陈延华,,
王学霞,
倪小会,
刘东生,
李丽霞,
邹国元,
北京市农林科学院植物营养与资源研究所 北京 100097
基金项目: 财政部和农业农村部:国家现代农业产业技术体系项目、北京市农林科学院改革与发展计划YZS202001
北京市农林科学院创新能力建设专项KJCX20210430
详细信息
作者简介:张佳佳, 主要研究方向为养分管理。E-mail:zhangjiajia_91@163.com
通讯作者:陈延华, 主要研究方向为农田土壤质量研究, E-mail:yhchen55@126.com
邹国元, 主要研究方向为作物营养与施肥, E-mail:gyzou@163.com
中图分类号:X53计量
文章访问数:189
HTML全文浏览量:47
PDF下载量:63
被引次数:0
出版历程
收稿日期:2020-11-17
录用日期:2020-12-30
网络出版日期:2021-06-22
刊出日期:2021-06-01
A review of microplastics in the soil environment
ZHANG Jiajia,CHEN Yanhua,,
WANG Xuexia,
NI Xiaohui,
LIU Dongsheng,
LI Lixia,
ZOU Guoyuan,
Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
Funds: the China Agriculture Research System of the Ministry of Finance of the People's Republic of China and the Ministry of Agriculture and Rural Affairs of the People's Republic of China, the Reform and Development Plan of Beijing Academy of Agriculture and Forestry SciencesYZS202001
the Innovation Capacity Building Project of Beijing Academy of Agriculture and Forestry SciencesKJCX20210430
More Information
Corresponding author:CHEN Yanhua, E-mail:yhchen55@126.com;ZOU Guoyuan, E-mail:gyzou@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:微塑料是一类广泛存在于环境中的塑料颗粒,近年来,微塑料对环境的污染引起了国内外****的广泛关注。关于微塑料对水环境造成的负面影响有较多报道,但微塑料在陆地环境特别是土壤中的存在和影响的系统性研究鲜有报道。本文从土壤微塑料的来源和分布、分析方法、对生态系统的影响、生态环境效应及管控措施等方面进行了系统综述,并针对今后土壤微塑料的研究提出了相关对策。主要包括以下几个方面:1)土壤微塑料的主要来源包括农用塑料薄膜残留、污泥的土地利用、有机肥施用、地表径流、污水灌溉和大气沉降;2)总结了土壤中微塑料的分离、提取、鉴定及分析方法的优缺点,但目前仍没有标准化的检测和定量技术;3)微塑料会影响土壤的结构和理化性质,对植物和动物的生长造成威胁,并改变微生物群落的多样性;4)微塑料表面可附着污染物,对环境造成物理和化学污染,可释放内源性有毒物质,并导致复合污染效应;5)微塑料污染的防控措施主要包括3个方面:研发生物降解塑料产品、从源头控制微塑料的输入以及加强世界各国合作。提出今后微塑料的研究应建立统一的定量分析标准方法,发展更准确的可追溯分析技术,加强对土壤中微塑料污染的科学研究。本研究不仅有助于了解微塑料在土壤中的环境行为,为进一步探索土壤微塑料提供思路,而且可为土壤中微塑料的生态风险评估及污染防治提供理论依据和参考。
关键词:微塑料/
土壤生态系统/
分析方法/
生态环境风险/
管控措施
Abstract:Microplastics are plastic particles widely distributed in the environment. In recent years, environmental pollution caused by microplastics has attracted widespread attention. Many studies have reported the negative effects of microplastics on the aquatic environment, but the impact of microplastics on the terrestrial environment, especially on soils, has not been extensively investigated. This study systematically reviewed the recent researches on the sources, distribution, pollution characteristics, analysis methods, ecological effects, environmental effects, and control measures of soil microplastics, and proposed relevant countermeasures for research and governance. This review showed that 1) the sources of soil microplastics included residues of agricultural plastic film, land use of sludge, organic fertilizer application, surface runoff, sewage irrigation, and atmospheric deposition. 2) The methods of separation, extraction, identification, and their advantages and disadvantages for determining soil microplastics were summarized, but standardized detection and quantitative technologies were lacking. 3) Microplastics could affect the soil structure and physical and chemical properties, threatened the growth of plants and animals, and changed the diversity of microbial communities. 4) Microplastics could adhere to pollutants on the surface, causing physical and chemical environmental pollution, endogenous toxic substances releasing, and inducing compound pollution. 5) The prevention and control measures of microplastic pollution were mainly focused on three factors:research and development of biodegradable plastic products, input control of microplastics from the source, and strengthening international cooperation. This study also proposed three areas in need of further development:a standard unified quantitative analysis method, more accurate traceability analysis technology, and better scientific research on microplastic pollution in the soil. The results presented here provided a better understanding of the environmental behavior of microplastics in the soil and proposed ideas for further exploration. This review also provided a theoretical basis and reference for the ecological risk assessment of soil microplastics and prevention of pollution caused by them.
