邹国元1, 2,
陈延华1, 2,
梁丽娜1, 2,
李丽霞1, 2,,
1.北京市农林科学院植物营养与资源研究所 北京 100097
2.北京市缓控释肥料工程技术研究中心 北京 100097
基金项目: 北京市农林科学院创新能力建设专项the Science and Technology Innovation Capacity Building Project of Beijing Academy of Agriculture and Forestry Sciences
北京市农林科学院创新能力建设专项KJCX20210430
北京市自然科学基金项目6202007
详细信息
作者简介:刘东生, 主要研究方向为农业面源污染治理。E-mail:llslds@163.com
通讯作者:李丽霞, 主要研究方向为农业用新型材料研发。E-mail:ashleyllx@163.com
中图分类号:X502计量
文章访问数:102
HTML全文浏览量:32
PDF下载量:37
被引次数:0
出版历程
收稿日期:2020-11-17
录用日期:2021-02-01
网络出版日期:2021-06-22
刊出日期:2021-06-01
Analytical techniques for studying soil microplastics
LIU Dongsheng1,,ZOU Guoyuan1, 2,
CHEN Yanhua1, 2,
LIANG Lina1, 2,
LI Lixia1, 2,,
1. Institute of Plant Nutrition and Resource, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
2. Research Center of Beijing Municipal Slow and Controlled Release Fertilizers Engineering Technology, Beijing 100097, China
Funds: the Science and Technology Innovation Capacity Building Project of Beijing Academy of Agriculture and Forestry Sciencesthe Science and Technology Innovation Capacity Building Project of Beijing Academy of Agriculture and Forestry Sciences
the Science and Technology Innovation Capacity Building Project of Beijing Academy of Agriculture and Forestry SciencesKJCX20210430
the Natural Science Foundation of Beijing6202007
More Information
Corresponding author:LI Lixia,E-mail:ashleyllx@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:微塑料污染已成为环境领域研究的热点问题。受采样、前处理和分析技术的限制,现有研究中检测到的微塑料尺寸普遍较大。定量分析技术不够成熟,文献数据之间的可比性较差。复杂组分和表面附着物导致土壤微塑料的分析检测存在更大的挑战。为更好地掌握研究现状与发展趋势,本文从光谱分析、热分析、显微分析等角度分类,对土壤微塑料研究中的分析技术进行了解析、对比和总结。光谱分析对微塑料进行定性和数量统计,常见的有傅里叶变换红外光谱法和拉曼光谱法。热分析用于组分鉴定和质量分析,具体分为裂解气质联用和热重波谱联用。显微分析则对形貌和尺寸进行表征,包括光学显微镜和电子显微镜两种。提出微塑料分析技术越来越丰富,但是针对土壤微塑料的分析是一项复杂的工作。分析技术的标准化是评价和治理微塑料污染的关键;现有的土壤微塑料检测方法各有利弊。组合或联用技术的使用有望更高效、精准地实现对土壤微塑料定性定量分析;应从需要解决的科学问题出发,根据研究目的合理选择分析技术;部分分析技术在土壤微塑料的实际测定有待于进一步的探索与验证。
关键词:土壤微塑料/
高分子/
分析技术/
光谱/
热分析/
显微镜
Abstract:Microplastic pollution has garnered recent attention in the field of environmental science. However, owing to the limitations of samplings, pretreatments, and analytical techniques, the sizes of the detected microplastics are generally large. Quantitative analysis methods are not yet well-developed; thus, the existing publications are incomparable. The analysis of soil microplastics is challenging because of their complex components and surface attachments. To better understand the current status of research and the development trends, the analytical techniques used in soil microplastics research were examined, compared, and summarized for thermal, spectral, and microscopic techniques in this paper. Microplastics have been qualitatively and quantitatively analyzed via spectral analysis, and the dominant techniques are Fourier-transform infrared spectroscopy and Raman spectroscopy. The components and masses have been analyzed via thermal analysis, including pyrolysis gas chromatography-mass spectrometry and thermogravimetric-spectrometry. Shape and size have been characterized via microscopic analysis. Optical and electron microscopies are the most commonly used techniques. The analytical techniques of microplastics are increasing in abundance, but the identification and quantification of soil microplastics remain a complex task. The standardization of analytical technologies is key to evaluating microplastic pollution. Each technique has its advantages and disadvantages, and the combination of analytical techniques is expected to efficiently and accurately analyze soil microplastics qualitatively and quantitatively. Analytical techniques should be selected based on the scientific objective. Meanwhile, some techniques require further exploration and verification for microplastics in real soil.
