删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

微塑料对典型污染物吸附解吸的研究进展

本站小编 Free考研考试/2022-01-01

徐笠1, 2,,
李海霞1, 2,
韩丽花1, 2,
邹国元3,
陈延华3,
刘东生3,
薛颖昊4,
陆安祥1, 2,,
1.北京农业质量标准与检测技术研究中心/北京市农林科学院 北京 100097
2.农产品产地环境监测北京市重点实验室 北京 100097
3.北京市农林科学院植物营养与资源研究所 北京 100097
4.农业农村部农业生态与资源保护总站 北京 100125
基金项目: 北京市优秀人才青年骨干项目和北京市农林科学院创新能力建设专项KJCX20180406
北京市优秀人才青年骨干项目和北京市农林科学院创新能力建设专项KJCX20210430
北京市优秀人才青年骨干项目和北京市农林科学院创新能力建设专项KJCX20200422

详细信息
作者简介:徐笠, 主要从事微塑料环境行为和生物效应的研究工作。E-mail:xuliforever@163.com
通讯作者:陆安祥, 主要从事污染物环境行为研究。E-mail:axlu2010@163.com
中图分类号:X503

计量

文章访问数:110
HTML全文浏览量:16
PDF下载量:34
被引次数:0
出版历程

收稿日期:2020-11-17
录用日期:2021-01-07
网络出版日期:2021-06-22
刊出日期:2021-06-01

Research progress on the adsorption and desorption of typical pollutants on microplastics

XU Li1, 2,,
LI Haixia1, 2,
HAN Lihua1, 2,
ZOU Guoyuan3,
CHEN Yanhua3,
LIU Dongsheng3,
XUE Yinghao4,
LU Anxiang1, 2,,
1. Beijing Research Center for Agricultural Standards and Testing/Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
2. Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
3. Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
4. Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
Funds: the Beijing Youth Backbone Program for Outstanding Talents and the Innovation Capacity Building of Beijing Academy of Agricultural and Forestry SciencesKJCX20180406
the Beijing Youth Backbone Program for Outstanding Talents and the Innovation Capacity Building of Beijing Academy of Agricultural and Forestry SciencesKJCX20210430
the Beijing Youth Backbone Program for Outstanding Talents and the Innovation Capacity Building of Beijing Academy of Agricultural and Forestry SciencesKJCX20200422

More Information
Corresponding author:LU Anxiang, E-mail:axlu2010@163.com


摘要
HTML全文
(0)(1)
参考文献(59)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:近些年来,环境中的微塑料污染引起了全世界的广泛关注。微塑料具有比表面积大、吸附力强等特点,其易与环境中的典型污染物(如有机污染物和重金属)相互作用,改变这些污染物的环境行为。明确微塑料对有机污染物和重金属的吸附解吸作用过程和机制,对于明确有机污染物和重金属的环境行为及毒性效应的相应变化具有重要的意义。本文系统综述了微塑料对有机污染物和重金属吸附解吸作用的研究进展,着重从微塑料性质(类型、形貌特征、表面官能团、极性、吸附位点、结晶度、老化程度)、污染物性质(表面官能团、疏水性、极性、浓度、形态等)以及环境因素(温度、pH、盐度、离子强度、表面活性剂、微生物膜)3个方面,系统分析了微塑料对典型污染物吸附解吸的作用过程和机理。微塑料对有机污染物和重金属的吸附解吸主要受表面吸附、孔隙填充、络合作用以及疏水作用等的影响。微塑料对污染物的吸附动力学绝大部分符合动力学(准)二级模型,部分符合一级动力学;吸附等温线基本符合Frendlich模型、Langmuir模型和Henry模型,部分符合线性模型和复合模型。未来应加强微塑料对一些新型污染物吸附解吸方面的研究工作,进一步明确微塑料与典型污染物之间相互作用的过程和机理,并建立相关的数据库和模型。希望为后续的微塑料吸附解吸典型污染物的相关研究提供借鉴与参考,也为科学地认识微塑料的环境行为提供依据。
关键词:微塑料/
有机污染物/
重金属/
吸附/
解吸
Abstract:In recent years, microplastic pollution in the environment has attracted attention worldwide. The large specific surface area and strong adsorption capacity of microplastics lead to interactions with typical environmental contaminants (such as organic pollutants and heavy metals), thereby changing the environmental behavior of these pollutants. It is important to identify the adsorption and desorption processes and mechanisms of organic pollutants and heavy metals on microplastics to better understand the corresponding changes in the environmental behavior and toxic effects of these substances. This paper reviews the adsorption and desorption of organic pollutants and heavy metals by microplastics. The processes and mechanisms of adsorption and desorption of typical pollutants on microplastics are discussed from three aspects:microplastic properties (types, morphology, surface functional groups, polarity, adsorption sites, crystallinity, and aging degree), pollutants properties (surface functional groups, hydrophobicity, polarity, and concentration), and environmental factors (temperature, pH value, salinity, ionic strength, surfactant, and biofilm). The adsorption and desorption of organic pollutants and heavy metals by microplastics are mainly affected by surface adsorption, pore filling, complexation, and hydrophobicity. The adsorption kinetics of microplastics for pollutants mostly conformed to the kinetic (quasi) second-order model, but some conformed to the first-order model. The adsorption isotherms largely conformed to the Freundlich, Langmuir, and Henry models, and some conformed to the linear and composite models. In the future, research on the adsorption and desorption of new pollutants by microplastics should be expanded and the processes and mechanisms of interaction between microplastics and typical pollutants should be further clarified to establish relevant databases and models. This review provides a reference for follow-up research on the adsorption and desorption of typical pollutants by microplastics and a scientific basis for understanding the environmental behavior of microplastics.
Key words:Microplastics/
Organic pollutants/
Heavy metals/
Adsorption/
Desorption