Key words:Microplastics/
Soil ecosystem/
Analysis method/
Eco-environmental risk/
Control measures
HTML全文
图1土壤中微塑料的来源和去向
Figure1.Sources and fate of microplastics in soils
下载: 全尺寸图片幻灯片
图2土壤环境中微塑料的主要来源、检测方法、生态环境效应和管控措施示意图
Figure2.Schematic of the main sources, detection methods, eco-environmental effects, and management and control measures of microplastics (MPs) in soil environment
下载: 全尺寸图片幻灯片
表1不同土壤类型中微塑料的分布特征
Table1.Distribution characteristics of microplastics in different soil types
土壤类型 Soil type | 土壤深度Soil depth (cm) | 丰度 Abundance | 尺寸 Size (mm) | 形状 Shape | 聚合物 Composition | 国家地区 Country/area | 文献 Reference |
农业土壤 Agricultural soil | 0~10 | 1430~3410 pieces?kg?1 | 0~0.49 | 薄膜、纤维、碎片、颗粒 Film, fiber, fragment, pellet | 聚苯乙烯、聚乙烯、聚丙烯、高密度聚乙烯、聚氯乙烯、聚对苯二甲酸乙二醇酯 Polystyrene, polyethylene, polypropethylene, highdensity polyethylene, polyvinyl chloride, polyethylene tereph-thalate | 中国陕西 Shaanxi, China | [27] |
农业土壤 Agricultural soil | 0~10 | 895.1~2197.1 pieces?kg?1 | < 3 | 纤维、碎片、薄膜、颗粒 Fiber, fragment, film, pellet | — | 中国内蒙古 Inner mMongolia, China | [28] |
10~20 | 798.6~2111.4 pieces?kg?1 | ||||||
20~30 | 756.0~1971.8 pieces?kg?1 | ||||||
农田土壤 Farmland soil | 0~10 | 40±126 pieces?kg?1 | > 0.100 | — | 聚乙烯Polyethylene | 中国黄土高原 The Loess Plateau, China | [29] |
10~30 | 100±141 pieces?kg?1 | ||||||
农田土壤 Farmland soil | 0~5 | 0.34±0.36 pieces?kg?1 | 1~5 | 碎片、薄膜、纤维 Fragment, film, fiber | 聚乙烯、聚丙烯、聚苯乙烯 Polyethylene, polypropethyylene, polystyrene | 德国东南部 Southeast Germany | [30] |
农业土壤 Agricultural soil | 0~25 | 600~10 400 pieces?kg?1 | 0.97 | 纤维、薄膜 Fiber, film | — | 智利 Chile | [31] |
设施农业土壤 Facility agricultural soil | 0~5 | 1443±977 pieces?kg?1 | < 5 | 碎片、薄膜、纤维、小球、泡沫 Fragment, film, fiber, pellet, foam | 聚丙烯、乙烯丙烯共聚物、聚乙烯、聚苯乙烯、聚酯纤维、胶膜、聚氨酯、人造丝、聚甲基丙烯酸甲酯 Polypropethylene, ethylene- propylene copolymer, polyethylene, polystyrene, polyester fibers, cellophane, polyurethane, rayon, polymethyl methacrylate | 中国山东寿光 Shouguang, Shandong, China | [32] |
5~10 | 1312±857 pieces?kg?1 | ||||||
10~25 | 1362±829 pieces?kg?1 | ||||||
露地农业土壤 Open-field agricultural soil | 0~5 | 1860±1212 pieces?kg?1 | |||||
5~10 | 1726±1596 pieces?kg?1 | ||||||
10~25 | 1065±942 pieces?kg?1 | ||||||
农业土壤 Agricultural soil | 0~20 | 16.4±2.7 pieces?kg?1 (未施用猪粪No pig manure applied) | < 1 | 纤维、颗粒、碎片、薄膜 Fiber, pellet, fragment, film | 聚醚砜树脂、聚丙烯、人造丝 Polyethersulfone resin, polypropethyylene, rayon | 中国江西 Jiangxi, China | [33] |
43.8±16.2 pieces?kg?1 (长期施用猪粪Pig manure amended) | 聚醚砜树脂、聚丙烯、聚乙烯、人造丝 Polyethersulfone resin, polyyethpropylene, polyethylene, rayon | ||||||
郊区农田土壤 Farmland soil in suburbs | 0~20 | 100 ± 100 pieces?kg?1 | > 0.100 | — | 聚乙烯Polyethylene | 中国哈尔滨 Harbin, China | [34] |
20~30 | 400 ± 692 pieces?kg?1 | ||||||
棉田土壤 Cotton field soil | 0~40 | 80.3±49.3 pieces?kg?1 (覆膜5年Film mulching for 5 years) | — | — | 聚乙烯Polyethylene | 中国新疆 Xinjiang, China | [1] |
308.0±138.1 pieces?kg?1 (覆膜15年Film mulching for 15 years) | |||||||
1075.6±346.8 pieces?kg?1 (覆膜24年Film mulching for 24 years) | |||||||
设施农田土壤 Facility farmland soil | 0~10 | 7100~42 960 pieces?kg?1 | 0.05~10 | 碎片、细绳、薄膜、纤维 Fragment, string, film, fiber | — | 中国云南 Yunnan, China | [35] |
菜田土壤 Vegetable farmland soil | 0~5 | 320~12 560 pieces?kg?1 | 0.02~5 | 纤维、碎片、微珠、泡沫 Fiber, fragment, microbead, foam | 聚酰胺、聚丙烯、聚苯乙烯、聚氯乙烯、聚乙烯 Polyamide, polypropyethylene, polystyrene, polyvinyl chloride, polyethylene | 中国武汉 Wuhan, China | [36] |
郊区农田土壤 Farmland soil in suburbs | 0~3 | 78.00±12.91 pieces?kg?1 | 0.03~16 | 纤维、薄膜、碎片 Fiber, film, fragment | 聚乙烯、聚丙烯、聚醚砜树脂 Polyethylene, polyethypropylene, polyethersulfone resin | 中国上海 Shanghai, China | [37] |
3~6 | 62.50±12.97 pieces?kg?1 | ||||||
设施土壤 Greenhouse soil | 0~10 | 100±254 pieces?kg?1 | > 0.100 | — | 聚乙烯Polyethylene | 中国黄土高原 The Loess Plateau, China | [29] |
10~30 | 80±193 pieces?kg?1 | ||||||
果园土壤 Orchard soil | 0~10 | 320±329 pieces?kg?1 | |||||
10~30 | 120±169 pieces?kg?1 | ||||||
稻-鱼共生生态系统 Rice-fish co-culture system | 0~10 | 10.3±2.2 pieces?kg?1 | 0.02~5 | 纤维、颗粒、薄膜 Fiber, pellet, film | 聚丙烯、聚乙烯 Polypropethylene, polyethylene | 中国上海 Shanghai, China | [38] |
潮滩土壤 Coastal soil | 0~2 | 634 pieces?kg?1 | 1.56±0.63 | 碎片、颗粒、纤维、薄膜 Fragment, pellet, fiber, film | — | 中国河北 Hebei, China | [39] |
湖滨平原土壤 Lakeside plain soil | 0~10 | 503.3 pieces?kg?1 | — | 碎片、纤维、薄膜 Fragment, fiber, film | 聚乙烯、聚丙烯、尼龙、聚醚砜树脂、人造丝、丙烯酸、聚酰胺 Polyethylene, polypropylene, nylon, polyethersulfone resin, rayon, acrylic acid, polyamide | 中国杭州 Hangzhou, China | [40] |
沿河土壤 Riverine soil | 0~5 | 84.45 pieces?kg?1 | 0.3~5 | 纤维、碎片、薄膜、泡沫、小球 Fiber, fragment, film, foam, pellet | 聚乙烯、聚对苯二甲酸乙二醇酯、聚丙烯 Polyethylene, polyethylene terephthalate, polyethypropylene | 印度 India | [41] |
洪泛区土壤 Floodplain Soil | 0~5 | 593 pieces?kg?1 | 0.125~0.5 | — | 聚乙烯、聚苯乙烯、丁苯橡胶、聚氯乙烯 Polyethylene, polystyrene, styrene butadiene rubber, polyvinyl chloride | 瑞士 Switzerland | [42] |
家庭花园土壤 Garden soil | 0~20 | 870 pieces?kg?1 | 0.01~1 | — | — | 墨西哥郊区 Mexico suburbs | [43] |
工业区土壤 Industrial area soil | 0~10 | 300~67 500 mg?kg?1 | — | — | 聚氯乙烯、聚乙烯、聚苯乙烯 Polyvinyl chloride, polyethylene, polystyrene | 澳大利亚悉尼 Sydney, Australia | [44] |
“—”表示未见报道。“—” means no reported. |
下载: 导出CSV
表2土壤微塑料(MPs)的鉴定和表征分析技术及其优缺点