Key words:Soil microplastics/
Polymer/
Analytical technique/
Spectrometry/
Thermal analysis/
Microscopy
HTML全文
图1微塑料的分析技术
Figure1.Analytical techniques of microplastics (MPs)
下载: 全尺寸图片幻灯片
参考文献
[1] | THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea:where is all the plastic?[J]. Science, 2004, 304(5672):838 doi: 10.1126/science.1094559 |
[2] | BLETTLER M C M, ULLA M A, RABUFFETTI A P, et al. Plastic pollution in freshwater ecosystems:macro-, meso-, and microplastic debris in a floodplain lake[J]. Environmental Monitoring and Assessment, 2017, 189(11):581 doi: 10.1007/s10661-017-6305-8 |
[3] | HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments:evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586:127-141 doi: 10.1016/j.scitotenv.2017.01.190 |
[4] | QI R M, JONES D L, LI Z, et al. Behavior of microplastics and plastic film residues in the soil environment:a critical review[J]. Science of the Total Environment, 2020, 703:134722 doi: 10.1016/j.scitotenv.2019.134722 |
[5] | GIGAULT J, HALLE A T, BAUDRIMONT M, et al. Current opinion:what is a nanoplastic?[J]. Environmental Pollution, 2018, 235:1030-1034 doi: 10.1016/j.envpol.2018.01.024 |
[6] | HARTMANN N B, HüFFER T, THOMPSON R C, et al. Are we speaking the same language? recommendations for a definition and categorization framework for plastic debris[J]. Environmental Science & Technology, 2019, 53(3):1039-1047 doi: 10.1021/acs.est.8b05297 |
[7] | HIDALGO-RUZ V, GUTOW L, THOMPSON R C, et al. Microplastics in the marine environment:a review of the methods used for identification and quantification[J]. Environmental Science Technology, 2012, 46(6):3060-3075 doi: 10.1021/es2031505 |
[8] | WU P F, HUANG J S, ZHENG Y L, et al. Environmental occurrences, fate, and impacts of microplastics[J]. Ecotoxicology and Environmental Safety, 2019, 184:109612 doi: 10.1016/j.ecoenv.2019.109612 |
[9] | DE SOUZA MACHADO A A, KLOAS W, ZARFL C, et al. Microplastics as an emerging threat to terrestrial ecosystems[J]. Global Change Biology, 2018, 24(4):1405-1416 doi: 10.1111/gcb.14020 |
[10] | 杨婧婧, 徐笠, 陆安祥, 等.环境中微(纳米)塑料的来源及毒理学研究进展[J].环境化学, 2018, 37(3):383-396 https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201803002.htm YANG J J, XU L, LU A X, et al. Research progress on the sources and toxicology of micro(nano)plastics in environment[J]. Environmental Chemistry, 2018, 37(3):383-396 https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201803002.htm |
[11] | ZHANG B, YANG X, CHEN L, et al. Microplastics in soils:a review of possible sources, analytical methods and ecological impacts[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(8):2052-2068 doi: 10.1002/jctb.6334 |
[12] | GONG J, XIE P. Research progress in sources, analytical methods, eco-environmental effects, and control measures of microplastics[J]. Chemosphere, 2020, 254:126790 doi: 10.1016/j.chemosphere.2020.126790 |
[13] | HURLEY R R, NIZZETTO L. Fate and occurrence of micro(nano)plastics in soils:knowledge gaps and possible risks[J]. Current Opinion in Environmental Science & Health, 2018, 1:6-11 http://www.sciencedirect.com/science/article/pii/S2468584417300466 |
[14] | LI J, SONG Y, CAI Y B. Focus topics on microplastics in soil:analytical methods, occurrence, transport, and ecological risks[J]. Environmental Pollution, 2020, 257:113570 doi: 10.1016/j.envpol.2019.113570 |
[15] | KUMAR M, XIONG X N, HE M J, et al. Microplastics as pollutants in agricultural soils[J]. Environmental Pollution, 2020, 265:114980 doi: 10.1016/j.envpol.2020.114980 |