HTML全文

表1用于吸附污染物的微塑料种类、尺寸及文献来源
Table1.Types, sizes and sources of microplastics used to adsorb pollutants in the literatures
微塑料类型
Microplastic type
微塑料尺寸
Microplastic size (μm)
模拟污染物
Simulated pollutant
微塑料来源
Source of microplastics
参考文献
Reference
聚苯乙烯、聚乙烯、聚氯乙烯
Polystyrene, polyethylene, polyvinyl chloride
200~250, 5.8三氯生、三氯卡班、甲基三氯生
Triclosan, triclocarban, methyl triclosan
古德费罗剑桥有限公司、倍思乐色谱技术研发中心、上海冠步机电科技有限公司
Goodfellow Cambridge Ltd, BaseLine ChromTech Research Centre, Shanghai Guanbu Electromechanical Technology Co., Ltd
[44]
聚氯乙烯、聚乙烯
Polyvinyl chloride, polyethylene
200~250菲、滴滴涕
Phenanthrene, DDT
古德费罗剑桥有限公司
Goodfellow Cambridge Ltd
[32]
聚丙烯
Polypropylene
180~5000多氯联苯
Polychlorinated biphenyl
沙特基础工业公司
Saudi Basic Industry Corporation
[38]
聚丙烯、聚乙烯、聚苯乙烯
Polypropylene, polyethylene, polystyrene
250多环芳烃、多氯联苯、六六六
Polycyclic aromatic hydrocarbon, polychlorinated biphenyl, HCHs
自制
Homemade
[45]
聚酰胺、聚乙烯、聚氯乙烯、聚苯乙烯
Polyamide, polyethylene, polyvinyl chloride, polystyrene
< 250苯、甲苯、氯苯、苯甲酸乙酯Benzene, methylbenzene, chlorobenzene, ethyl benzoate古德费罗剑桥有限公司
Goodfellow Cambridge Ltd
[46]
聚苯乙烯
Polystyrene
125~250萘酚
1-Naphthol
古德费罗剑桥有限公司
Goodfellow Cambridge Ltd
[47]
聚丙烯
Polypropylene
450~850
麝香
Musk
国药化学试剂有限公司
Sinopharm Chemical Reagent Co., Ltd.
[48]
聚氯乙烯、聚乙烯
Polyvinyl chloride, polyethylene
< 75泰乐菌素
Tylosin
环境中收集
Collected from environment
[35]
聚氯乙烯、聚丙烯
Polyvinyl chloride, polypropylene
200~250
Phenanthrene
古德费罗剑桥有限公司
Goodfellow Cambridge Ltd
[49]
聚丙烯
Polypropylene
< 48泰乐菌素
Tylosin
自制
Homemade
[31]
聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯
Polyethylene, polypropylene, polyvinyl chloride, polystyrene
< 180镉、泰乐菌素
Cadmium, tylosin
聚乙烯、聚苯乙烯
Polyethylene, polystyrene
180~250,
250~550
抗生素
Antibiotics
自制
Homemade
[29]
聚丙烯、聚乙烯、聚酰胺、聚氯乙烯、聚甲醛
Polypropylene, polyethylene, polyamide, polyvinyl chloride, polyformaldehyde
2000~5000锌Zinc上虞市亿欣球业有限公司
Shangyu Yixin Ball Industry Co., Ltd
[50]
聚苯乙烯、聚氯乙烯
Polystyrene, polyvinyl chloride
700~900,
800~1600
铜、锌
Copper, zinc
德国巴斯夫公司
Badische Anilin Soda Fabrik Ga
[24]
高密度聚乙烯、低密度聚乙烯、聚氯乙烯、聚丙烯
High density polyethylene,
low-density Polyethylene,
polyvinyl chloride, polypropylene
3000铝、铬、钼、铁、锰、镍、锌、镉、铅
Aluminum, chromium, molybdenum, iron, manganese, nickel, zinc, cadmium, lead
飞世尔科技
Fisher Scientific
[51]
聚对苯二甲酸乙二醇酯
Polyethylene glycol terephthalate
2000~3000