Table2.Identification methods and their advantages and disadvantages of characteristics of microplastics (MPs) in soil
技术 Technique | 粒径检测范围 Particle size | 方法 Methodology | 优点 Advantages | 局限性 Limitations | 参考文献Reference |
目检法Visual inspection methods | |||||
显微镜计数 Microscopic counting | > 500 μm | 利用立体显微镜对粒子直接进行计数和识别 The particles are counted directly and identified. | 操作方便, 快速; 性价比高; 能够提供形态信息 Easier, faster, and cost effective; providing morphological information | 耗费时间, 误认率高, 无法确定微塑料的化学组成 Time-consuming, high misidentification rate, unable to determine chemical composition of MPs | [60] |
标记 Tagging | 微尺度MPs可以计数和可视化 Microscale MPs can be counted and visualized. | 用蓝光照射MPs, 并对疏水性染料进行吸附, 使其具有荧光性。 MPs are irradiated with blue light, and hydrophobic dye is adsorbedption of hydrophobic dye is done which to renders them fluorescent. | 快捷、简单、便宜 Quick, easier, and inexpensive | 样品中的杂质可能会导致MPs被高估 Overestimation of MPs due to impurities | [61] |
光谱法Spectroscopic methods | |||||
傅里叶变换红外光谱(FTIR) Fourier transformed infrared spectroscopy (FTIR) | > 500 μm颗粒用衰减全反射率- FTIR (ATR-FTIR), < 20 μm颗粒用显微镜耦合FTIR ATR-FTIR for particles > 500 μm, microscopy coupled FTIR for < 20 μm particles | 根据物质的分子结构和组成, 样品暴露在规定的红外辐射范围内 Depending on molecular structure and composition of substance, samples are exposed to defined range of IR-radiation. | ATR-FTIR的样品制备最少; FTIR可以同时提供MPs的化学和物理信息(如结构和丰度), 能够检测MPs的风化程度; 新兴、快速、可靠的无损检测方法 Minimum sample preparation required for ATR-FTIR; FTIR can provide both chemical and physical information of microplastics (such as structure and abundance), and can detect weathering degree of MPs. A new, fast, and reliable nondestructive testing method. | 对样品中含有的水蒸气和有机杂质的干扰敏感; 仅针对红外活性样品, 难以分析不透明颗粒和20 μm以下的颗粒; 预处理费用太高 Sensitive to interference of water vapor and organic impurities contained in the sample; only for infrared active sample, difficult to analyze nontransparent particle and particles below 20 μm; expensive pretreatment | [60] |
拉曼光谱法 Raman spectroscopy | > 1 μm, 1~20 μm | 可以测量拉曼光谱的位移, 提供了物质的特定光谱 The shift in Raman spectra can be measured, that provides substance specific spectra. | 所需的样品最少; 非接触、无损测量; 对水的干扰不敏感; 可分析不透明的深色颗粒 Minimum sample preparation required; non-contact and non-destructive measurement; not sensitive to interference of water; suitable for nontransparent or dark particles | 样品分析前需要精炼, 耗费时间; 对颜色、颜料和生物有机材料的荧光干扰敏感 Required refinements of samples before analysis, time intensive procedure; sensitive to fluorescent interference of colors, pigments and biological organic materials | [62] |
高光谱成像技术和化学计量学Hyperspectral imaging technology and chemometrics | > 0.5 mm | 将图像上每个空间像素点的光谱特性与对应空间信息联系, 确定每个像素点所代表物质的化学性质 The spectral characteristics of each spatial pixel on the image are connected with the corresponding spatial information to determine the chemical properties of the substances represented by each pixel. | 可在不与土壤分离的情况下检测出MPs, 便携式且可行, 快速分析 This method has the potential to detect MPs without separation from soil, and portable and feasible, quick analysis. | 仅能够检测土壤表面的MPs, 且仅适用于聚乙烯颗粒 Only able to detect microplastics on the soil surface, and only suitable for polyethylene particles | [63] |
宏观尺度近红外光谱法 Macroscale near-infrared spectroscopy | 15 g·kg?1 | — | 无需制备样品, 快速 No sample preparation needed, fast | 仅适用于污染热点, 只适于少数聚合物 Only applicable to pollution hot spots, and to a few polymers | [64] |
扫描电子显微镜 Scanning electron microscope | 可分析微尺度颗粒 Microscale particles can be analyzed. | 产生电子与样品的相互作用, 最终测量次级离子 Generating interaction between electron interacts withand samples, eventually measuring secondary ions | 生成高分辨率的图像 Generating high resolution images | 样品需要涂层, 信息量较少 Samples require coating with less information. | [19, 46] |
热分析法Thermal analysis methods | |||||
热解-气象色谱-质谱 Pyrolysis-gas chromatography-mass spectrometry (Pyr-GC-MS) | > 100 μm | 气象色谱柱与四极质谱耦合; 与可用的普通塑料数据库相比, 可识别生成的光谱 The gas chromatography column couples with a quadrupole-mass spectrometry. The generated spectra are identified by comparing with available common plastic database. | 该方法灵敏、简便、可靠, 避免了本底污染 Quite sensitive, easier and reliable; and avoiding possible background contamination | 塑料数据库是有限的, 每次只有特定重量的单个样品; 在一定的重量下, 每次只采样一次 Limited plastics database, single sample at a time with certain weight, one sampling at a time under certain weight | [65–66] |
热萃取解吸-气相色谱-质谱Thermo-extrac- tion and desorption coupled with gas chromatography/mass spectrometry (TED-GC-MS) | 0.5~1.0 wt% | 不进行任何预先选择的情况下, 对不同固体环境样品中的聚合物进行识别甚至定量 Identifying and even quantifying polymers in different solid environmental samples without any pre-selection | 分析速度比Pyr-GC-MS快 Faster than pyrolysis gas chromatography-mass spectrometry | 破坏性测量; 只能得到聚合物的总质量分数, 不能提供MPs数量和粒径分布信息; 仅适用于某些聚合物类型 Destructive measurement; only obtaining total mass fraction of polymer, and not providing information of quantity and particle size distribution of MPs; only applicable to certain polymer types | [65] |
热重分析-质谱 Thermogravime- tric analysis coupled with mass spectrometry (TGA-MS) | 0.07 wt% | — | 所需的样品制备最少, 适用于非均质土壤样品; 比Pyr-GC- MS或TED-GC-MS更便宜 Minimum sample preparation required; suitable for heterogeneous soil samples; cheaper than Pyr-GC-MS or TED-GC-MS | 定量限比Pyr-GC-MS和TED-GC-MS测量高; 不适用于有机物含量高的样品; 无法提供数量和形态信息 The quantitative limit wais higher than the Pyr-GC-MS and TED-GC-MS measurements. Not suitable for samples with high organic content; unable to provide quantitative and morphological information.. | [67] |
