 1-5
[5]樊有国.环境降解地膜残余组分对土壤环境的影响[D].绵阳: 西南科技大学, 2014: 12-14
FAN Y G. Effects resides of components of degradable plastic film on soil environment[D]. Mianyang: Southwest University of Science and Technology, 2014: 12-14
[6]朱莹, 曹淼, 罗景阳, 等.微塑料的环境影响行为及其在我国的分布状况[J].环境科学研究, 2019, 32(9):1437-1447 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201909001.htm
ZHU Y, CAO M, LUO J Y, et al. Distribution and potential risks of microplastics in China:a review[J]. Research of Environmental Sciences, 2019, 32(9):1437-1447 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201909001.htm
[7]徐湘博, 孙明星, 张林秀, 等.土壤微塑料污染研究进展与展望[J].农业资源与环境学报, 2021, 38(1):1-9
XU X B, SUN M X, ZHANG L X, et al. Research progress and prospect of soil microplastic pollution[J]. Journal of Agricultural Resources and Environment, 2021, 38(1):1-9
[8]孟青.河套灌区土壤中微塑料的赋存特征及其对草甘膦的吸附性能研究[D].包头: 内蒙古科技大学, 2020: 10-11
MENG Q. Study on the occurrence characteristics in Hetao irrigated area and the adsorption properties of glyphosate onto microplastics[D]. Baotou: Inner Mongolia University of Science & Technology, 2020: 10-11
[9]LAGANà P, CARUSO G, CORSI I, et al. Do plastics serve as a possible vector for the spread of antibiotic resistance? First insights from bacteria associated to a polystyrene piece from King George Island (Antarctica)[J]. International Journal of Hygiene and Environmental Health, 2019, 222(1):89-100 doi: 10.1016/j.ijheh.2018.08.009
[10]WANG H T, DING J, XIONG C, et al. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica[J]. Environmental Pollution, 2019, 251:110-116 doi: 10.1016/j.envpol.2019.04.054
[11]罗小凤, 朱玲珑, 徐国良, 等.次微塑料食物暴露对土壤白符跳(Folsomia candida)毒性的初步研究[J/OL].环境工程, 2020,
https: //kns.cnki.net/kcms/detail/11.2097.X.20200725. 1648.016.html LUO X F, ZHU L L, XU G L, et al. Toxicity submicroplastic food exposure to soil collembolans (Folsomia candida)[J/OL]. Environmental Engineering, 2020, https: //kns.cnki.net/kcms/detail/11.2097.X.20200725.1648.016.html
[12]陈玉玲.微塑料在武汉城郊菜地土壤中的污染现状及其对赤子爱胜蚓的生态毒理研究[D].北京: 中国科学院大学(中国科学院武汉植物园), 2020: 7-8
CHEN Y L. A study on microplastics pollution in the vegetable farmlands of suburban Wuhan and the ecotoxicology response of microplastics on earthworms (Eisenia fetida)[D]. Beijing: University of Chinese Academy of Sciences, 2020: 7-8
[13]LIU H F, YANG X M, LIU G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 2017, 185:907-917 doi: 10.1016/j.chemosphere.2017.07.064
[14]HUERTA LWANGA E, GERTSEN H, GOOREN H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris[J]. Environmental Pollution, 2017, 220:523-531 doi: 10.1016/j.envpol.2016.09.096
[15]连加攀, 沈玫玫, 刘维涛.微塑料对小麦种子发芽及幼苗生长的影响[J].农业环境科学学报, 2019, 38(4):737-745 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201904004.htm
LIAN J P, SHEN M M, LIU W T. Effects of microplastics on wheat seed germination and seedling growth[J]. Journal of Agro-Environment Science, 2019, 38(4):737-745 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201904004.htm
[16]刘蓥蓥, 张旗, 崔文智, 等.聚乙烯微塑料对绿豆发芽的毒性研究[J].环境与发展, 2019, 31(5):123-125 https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB201905070.htm
LIU Y Y, ZHANG Q, CUI W Z, et al. Toxicity of polyethylene microplastics to seed germination of mung bean[J]. Environment and Development, 2019, 31(5):123-125 https://www.cnki.com.cn/Article/CJFDTOTAL-NMHB201905070.htm
[17]张祯明, 罗学刚, 樊有国, 等.聚乙烯颗粒粉末对土壤化学性质的累积效应[J].环境科学与技术, 2015, 38(11):115-119 https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201511021.htm
ZHANG Z M, LUO X G, FAN Y G, et al. Cumulative effects of powders of degraded PE mulching-films on chemical properties of soil[J]. Environmental Science & Technology, 2015, 38(11):115-119 https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201511021.htm
[18]张祯明, 罗学刚, 樊有国, 等.地膜降解物对土壤微生物群落结构和多样性的影响[J].水土保持通报, 2016, 36(2):181-184 https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201602035.htm
ZHANG Z M, LUO X G, FAN Y G, et al. Effects of membrane degradation production on community structure and diversity of soil microorganisms[J]. Bulletin of Soil and Water Conservation, 2016, 36(2):181-184 https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201602035.htm
[19]梁晋刚, 刘鹏程, 张秀杰.基于16S rDNA高通量测序技术研究转基因作物对根际细菌群落结构的影响[J].江苏农业科学, 2018, 46(6):5-8 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201806002.htm