下载: 导出CSV

参考文献(59)
[1]RILLIG M C, LEHMANN A. Microplastic in terrestrial ecosystems[J]. Science, 2020, 368(6498):1430-1431 doi: 10.1126/science.abb5979
[2]ROCHMAN C M, HOELLEIN T. The global odyssey of plastic pollution[J]. Science, 2020, 368(6496):1184-1185 doi: 10.1126/science.abc4428
[3]BRAHNEY J, HALLERUD M, HEIM E, et al. Plastic rain in protected areas of the United States[J]. Science, 2020, 368(6496):1257-1260 doi: 10.1126/science.aaz5819
[4]KANE I A, CLARE M A, MIRAMONTES E, et al. Seafloor microplastic hotspots controlled by deep-sea circulation[J]. Science, 2020, 368(6495):1140-1145 doi: 10.1126/science.aba5899
[5]SUN X D, YUAN X Z, JIA Y B, et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana[J]. Nature Nanotechnology, 2020, 15(9):755-760 doi: 10.1038/s41565-020-0707-4
[6]杨婧婧, 徐笠, 陆安祥, 等.环境中微(纳米)塑料的来源及毒理学研究进展[J].环境化学, 2018, 37(3):383-396 https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201803002.htm
YANG J J, XU L, LU A X, et al. Research progress on the sources and toxicology of micro (nano) plastics in environment[J]. Environmental Chemistry, 2018, 37(3):383-396 https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201803002.htm
[7]MOHRIG D. Deep-ocean seafloor Islands of plastics[J]. Science, 2020, 368(6495):1055 doi: 10.1126/science.abc1510
[8]SEELEY M E, SONG B, PASSIE R, et al. Microplastics affect sedimentary microbial communities and nitrogen cycling[J]. Nature Communications, 2020, 11(1):1-10 doi: 10.1038/s41467-019-13993-7
[9]韩丽花, 李巧玲, 徐笠, 等.大辽河沉积物中微塑料的污染特征[J].中国环境科学, 2020, 40(4):1649-1658 doi: 10.3969/j.issn.1000-6923.2020.04.032
HAN L H, LI Q L, XU L, et al. The pollution characteristics of microplastics in Daliao River sediments[J]. China Environmental Science, 2020, 40(4):1649-1658 doi: 10.3969/j.issn.1000-6923.2020.04.032
[10]MIN K, CUIFFI J D, MATHERS R T. Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure[J]. Nature Communications, 2020, 11:727 doi: 10.1038/s41467-020-14538-z
[11]ALLEN S, ALLEN D, PHOENIX V R, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment[J]. Nature Geoscience, 2019, 12(5):339-344 doi: 10.1038/s41561-019-0335-5
[12]EVANGELIOU N, GRYTHE H, KLIMONT Z, et al. Atmospheric transport is a major pathway of microplastics to remote regions[J]. Nature Communications, 2020, 11:3381 doi: 10.1038/s41467-020-17201-9
[13]ROCHMAN C M, HOH E, HENTSCHEL B T, et al. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets:implications for plastic marine debris[J]. Environmental Science & Technology, 2013, 47(3):1646-1654 http://www.ncbi.nlm.nih.gov/pubmed/23270427
[14]WANG F, SHIH K M, LI X Y. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics[J]. Chemosphere, 2015, 119:841-847 doi: 10.1016/j.chemosphere.2014.08.047
[15]孟令易, 田浩廷, 吕鲲, 等.全氟化合物在微塑料界面的吸附行为研究[C]//第二次全国计算毒理学学术会议暨中国毒理学会第一届计算毒理专业委员会第二次会议论文集.兰州. 2018: 98-99