液相色谱法 Liquid chromatography (LC) | 适用于大粒径样本 Applied for large size samples. | 选择性地制备样品以供分析 Samples are prepared selectively for analysis. | 所选聚合物具有较好的回收率 Better recovery of selected polymers | 仅限于特定的聚合物(聚乙烯和聚酯类), 不推荐用于环境样品 Restricted to specific polymers (polyethylene and polyethylene terephthalate), not recommended for environmental samples. | [66] |
下载: 导出CSV
参考文献
[1] | HUANG Y, LIU Q, JIA W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution, 2020, 260:114096 doi: 10.1016/j.envpol.2020.114096 |
[2] | THOMPSON R C, YLVA O, MITCHELL R P, et al. Lost at sea:where is all the plastic?[J]. Science, 2004, 304(5672):838 doi: 10.1126/science.1094559 |
[3] | WAGNER M, SCHERER C, ALVAREZ-MU?OZ D, et al. Microplastics in freshwater ecosystems:What we know and what we need to know[J]. Environmental Sciences Europe, 2014, 26(1):12-21 doi: 10.1186/s12302-014-0012-7 |
[4] | ANDERSON P J, WARRACK S, LANGEN V, et al. Microplastic contamination in lake winnipeg, Canada[J]. Environmental Pollution, 2017, 225:223-231 doi: 10.1016/j.envpol.2017.02.072 |
[5] | SIGHICELLI M, PIETRELLI L, LECCE F, et al. Microplastic pollution in the surface waters of Italian Subalpine Lakes[J]. Environmental Pollution, 2018, 236:645-651 doi: 10.1016/j.envpol.2018.02.008 |
[6] | KUMAR M, XIONG X N, HE M J, et al. Microplastics as pollutants in agricultural soils[J]. Environmental Pollution, 2020, 265:114980 doi: 10.1016/j.envpol.2020.114980 |
[7] | HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments:evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586:127-141 doi: 10.1016/j.scitotenv.2017.01.190 |
[8] | NAPPER I E, BAKIR A, ROWLAND S J, et al. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics[J]. Marine Pollution Bulletin, 2015, 99(1-2):178-185 doi: 10.1016/j.marpolbul.2015.07.029 |
[9] | STOLTE A, FORSTER S, GERDTS G, et al. Microplastic concentrations in beach sediments along the German Baltic coast[J]. Marine Pollution Bulletin, 2015, 99(1/2):216-229 http://www.cabdirect.org/abstracts/20153385675.html |
[10] | QIAN H, ZHANG M, LIU G, et al. Effects of soil residual plastic film on soil microbial community structure and fertility[J]. Water Air Soil Pollution, 2018, 229:261-271 doi: 10.1007/s11270-018-3916-9 |
[11] | LI K, MA D, WU J, et al. Distribution of phthalate esters in agricultural soil with plastic film mulching in Shandong Peninsula, East China[J]. Chemosphere, 2016, 164:314-321 doi: 10.1016/j.chemosphere.2016.08.068 |
[12] | LIU E K, HE W Q, YAN C R. 'White revolution' to 'white pollution'-agricultural plastic film mulch in China[J]. Environmental Research Letters, 2014, 9:091001 doi: 10.1088/1748-9326/9/9/091001 |
[13] | RAMOS L, BERENSTEIN G, HUGHES E A, et al. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina[J]. Science of the Total Environment, 2015, 523:74-81 doi: 10.1016/j.scitotenv.2015.03.142 |
[14] | STEINMETZ Z, WOLLMANN C, SCHAEFER M, et al. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?[J]. Science of the Total Environment, 2016, 550:690-705 doi: 10.1016/j.scitotenv.2016.01.153 |
[15] | MAHON A M, O'CONNELL B, HEALY M G, et al. Microplastics in sewage sludge:effects of treatment[J]. Environmental Science & Technology, 2017, 51:810-818 doi: 10.1021/acs.est.6b04048 |
[16] | NIZZETTO L, FUTTER M, LANGAAS S. Are agricultural soils dumps for microplastics of urban origin?[J]. Environmental Science & Technology, 2016, 50(20):10777-10779 doi: 10.1021/acs.est.6b04140 |
[17] | AUTA H S, EMENIKE C U, FAUZIAH S H. Distribution and importance of microplastics in the marine environment:a review of the sources, fate, effects, and potential solutions[J]. Environment International, 2017, 102:165-176 doi: 10.1016/j.envint.2017.02.013 |
[18] | WEITHMANN N, M?LLER J N, L?DER M, et al. Organic fertilizer as a vehicle for the entry of microplastic into the environment[J]. Science Advances, 2018, 4(4):eaap8060 doi: 10.1126/sciadv.aap8060 |
[19] | BL?SING M, AMELUNG W. Plastics in soil:analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612:422-435 doi: 10.1016/j.scitotenv.2017.08.086 |
[20] | ZHAO S, ZHU L, WANG T, et al. Suspended microplastics in the surface water of the Yangtze estuary system, China:first observations on occurrence, distribution[J]. Marine Pollution Bulletin, 2014, 86(1/2):562-568 http://www.sciencedirect.com/science/article/pii/S0025326X14004123 |
[21] | ZHANG K, SU J, XIONG X, et al. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China[J]. Environmental Pollution, 2016, 219:450-455 doi: 10.1016/j.envpol.2016.05.048 |
[22] | MINTENIG S, L?DER M, PRIMPKE S, et al. Low numbers of microplastics detected in drinking water from ground water sources[J]. Science of the Total Environment, 2019, 648:631-635 doi: 10.1016/j.scitotenv.2018.08.178 |
[23] | GIES E A, LENOBLE J L, NO?L M, et al. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada[J]. Marine Pollution Bulletin, 2018, 133:553-561 doi: 10.1016/j.marpolbul.2018.06.006 |