[16] | LUO H W, XIANG Y H, ZHAO Y Y, et al. Nanoscale infrared, thermal and mechanical properties of aged microplastics revealed by an atomic force microscopy coupled with infrared spectroscopy (AFM-IR) technique[J]. Science of the Total Environment, 2020, 744:140944 doi: 10.1016/j.scitotenv.2020.140944 |
[17] | DING L, MAO R F, MA S R, et al. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants[J]. Water Research, 2020, 174:115634 doi: 10.1016/j.watres.2020.115634 |
[18] | MATSUGUMA Y, TAKADA H, KUMATA H, et al. Microplastics in sediment cores from Asia and Africa as indicators of temporal trends in plastic pollution[J]. Archives of Environmental Contamination and Toxicology, 2017, 73(2):230-239 doi: 10.1007/s00244-017-0414-9 |
[19] | FULLER S, GAUTAM A. A procedure for measuring microplastics using pressurized fluid extraction[J]. Environmental Science & Technology, 2016, 50(11):5774-5780 doi: 10.1021/acs.est.6b00816 |
[20] | SCOPETANI C, CHELAZZI D, MIKOLA J, et al. Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples[J]. Science of the Total Environment, 2020, 733:139338 doi: 10.1016/j.scitotenv.2020.139338 |
[21] | WANG W F, GE J, YU X Y, et al. Environmental fate and impacts of microplastics in soil ecosystems:progress and perspective[J]. Science of the Total Environment, 2020, 708:134841 doi: 10.1016/j.scitotenv.2019.134841 |
[22] | K?PPLER A, FISCHER D, OBERBECKMANN S, et al. Analysis of environmental microplastics by vibrational microspectroscopy:FTIR, Raman or both?[J]. Analytical and Bioanalytical Chemistry, 2016, 408(29):8377-8391 doi: 10.1007/s00216-016-9956-3 |
[23] | TAGG A S, SAPP M, HARRISON J P, et al. Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging[J]. Analytical Chemistry, 2015, 87(12):6032-6040 doi: 10.1021/acs.analchem.5b00495 |
[24] | L?DER M G J, KUCZERA M, MINTENIG S, et al. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples[J]. Environmental Chemistry, 2015, 12(5):563 doi: 10.1071/EN14205 |
[25] | SARKER A, DEEPO D M, NANDI R, et al. A review of microplastics pollution in the soil and terrestrial ecosystems:a global and Bangladesh perspective[J]. Science of the Total Environment, 2020, 733:139296 doi: 10.1016/j.scitotenv.2020.139296 |
[26] | ZHANG Q, XU E G, LI J N, et al. A review of microplastics in table salt, drinking water, and air:direct human exposure[J]. Environmental Science & Technology, 2020, 54(7):3740-3751 http://www.researchgate.net/publication/339643725_A_Review_of_Microplastics_in_Table_Salt_Drinking_Water_and_Air_Direct_Human_Exposure |
[27] | CHEN Y Y, WEN D S, PEI J C, et al. Identification and quantification of microplastics using Fourier-transform infrared spectroscopy:current status and future prospects[J]. Current Opinion in Environmental Science & Health, 2020, 18:14-19 http://www.sciencedirect.com/science/article/pii/S2468584420300374 |
[28] | 杨忠, 刘亚娜, 吕斌, 等.非接触式可见光-近红外光谱法快速预测天然高分子材料表面粗糙度的研究[J].光谱学与光谱分析, 2013, 33(3):682-685 doi: 10.3964/j.issn.1000-0593(2013)03-0682-04 YANG Z, LIU Y N, LYU B, et al. Rapid prediction of surface roughness of natural polymer material by visible/near infrared spectroscopy as a non-contact measurement method[J]. Spectroscopy and Spectral Analysis, 2013, 33(3):682-685 doi: 10.3964/j.issn.1000-0593(2013)03-0682-04 |
[29] | ZHENG Y, BAI J R, XU J N, et al. A discrimination model in waste plastics sorting using NIR hyperspectral imaging system[J]. Waste Management, 2018, 72:87-98 doi: 10.1016/j.wasman.2017.10.015 |