LIANG J G, LIU P C, ZHANG X J. Impact of genetically modified crops on rhizosphere bacterial community structure based on 16S rDNA high-throughput sequencing[J]. Jiangsu Agricultural Sciences, 2018, 46(6):5-8 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201806002.htm
[20]BOLGER A M, LOHSE M, USADEL B. Trimmomatic:a flexible trimmer for Illumina sequence data[J]. Bioinformatics:Oxford, England, 2014, 30(15):2114-2120 doi: 10.1093/bioinformatics/btu170
[21]GREGORY CAPORASO J, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5):335-336 doi: 10.1038/nmeth.f.303
[22]REYON D, TSAI S Q, KHAYTER C, et al. FLASH assembly of TALENs for high-throughput genome editing[J]. Nature Biotechnology, 2012, 30(5):460-465 doi: 10.1038/nbt.2170
[23]ALTSCHUL S F, GISH W, MILLER W, et al. Basic local alignment search tool[J]. Journal of Molecular Biology, 1990, 215(3):403-410 doi: 10.1016/S0022-2836(05)80360-2
[24]孙倩, 吴宏亮, 陈阜, 等.基于高通量测序的几种不同作物根际土壤细菌群落结构和多样性分析[J].农业生物技术学报, 2020, 28(8):1490-1498 https://www.cnki.com.cn/Article/CJFDTOTAL-NYSB202008016.htm
SUN Q, WU H L, CHEN F, et al. Analysis of bacterial community structure and diversity in rhizosphere soil of several different crops based on high-throughput sequencing[J]. Journal of Agricultural Biotechnology, 2020, 28(8):1490-1498 https://www.cnki.com.cn/Article/CJFDTOTAL-NYSB202008016.htm
[25]王伟, 布丽根·加冷别克, 胡晓东, 等.基于高通量测序技术的酿酒葡萄产区土壤微生物多样性[J].新疆农业科学, 2020, 57(5):859-868 https://www.cnki.com.cn/Article/CJFDTOTAL-XJNX202005009.htm
WANG W, BULIGEN J, HU X D, et al. Analysis of the microbial community diversity of soil from wine grape productiing area in Xinjiang based on high-throughput sequencing[J]. Xinjiang Agricultural Sciences, 2020, 57(5):859-868 https://www.cnki.com.cn/Article/CJFDTOTAL-XJNX202005009.htm
[26]李丹, 靳鲲鹏, 李小霞, 等.基于高通量测序技术的玉米不同生育时期土壤细菌多样性变化[J].山西农业科学, 2019, 47(9):1569-1572 doi: 10.3969/j.issn.1002-2481.2019.09.19
LI D, JIN K P, LI X X, et al. Variations of soil bacterial diversity at different growth stages in maize based on high-throughput sequencing[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(9):1569-1572 doi: 10.3969/j.issn.1002-2481.2019.09.19
[27]詹爱军, 李兆华.神农箭竹开花前后植物体内矿质元素之动态[J].世界竹藤通讯, 2007, 5(1):12-15 doi: 10.3969/j.issn.1672-0431.2007.01.003
ZHAN A J, LI Z H. Dynamic of mineral elements in umbrella bamboo (Fargesia murielae) before and after flowering[J]. World Bamboo and Rattan, 2007, 5(1):12-15 doi: 10.3969/j.issn.1672-0431.2007.01.003
[28]沈涛, 贾琳, 杨亚丽, 等.云南薯蓣属植物矿质元素指纹图谱研究[J].热带作物学报, 2014, 35(12):2332-2339 doi: 10.3969/j.issn.1000-2561.2014.12.004
SHEN T, JIA L, YANG Y L, et al. Mineral elemental fingerprint of Dioscorea L. species from Yunnan, China[J]. Chinese Journal of Tropical Crops, 2014, 35(12):2332-2339 doi: 10.3969/j.issn.1000-2561.2014.12.004
[29]BURNS R G, DEFOREST J L, MARXSEN J, et al. Soil enzymes in a changing environment:Current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58:216-234 doi: 10.1016/j.soilbio.2012.11.009
[30]ZHANG M J, ZHAO Y R, QIN X, et al. Microplastics from mulching film is a distinct habitat for bacteria in farmland soil[J]. Science of the Total Environment, 2019, 688:470-478 doi: 10.1016/j.scitotenv.2019.06.108
[31]HUANG Y, ZHAO Y R, WANG J, et al. LDPE microplastic films alter microbial community composition and enzymatic activities in soil[J]. Environmental Pollution, 2019, 254:112983 doi: 10.1016/j.envpol.2019.112983
[32]YANG S, XING S, LIU C, et al. Effects of root pruning on the vegetative growth and fruit quality of Zhanhuadongzao trees[J]. Horticultural Science, 2010, 37(1):14-21 doi: 10.17221/29/2009-HORTSCI
[33]DE SOUZA MACHADO A A, KLOAS W, ZARFL C, et al. Microplastics as an emerging threat to terrestrial ecosystems[J]. Global Change Biology, 2018, 24(4):1405-1416 doi: 10.1111/gcb.14020
[34]WU W Z, YANG L H, WANG J L. Denitrification performance and microbial diversity in a packed-bed bioreactor using PCL as carbon source and biofilm carrier[J]. Applied Microbiology and Biotechnology, 2013, 97(6):2725-2733 doi: 10.1007/s00253-012-4110-4
[35]JIANG P L, ZHAO S Y, ZHU L X, et al. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary[J]. Science of the Total Environment, 2018, 624:48-54 doi: 10.1016/j.scitotenv.2017.12.105
[36]康秦宝, 郭见誉, 阮艳军.低密度聚乙烯生物降解的研究进展[J].神华科技, 2016, 14(6):75-77 doi: 10.3969/j.issn.1674-8492.2016.06.022
KANG Q B, GUO J Y, RUAN Y J. Research progress in microbial degradation of low density polyethylene[J]. Shenhua Science and Technology, 2016, 14(6):75-77 doi: 10.3969/j.issn.1674-8492.2016.06.022

相关话题/土壤 微生物 环境 结构 植物