[24] | CONKLE J L, BàEZ DEL VALLE C D, TURNER J W. Are we underestimating microplastic contamination in aquatic environments?[J]. Environmental Management, 2017, 61(1):1-8 http://www.ncbi.nlm.nih.gov/pubmed/29043380 |
[25] | DRIS R, GASPERI J, ROCHER V, et al. Microplastic contamination in an urban area:a case study in Greater Paris[J]. Environmental Chemistry, 2015, 12(5):592-599 doi: 10.1071/EN14167 |
[26] | RILLIG M C, INGRAFFIA R, DE SOUZA MACHADO A A. Microplastic incorporation into soil in agroecosystems[J]. Frontiers in Plant Science, 2017, 8:1805 doi: 10.3389/fpls.2017.01805 |
[27] | DING L, ZHANG S Y, WANG X Y, et al. The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in north-western China[J]. Science of the Total Environment, 2020, 720:137525 doi: 10.1016/j.scitotenv.2020.137525 |
[28] | 王志超, 孟青, 于玲红, 等.内蒙古河套灌区农田土壤中微塑料的赋存特征[J].农业工程学报, 2020, 36(3):204-209 . https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202003025.htm WANG Z C, MENG Q, YU L H, et al. Occurrence characteristics of microplastics in farmland soil of Hetao Irrigation District, Inner Mongolia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(3):204-209 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202003025.htm |
[29] | ZHANG S, YANG X, GERTSEN H, et al. A simple method for the extraction and identification of light density microplastics from soil[J]. Science of the Total Environment, 2018, 616:1056-1065 http://www.sciencedirect.com/science/article/pii/s0048969717329339 |
[30] | PIEHL S, LEIBNER A, G J L?DER M, et al. Identification and quantification of macro- and microplastics on an agricultural farmland[J]. Scientific Reports, 2018, 8:17950 doi: 10.1038/s41598-018-36172-y |
[31] | CORRADINI F, MEZA P, EGUILUZ R, et al. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal[J]. Science of the Total Environment, 2019, 671:411-420 doi: 10.1016/j.scitotenv.2019.03.368 |
[32] | YU Lu, ZHANG J D, LIU Y, et al. Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China[J]. Science of the Total Environment, 2020, 756:143860 http://www.ncbi.nlm.nih.gov/pubmed/33302081 |
[33] | YANG J, LI R J, ZHOU Q, et al. Abundance and morphology of microplastics in an agricultural soil following long-term repeated application of pig manure[J]. Environmental Pollution, 2020, 272:116028 http://www.sciencedirect.com/science/article/pii/S0269749120367178 |
[34] | ZHANG S L, LIU X, HAO X H, et al. Distribution of low-density microplastics in the mollisol farmlands of northeast China[J]. Science of the Total Environment, 2020, 708:135091 doi: 10.1016/j.scitotenv.2019.135091 |
[35] | ZHANG G S, LIU Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. Science of the Total Environment, 2018, 642:12-20 doi: 10.1016/j.scitotenv.2018.06.004 |
[36] | CHEN Y L, LENG Y F, LIU X N, et al. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China[J]. Environmental Pollution, 2020, 257:113449 doi: 10.1016/j.envpol.2019.113449 |
[37] | LIU M, LU S, SONG Y, et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China[J]. Environmental Pollution, 2018, 242:855-862 doi: 10.1016/j.envpol.2018.07.051 |
[38] | LV W W, ZHOU W Z, LU S B, et al. Microplastic pollution in rice-fish co-culture system:a report of three farmland stations in Shanghai, China[J]. Science of the Total Environment, 2019, 652:1209-1218 doi: 10.1016/j.scitotenv.2018.10.321 |
[39] | 周倩, 章海波, 周阳, 等.滨海潮滩土壤中微塑料的分离及其表面微观特征[J].科学通报, 2016, 61(14):1604-1611. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201614011.htm ZHOU Q, ZHANG H B, ZHOU Y, et al. Separation of microplastics from a coastal soil and their surface microscopic features[J]. Science Bulletin, 2016, 61(14):1604-1611 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201614011.htm |
[40] | ZHOU B Y, WANG J Q, ZHANG H B, et al. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China:multiple sources other than plastic mulching film[J]. Journal of Hazardous Materials, 2020, 388:121814 doi: 10.1016/j.jhazmat.2019.121814 |
[41] | AMRUTHA K, WARRIER A K. The first report on the source-to-sink characterization of microplastic pollution from a riverine environment in tropical India[J]. Science of the Total Environment, 2020, 739:140377 doi: 10.1016/j.scitotenv.2020.140377 |
[42] | SCHEURER M, BIGALKE M. Microplastics in Swiss floodplain soils[J]. Environmental Science & Technology, 2018, 52(6):3591-3598 http://smartsearch.nstl.gov.cn/paper_detail.html?id=3c4e104c82dcdedff36db9c604e3ae93 |
[43] | HUERTA L E, GERTSEN H, GOOREN H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris[J]. Environmental Pollution, 2017, 220:523-531 doi: 10.1016/j.envpol.2016.09.096 |
[44] | FULLER S, GAUTAM A. A procedure for measuring microplastics using pressurized fluid extraction[J]. Environmental Science & Technology, 2016, 50(11):5774-5780 doi: 10.1021/acs.est.6b00816 |
[45] | BRODHAGEN M, PEYRON M, MILES C, et al. Biodegradable plastic agricultural mulches and key features of microbial degradation[J]. Applied Microbiology Biotechnology, 2015, 99(3):1039-1056 doi: 10.1007/s00253-014-6267-5 |
[46] | ZHOU Q, ZHANG H, FU C, et al. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea[J]. Geoderma, 2018, 322:201-208 doi: 10.1016/j.geoderma.2018.02.015 |
[47] | RILLIG M C, ZIERSCH L, HEMPEL S. Microplastic transport in soil by earthworms[J]. Scientific Reports, 2017, 7:1362 doi: 10.1038/s41598-017-01594-7 |