[30] | 马翔.化学计量学结合近红外光谱在天然橡胶聚合物检测分析中的应用[D].北京: 北京化工大学, 2019 MA X. Application of chemometrics combined with NIR detection and analysis of NR polymers[D]. Beijing: Beijing University of Chemical Technology, 2019 |
[31] | 白文明, 王来兵, 成日青, 等.近红外高光谱成像技术在药物分析中的研究进展[J].药物分析杂志, 2018, 38(10):1661-1667 https://www.cnki.com.cn/Article/CJFDTOTAL-YWFX201810001.htm BAI W M, WANG L B, CHENG R Q, et al. Research advance in pharmaceutical analysis based on near-infrared hyperspectral imaging technique[J]. Chinese Journal of Pharmaceutical Analysis, 2018, 38(10):1661-1667 https://www.cnki.com.cn/Article/CJFDTOTAL-YWFX201810001.htm |
[32] | M?LLER J N, L?DER M G J, LAFORSCH C. Finding microplastics in soils:a review of analytical methods[J]. Environmental Science & Technology, 2020, 54(4):2078-2090 http://www.researchgate.net/publication/338930245_Finding_Microplastics_in_Soils_-_A_Review_of_Analytical_Methods |
[33] | PIARULLI S, SCIUTTO G, OLIVERI P, et al. Rapid and direct detection of small microplastics in aquatic samples by a new near infrared hyperspectral imaging (NIR-HSI) method[J]. Chemosphere, 2020, 260:127655 doi: 10.1016/j.chemosphere.2020.127655 |
[34] | CORRADINI F, BARTHOLOMEUS H, LWANGA E H, et al. Predicting soil microplastic concentration using vis-NIR spectroscopy[J]. Science of the Total Environment, 2019, 650:922-932 doi: 10.1016/j.scitotenv.2018.09.101 |
[35] | PAUL A, WANDER L, BECKER R, et al. High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil[J]. Environmental Science and Pollution Research, 2019, 26(8):7364-7374 doi: 10.1007/s11356-018-2180-2 |
[36] | QIU Z J, ZHAO S T, FENG X P, et al. Transfer learning method for plastic pollution evaluation in soil using NIR sensor[J]. Science of the Total Environment, 2020, 740:140118 doi: 10.1016/j.scitotenv.2020.140118 |
[37] | SCHYMANSKI D, GOLDBECK C, HUMPF H U, et al. Analysis of microplastics in water by micro-Raman spectroscopy:release of plastic particles from different packaging into mineral water[J]. Water Research, 2018, 129:154-162 doi: 10.1016/j.watres.2017.11.011 |
[38] | SARAU G, KLING L, O?MANN B E, et al. Correlative microscopy and spectroscopy workflow for microplastics[J]. Applied Spectroscopy, 2020, 74(9):1155-1160 doi: 10.1177/0003702820916250 |
[39] | PRIMPKE S, CHRISTIANSEN S H, COWGER W, et al. Critical assessment of analytical methods for the harmonized and cost-efficient analysis of microplastics[J]. Applied Spectroscopy, 2020, 74(9):1012-1047 doi: 10.1177/0003702820921465 |
[40] | 刘婧.共聚焦显微拉曼光谱技术在海洋沉积物微塑料检测中的探索应用[D].北京: 中国科学院大学, 2020: 9-14 LIU J. Exploration and application of confocal micro-Raman spectroscopy in detection of marine sediment microplastics[D]. Beijing: University of Chinese Academy of Sciences, 2020: 9-14 |
[41] | FRèRE L, PAUL-PONT I, MOREAU J, et al. A semi-automated Raman micro-spectroscopy method for morphological and chemical characterizations of microplastic litter[J]. Marine Pollution Bulletin, 2016, 113(1/2):461-468 http://www.ncbi.nlm.nih.gov/pubmed/27837909 |
[42] | 刘丹童, 宋洋, 李菲菲, 等.基于显微拉曼面扫的小尺寸微塑料检测方法[J].中国环境科学, 2020, 40(10):4429-4438 doi: 10.3969/j.issn.1000-6923.2020.10.029 LIU D T, SONG Y, LI F F, et al. A detection method of small-sized microplastics based on micro-Raman mapping[J]. China Environmental Science, 2020, 40(10):4429-4438 doi: 10.3969/j.issn.1000-6923.2020.10.029 |
[43] | ARAUJO C F, NOLASCO M M, RIBEIRO A M P, et al. Identification of microplastics using Raman spectroscopy:latest developments and future prospects[J]. Water Research, 2018, 142:426-440 doi: 10.1016/j.watres.2018.05.060 |
[44] | BL?SING M, AMELUNG W. Plastics in soil:analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612:422-435 doi: 10.1016/j.scitotenv.2017.08.086 |
[45] | BRANDT J, BRANDT J, BITTRICH L, et al. High-throughput analyses of microplastic samples using Fourier transform infrared and Raman spectrometry[J]. Applied Spectroscopy, 2020, 74(9):1185-1197 doi: 10.1177/0003702820932926 |
[46] | HUPPERTSBERG S, KNEPPER T P. Instrumental analysis of microplastics-benefits and challenges[J]. Analytical and Bioanalytical Chemistry, 2018, 410(25):6343-6352 doi: 10.1007/s00216-018-1210-8 |
[47] | FOJT J, DAVID J, P?IKRYL R, et al. A critical review of the overlooked challenge of determining micro-bioplastics in soil[J]. Science of the Total Environment, 2020, 745:140975 doi: 10.1016/j.scitotenv.2020.140975 |
[48] | FRIES E, DEKIFF J H, WILLMEYER J, et al. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy[J]. Environmental Science Processes & Impacts, 2013, 15(10):1949-1956 http://europepmc.org/abstract/med/24056666 |
[49] | STEINMETZ Z, KINTZI A, MU?OZ K, et al. A simple method for the selective quantification of polyethylene, polypropylene, and polystyrene plastic debris in soil by pyrolysis-gas chromatography/mass spectrometry[J]. Journal of Analytical and Applied Pyrolysis, 2020, 147:104803 doi: 10.1016/j.jaap.2020.104803 |
[50] | K?PPLER A, FISCHER M, SCHOLZ-B?TTCHER B M, et al. Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments[J]. Analytical and Bioanalytical Chemistry, 2018, 410(21):5313-5327 doi: 10.1007/s00216-018-1185-5 |
[51] | HERMABESSIERE L, HIMBER C, BORICAUD B, et al. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics[J]. Analytical and Bioanalytical Chemistry, 2018, 410(25):6663-6676 doi: 10.1007/s00216-018-1279-0 |
[52] | GOMIERO A, ?YS?D K B, AGUSTSSON T, et al. First record of characterization, concentration and distribution of microplastics in coastal sediments of an urban fjord in south west Norway using a thermal degradation method[J]. Chemosphere, 2019, 227:705-714 doi: 10.1016/j.chemosphere.2019.04.096 |
[53] | DIERKES G, LAUSCHKE T, BECHER S, et al. Quantification of microplastics in environmental samples via pressurized liquid extraction and pyrolysis-gas chromatography[J]. Analytical and Bioanalytical Chemistry, 2019, 411(26):6959-6968 doi: 10.1007/s00216-019-02066-9 |
[54] | 张红, 刘鸿.热分析技术在高分子材料研究中的应用[J].广州化工, 2001, 29(4):39-42 doi: 10.3969/j.issn.1001-9677.2001.04.014 ZHANG H, LIU H. Applications of thermal analysis technique on studies of polymer materials[J]. Guangzhou Chemical Industry, 2001, 29(4):39-42 doi: 10.3969/j.issn.1001-9677.2001.04.014 |
[55] | DAVID J, STEINMETZ Z, KU?ERíK J, et al. Quantitative analysis of poly(ethylene terephthalate) microplastics in soil via thermogravimetry-mass spectrometry[J]. Analytical Chemistry, 2018, 90(15):8793-8799 doi: 10.1021/acs.analchem.8b00355 |
[56] | DUEMICHEN E, BRAUN U, SENZ R, et al. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry[J]. Journal of Chromatography A, 2014, 1354:117-128 doi: 10.1016/j.chroma.2014.05.057 |
[57] | DüMICHEN E, EISENTRAUT P, BANNICK C G, et al. Fast identification of microplastics in complex environmental samples by a thermal degradation method[J]. Chemosphere, 2017, 174:572-584 doi: 10.1016/j.chemosphere.2017.02.010 |
[58] | YU J P, WANG P Y, NI F L, et al. Characterization of microplastics in environment by thermal gravimetric analysis coupled with Fourier transform infrared spectroscopy[J]. Marine Pollution Bulletin, 2019, 145:153-160 doi: 10.1016/j.marpolbul.2019.05.037 |