[48] | GABET E J, REICHMAN O J, SEABLOOM E W. The effects of bioturbation on soil processes and sediment transport[J]. Annual Review of Earth and Planetary Sciences, 2003, 31:249-273 doi: 10.1146/annurev.earth.31.100901.141314 |
[49] | O'CONNOR D, PAN S Z, SHEN Z T, et al. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles[J]. Environmental Pollution, 2019, 249:527-534 doi: 10.1016/j.envpol.2019.03.092 |
[50] | CEY E E, RUDOLPH D L, PASSMORE J. Influence of macroporosity on preferential solute and colloid transport in unsaturated field soils[J]. Journal of Contaminant Hydrology, 2009, 107(1/2):45-57 http://www.ncbi.nlm.nih.gov/pubmed/19435645 |
[51] | HIDALGO-RUZ V, GUTOW L, THOMPSON R C, et al. Microplastics in the marine environment:a review of the methods used for identification and quantification[J]. Environmental Science & Technology, 2012, 46(6):3060-3075 http://europepmc.org/abstract/MED/22321064 |
[52] | KARLSSON T M, VETHAAK A D, ALMROTH B C, et al. Screening for microplastics in sediment, water, marine invertebrates and fish:method development and microplastic accumulation[J]. Marine Pollution Bulletin, 2017, 122(1/2):403-408 http://www.sciencedirect.com/science/article/pii/S0025326X17305799 |
[53] | HASSELERHARM P E R, FALAHUDIN D, PEETERS E T H M, et al. Microplastic effect thresholds for freshwater benthic macroinvertebrates[J]. Environmental Science & Technology, 2018, 52(4):2278-2286 http://www.ncbi.nlm.nih.gov/pubmed/29337537 |
[54] | DüMICHEN E, BARTHEL A K, BRAUN U, et al. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method[J]. Water Research, 2015, 85:451-457 doi: 10.1016/j.watres.2015.09.002 |
[55] | NUELLE M T, DEKIFF J H, REMY D, et al. A new analytical approach for monitoring microplastics in marine sediments[J]. Environmental Pollution, 2014, 184:161-169 doi: 10.1016/j.envpol.2013.07.027 |
[56] | VAN CAUWENBERGHE L, VANREUSEL A, MEES J, et al. Microplastic pollution in deep-sea sediments[J]. Environmental Pollution, 2013, 182:495-499 doi: 10.1016/j.envpol.2013.08.013 |
[57] | HURLEY R R, NIZZETTO L. Fate and occurrence of micro(nano)plastics in soils:knowledge gaps and possible risks[J]. Current Opinion in Environmental Science Health, 2018, 1:6-11 doi: 10.1016/j.coesh.2017.10.006 |
[58] | WANG W, WANG J. Investigation of microplastics in aquatic environments:an overview of the methods used, from field sampling to laboratory analysis[J]. TrAC-Trend in Analytical Chemistry, 2018, 108:195-202 doi: 10.1016/j.trac.2018.08.026 |
[59] | DESFORGES J P W, GALBRAITH M, ROSS P S. Ingestion of microplastics by zooplankton in the Northeast pacific ocean[J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3):320-330 doi: 10.1007/s00244-015-0172-5 |
[60] | HE D, LUO Y, LU S, et al. Microplastics in soils:analytical methods, pollution characteristics and ecological risks[J]. Trac-Trends in Analytical Chemistry, 2018, 109:163-172 doi: 10.1016/j.trac.2018.10.006 |
[61] | SHIM W J, SONG Y K, HONG S H, et al. Identification and quantification of microplastics using Nile Red staining[J]. Marine Pollution Bulletin, 2016, 113(1/2):469-476 http://www.sciencedirect.com/science/article/pii/S0025326X16308669 |
[62] | LI J, LIU H, CHEN J P. Microplastics in freshwater systems:a review on occurrence, environmental effects, and methods for microplastics detection[J]. Water Research, 2018, 137:362-374 doi: 10.1016/j.watres.2017.12.056 |
[63] | SHAN J, ZHAO J, LIU L, et al. A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics[J]. Environmental Pollution, 2018, 238:121-129 doi: 10.1016/j.envpol.2018.03.026 |
[64] | CORRADINI F, BARTHOLOMEUS H, HUERTA L E, et al. Predicting soil microplastic concentration using vis-NIR spectroscopy[J]. Science of the Total Environment, 2019, 650:922-932 doi: 10.1016/j.scitotenv.2018.09.101 |
[65] | DüMICHEN E, EISENTRAUT P, BANNICK C G, et al. Fast identification of microplastics in complex environmental samples by a thermal degradation method[J]. Chemosphere, 2017, 174:572-584 doi: 10.1016/j.chemosphere.2017.02.010 |
[66] | ELERT A M, BECKER R, DUEMICHEN E, et al. Comparison of different methods for MP detection:what can we learn from them, and why asking the right question before measurements matters?[J] Environmental Pollution, 2017, 231:1256-1264 doi: 10.1016/j.envpol.2017.08.074 |
[67] | DAVID J, STEINMETZ Z, KUCERIK J, et al. Quantitative analysis of poly (ethylene terephthalate) microplastics in soil via thermogravimetry-mass spectrometry[J]. Analytical Chemistry, 2018, 90(15):8793-8799 doi: 10.1021/acs.analchem.8b00355 |
[68] | LEE H, SHIM W J, KWON J H. Sorption capacity of plastic debris for hydrophobic organic chemicals[J]. Science of the Total Environment, 2014, 470/471:1545-1552 doi: 10.1016/j.scitotenv.2013.08.023 |
[69] | DEKIFF J H, REMY D, KLASMEIER J, et al. Occurrence and spatial distribution of microplastics in sediments from Norderney[J]. Environmental Pollution, 2014, 186:248-256 doi: 10.1016/j.envpol.2013.11.019 |
[70] | CABERNARD L, ROSCHER L, LORENZ C, et al. Comparison of Raman and Fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment[J]. Environmental Science & Technology, 2018, 52(22):13279-13288 http://www.ncbi.nlm.nih.gov/pubmed/30350953 |
[71] | DUMICHEN E, EISENTRAUT P, BANNICK C G, et al. Fast identification of microplastics in complex environmental samples by a thermal degradation method[J]. Chemosphere, 2017, 174:572-584 doi: 10.1016/j.chemosphere.2017.02.010 |
[72] | KAPPLER A, FISCHER M, SCHOLZ-BOTTCHER B M, et al. Comparison of mu-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments[J]. Analytical and Bioanalytical Chemistry, 2018, 410:5313-5327 doi: 10.1007/s00216-018-1185-5 |
[73] | PAUL A, WANDER L, BECKER R, et al. High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil[J]. Environmental Science and Pollution Research International, 2019, 26(8):7364-7374 doi: 10.1007/s11356-018-2180-2 |
[74] | DE SOUZA MACHADO A A, LAU C W, TILL J, et al. Impacts of microplastics on the soil biophysical environment[J]. Environmental Science & Technology, 2018, 52(17):9656-9665 http://smartsearch.nstl.gov.cn/paper_detail.html?id=e2fcd33a1fc9d7c1f48dc3e8bf8a13e3 |
[75] | ZHANG M, DONG B, QIAO Y, et al. Effects of sub-soil plastic film mulch on soil water and salt content and water utilization by winter wheat under different soil salinities[J]. Field Crop Research, 2018, 225:130-140 doi: 10.1016/j.fcr.2018.06.010 |
[76] | JIANG X J, LIU W, WANG E, et al. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China[J]. Soil & Tillage Research, 2017, 166(1):100-107 http://www.sciencedirect.com/science/article/pii/s0167198716302240 |
[77] | RILLIG M C. Microplastic disguising as soil carbon storage[J]. Environmental Science & Technology, 2018, 52(11):6079-6080 doi: 10.1021/acs.est.8b02338 |
[78] | WANG J, LV S, ZHANG M, et al. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils[J]. Chemosphere, 2016, 151:171-177 doi: 10.1016/j.chemosphere.2016.02.076 |
[79] | MORENO M M, MORENO A. Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop[J]. Scientia Horticulture, 2008, 116(3):256-263 doi: 10.1016/j.scienta.2008.01.007 |
[80] | LIU H, YANG X, LIU G, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 2017, 185:907-917 doi: 10.1016/j.chemosphere.2017.07.064 |
[81] | QI R M, JONES D L, LI Z, et al. Behavior of microplastics and plastic film residues in the soil environment:A critical review[J]. Environmental Pollution, 2020, 703:134722 http://www.sciencedirect.com/science/article/pii/S0048969719347138 |
[82] | RILLIG M C, LEHMANN A, DE SOUZA MACHADO A A, et al. Microplastic effects on plants[J]. New Phytologist, 2019, 223(3):1066-1070 doi: 10.1111/nph.15794 |
[83] | BOSKER T, BOUWMAN L J, BRUN N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226:774-781 doi: 10.1016/j.chemosphere.2019.03.163 |
[84] | SU Y M, ASHWORTH V, KIM C, et al. Delivery, uptake, fate, and transport of engineered nanoparticles in plants:a critical review and data analysis[J]. Environmental Science-Nano, 2019, 6(8):2311-2331 doi: 10.1039/C9EN00461K |
[85] | 李连祯, 周倩, 尹娜, 等.食用蔬菜能吸收和积累微塑料[J].科学通报, 2019, 64(9):928-934. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201909009.htm LI L Z, ZHOU Q, QIAO N, et al. Uptake and accumulation of microplastics in an edible plant[J]. Science Bulletin, 2019, 64(9):928-934 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201909009.htm |
[86] | RILLIG M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46(12):6453-6454 http://europepmc.org/abstract/med/22676039 |
[87] | LWANGA E H, GERTSEN H, GOOREN H, et al. Microplastics in the terrestrial ecosystem:implications for Lumbricus terrestris (Oligochaeta, Lumbricidae)[J]. Environmental Science & Technology, 2016, 50(5):2685-2691 http://www.ncbi.nlm.nih.gov/pubmed/26852875 |
[88] | LEI L L, WU S Y, LU S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the Total Environment, 2018, 619/620:1-8 doi: 10.1016/j.scitotenv.2017.11.103 |
[89] | ZHU D, BI Q F, XIANG Q, et al. Trophic predatoreprey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida[J]. Environmental Pollution, 2018, 235:150-154 doi: 10.1016/j.envpol.2017.12.058 |
[90] | KOKALJ A J, HORVAT P, SKALAR T, et al. Plastic bag and facial cleanser derived microplastic do not affect feeding behaviour and energy reserves of terrestrial isopods[J]. Science of the Total Environment, 2018, 615:761-766 doi: 10.1016/j.scitotenv.2017.10.020 |
[91] | WIJESEKARA H, BOLAN N S, BRADNEY L, et al. Trace element dynamics of biosolids-derived microbeads[J]. Chemosphere, 2018, 199(1):331-339 http://www.sciencedirect.com/science/article/pii/S0045653518301838 |
[92] | BRADNEY L, WIJESEKARA H, PALANSOORIYA K N, et al. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk[J]. Environment International, 2019, 131:104937 doi: 10.1016/j.envint.2019.104937 |
[93] | AWET T T, KOHL Y, MEIER F, et al. Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil[J]. Environmental Science Europe, 2018, 30:1-10 doi: 10.1186/s12302-017-0129-6 |
[94] | SUN M, YE M, JIAO W, et al. Changes in tetracycline partitioning and bacteria/phage-comediated ARGs in microplastic-contaminated greenhouse soil facilitated by sophorolipid[J]. Journal of Hazardous Materials, 2018, 345:131-139 doi: 10.1016/j.jhazmat.2017.11.036 |
[95] | NAVEED M, HERATH L, MOLDRUP P, et al. Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field[J]. Applied Soil Ecology, 2016, 103:44-55 doi: 10.1016/j.apsoil.2016.03.004 |