[59] | 张玉佩, 吴东旭, 余建平, 等. TGA-FTIR联用技术快速检测海水中的聚酰胺微塑料[J].环境化学, 2018, 37(10):2332-2334 https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201810028.htm ZHANG Y P, WU D X, YU J P, et al. Fast identification of polyamide microplastics in sea water with TGA-FTIR[J]. Environmental Chemistry, 2018, 37(10):2332-2334 https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201810028.htm |
[60] | 余建平.基于TGA-FTIR-GC/MS联机技术的环境中微塑料定量分析研究[D].杭州: 浙江工业大学, 2019 YU J P. Quantitative analysis of microplastics by TGA-FTIR-GC/MS[D]. Hangzhou: Zhejiang University of Technology, 2019 |
[61] | MAJEWSKY M, BITTER H, EICHE E, et al. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC)[J]. Science of the Total Environment, 2016, 568:507-511 doi: 10.1016/j.scitotenv.2016.06.017 |
[62] | DEKIFF J H, REMY D, KLASMEIER J, et al. Occurrence and spatial distribution of microplastics in sediments from Norderney[J]. Environmental Pollution, 2014, 186:248-256 doi: 10.1016/j.envpol.2013.11.019 |
[63] | SHIM W J, SONG Y K, HONG S H, et al. Identification and quantification of microplastics using Nile Red staining[J]. Marine Pollution Bulletin, 2016, 113(1/2):469-476 http://www.sciencedirect.com/science/article/pii/S0025326X16308669 |
[64] | SONG Y K, HONG S H, JANG M, et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples[J]. Marine Pollution Bulletin, 2015, 93(1/2):202-209 http://www.sciencedirect.com/science/article/pii/S0025326X15000314 |
[65] | 李珊, 张岚, 陈永艳, 等.饮用水中微塑料检测技术研究进展[J].净水技术, 2019, 38(4):1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS201904003.htm LI S, ZHANG L, CHEN Y Y, et al. Research progress on detection technology of microplastics in drinking water[J]. Water Purification Technology, 2019, 38(4):1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS201904003.htm |
[66] | GNIADEK M, D?BROWSKA A. The marine nano- and micro-plastics characterisation by SEM-EDX:the potential of the method in comparison with various physical and chemical approaches[J]. Marine Pollution Bulletin, 2019, 148:210-216 doi: 10.1016/j.marpolbul.2019.07.067 |
[67] | WANG Z M, WAGNER J, GHOSAL S, et al. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts[J]. Science of the Total Environment, 2017, 603/604:616-626 doi: 10.1016/j.scitotenv.2017.06.047 |
[68] | DU C, LIANG H D, LI Z P, et al. Pollution characteristics of microplastics in soils in southeastern suburbs of Baoding City, China[J]. International Journal of Environmental Research and Public Health, 2020, 17(3):845 doi: 10.3390/ijerph17030845 |
[69] | DU C, WU J, GONG J, et al. ToF-SIMS characterization of microplastics in soils[J]. Surface and Interface Analysis, 2020, 52(5):293-300 doi: 10.1002/sia.6742 |
[70] | BOLEA-FERNANDEZ E, RUA-IBARZ A, VELIMIROVIC M, et al. Detection of microplastics using inductively coupled plasma-mass spectrometry (ICP-MS) operated in single-event mode[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(3):455-460 doi: 10.1039/C9JA00379G |
[71] | ELERT A M, BECKER R, DUEMICHEN E, et al. Comparison of different methods for MP detection:what can we learn from them, and why asking the right question before measurements matters?[J]. Environmental Pollution, 2017, 231:1256-1264 doi: 10.1016/j.envpol.2017.08.074 |
[72] | TURNER A. In situ elemental characterisation of marine microplastics by portable XRF[J]. Marine Pollution Bulletin, 2017, 124(1):286-291 doi: 10.1016/j.marpolbul.2017.07.045 |