[96] | LEHMANN A, FITSCHEN K, RILLIG M C. Abiotic and biotic factors influencing the effect of microplastic on soil aggregation[J]. Soil Systems, 2019, 3(1):21 doi: 10.3390/soilsystems3010021 |
[97] | RUBOL S, MANZONI S, BELLIN A, et al. Modeling soil moisture and oxygen effects on soil biogeochemical cycles including dissimilatory nitrate reduction to ammonium (DNRA)[J]. Advances in Water Resources, 2013, 62:106-124 doi: 10.1016/j.advwatres.2013.09.016 |
[98] | JUDY J D, WILLIAMS M, GREGG A, et al. Microplastics in municipal mixed-waste organic outputs induce minimal short to long-term toxicity in key terrestrial biota[J]. Environmental Pollution, 2019, 252:522-531 doi: 10.1016/j.envpol.2019.05.027 |
[99] | MARSCHNER B, KALBITZ K. Controls of bioavailability and biodegradability of dissolved organic matter in soils[J]. Geoderma, 2003, 113(3/4):211-235 http://www.sciencedirect.com/science/article/pii/S0016706102003622 |
[100] | RILLIG M C, LEHMANN A, KLüMPER U. Evolutionary implications of microplastics for soil biota[J]. Environmental Chemistry, 2018, 16(1):3-7 http://www.publish.csiro.au/en/EN18118 |
[101] | GUTOW L, ECKERLEBE A, GIMENEZ L, et al. Experimental evaluation of seaweeds as a vector for microplastics into marine food webs[J]. Environmental Science & Technology, 2015, 50(2):915-923 http://europepmc.org/abstract/MED/26654910 |
[102] | BEJGARN S, MACLEOD M, BOGDAL C, et al. Toxicity of leachate from weathering plastics:an exploratory screening study with Nitocra spinipes[J]. Chemosphere, 2015, 132:114-119 doi: 10.1016/j.chemosphere.2015.03.010 |
[103] | BAKIR A, ROWLAND S J, THOMPSON R C. Transport of persistent organic pollutants by microplastics in estuarine conditions[J]. Estuarine Coastal and Shelf Science, 2014, 140:14-21 doi: 10.1016/j.ecss.2014.01.004 |
[104] | SONJA O, LOEDER M G J, GUNNAR G, et al. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters[J]. FEMS Microbiology Ecology, 2015, 90(2):478-492 http://www.ncbi.nlm.nih.gov/pubmed/25109340 |
[105] | GONG J, XIE P. Research progress in sources, analytical methods, eco-environmental effects, and control measures of microplastics[J]. Chemosphere, 2020, 254:126790 doi: 10.1016/j.chemosphere.2020.126790 |
[106] | MAJER A P, VEDOLIN M C, TURRA A. Plastic pellets as oviposition site and means of dispersal for the ocean-skater insect Halobates[J]. Marine Pollution Bulletin, 2012, 64(6):1143-1147 doi: 10.1016/j.marpolbul.2012.03.029 |
[107] | WRIGHT S L, THOMPSON R C, GALLOWAY T S. The physical impacts of microplastics on marine organisms:a review[J]. Environmental Pollution, 2013, 178:483-492 doi: 10.1016/j.envpol.2013.02.031 |
[108] | DELILAH L, AKE L, G?RAN D. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. Science of the Total Environment, 2011, 409(18):3309-3324 doi: 10.1016/j.scitotenv.2011.04.038 |
[109] | ERIKSEN M, MAXIMENKO N, THIEL M, et al. Plastic pollution in the South Pacific subtropical gyre[J]. Marine Pollution Bulletin, 2013, 68(1/2):71-76 http://www.ncbi.nlm.nih.gov/pubmed/23324543 |
[110] | THOMPSON R C, MOORE C J, VOM S, et al. Plastics, the environment and human health:current consensus and future trends[J]. Philosopical Transactions of Royal Society B-biological Science, 2009, 364(1526):2153-2166 doi: 10.1098/rstb.2009.0053 |
[111] | HALDEN R U. Plastics and health risks[J]. Annual Review of Public Health, 2010, 31:179-194 doi: 10.1146/annurev.publhealth.012809.103714 |
[112] | REHSE S, KLOAS W, ZARFL C. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna[J]. Chemosphere, 2016, 153:91-99 doi: 10.1016/j.chemosphere.2016.02.133 |
[113] | SMITH M, LOVE D C, ROCHMAN C M, et al. Microplastics in seafood and the implications for human health[J]. Current Environmental Health Reports, 2018, 5(3):375-386 doi: 10.1007/s40572-018-0206-z |
[114] | LIBOIRON M, LIBOIRON F, WELLS E, et al. Low plastic ingestion rate in Atlantic cod (Gadus morhua) from Newfoundland destined for human consumption collected through citizen science methods[J]. Marine Pollution Bulletin, 2016, 113(1/2):428-437 http://www.sciencedirect.com/science/article/pii/S0025326X16308591 |
[115] | ROCHMAN C M, KROSS S M, ARMSTRONG J B, et al. Scientific evidence supports a ban on microbeads[J]. Environmental Science & Technology, 2015, 49(18):10759-10761 http://smartsearch.nstl.gov.cn/paper_detail.html?id=c05476de73f7a18618d49d0215f27bb5 |
[116] | MASON S A, GARNEAU D, SUTTON R, et al. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent[J]. Environmental Pollution, 2016, 218:1045-1054 doi: 10.1016/j.envpol.2016.08.056 |
[117] | WILKINSON J, HOODA P S, BARKER J, et al. Occurrence, fate and transformation of emerging contaminants in water:an overarching review of the field[J]. Environmental Pollution, 2017, 231:954-970 doi: 10.1016/j.envpol.2017.08.032 |
[118] | BALL, PHILIP. Material witness:plastics on the menu[J]. Nature Materials, 2017, 16(6):606 doi: 10.1038/nmat4912 |
[119] | YANG Y, YANG J, WU W, et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms. 2. Role of gut microorganisms[J]. Environmental Science & Technology, 2015, 49(20):12087-12093 http://www.ncbi.nlm.nih.gov/pubmed/26390390 |