MENG L Y, TIAN H T, LYU K, et al. Adsorption behavior of perfluorinated compounds on the interface of microplastics[C]. Proceedings of the 2nd National Conference on Computational Toxicology & The 2nd Meeting of the 1st Computational Toxicology Committee of Chinese Society of Toxicology. Lanzhou. 2018: 98-99
[16]WANG Z, CHEN M L, ZHANG L W, et al. Sorption behaviors of phenanthrene on the microplastics identified in a mariculture farm in Xiangshan Bay, southeastern China[J]. Science of the Total Environment, 2018, 628/629:1617-1626 http://www.ingentaconnect.com/content/el/00489697/2018/00000628/00000001/art00154
[17]VELZEBOER I, KWADIJK C J A F, KOELMANS A A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes[J]. Environmental Science & Technology, 2014, 48(9):4869-4876 http://www.ncbi.nlm.nih.gov/pubmed/24689832
[18]NAPPER I E, BAKIR A, ROWLAND S J, et al. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics[J]. Marine Pollution Bulletin, 2015, 99(1/2):178-185 http://www.sciencedirect.com/science/article/pii/S0025326X1500449X
[19]GUO X T, PANG J W, CHEN S Y, et al. Sorption properties of tylosin on four different microplastics[J]. Chemosphere, 2018, 209:240-245 doi: 10.1016/j.chemosphere.2018.06.100
[20]ANTUNES J C, FRIAS J G L, MICAELO A C, et al. Resin pellets from beaches of the Portuguese Coast and adsorbed persistent organic pollutants[J]. Estuarine, Coastal and Shelf Science, 2013, 130:62-69 doi: 10.1016/j.ecss.2013.06.016
[21]FRIAS J P G L, SOBRAL P, FERREIRA A M. Organic pollutants in microplastics from two beaches of the Portuguese Coast[J]. Marine Pollution Bulletin, 2010, 60(11):1988-1992 doi: 10.1016/j.marpolbul.2010.07.030
[22]ALIMI O S, FARNER BUDARZ J, HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments:aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4):1704-1724 http://europepmc.org/abstract/MED/29265806
[23]ZUO L Z, LI H X, LIN L, et al. Sorption and desorption of phenanthrene on biodegradable poly (butylene adipate co-terephtalate) microplastics[J]. Chemosphere, 2019, 215:25-32 doi: 10.1016/j.chemosphere.2018.09.173
[24]BRENNECKE D, DUARTE B, PAIVA F, et al. Microplastics as vector for heavy metal contamination from the marine environment[J]. Estuarine, Coastal and Shelf Science, 2016, 178:189-195 doi: 10.1016/j.ecss.2015.12.003
[25]ERIKSSON C, BURTON H. Origins and biological accumulation of small plastic particles in fur seals from Macquarie Island[J]. Ambio, 2003, 32(6):380-384 doi: 10.1579/0044-7447-32.6.380
[26]OCAMPO-PEREZ R, LEYVA-RAMOS R, ALONSO-DAVILA P, et al. Modeling adsorption rate of pyridine onto granular activated carbon[J]. Chemical Engineering Journal, 2010, 165(1):133-141 doi: 10.1016/j.cej.2010.09.002
[27]LIU P, QIAN L, WANG H Y, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes[J]. Environmental Science & Technology, 2019, 53(7):3579-3588 http://www.ncbi.nlm.nih.gov/pubmed/30829479
[28]LIU X W, ZHENG M G, WANG L, et al. Sorption behaviors of tris-(2, 3-dibromopropyl) isocyanurate and hexabromocyclododecanes on polypropylene microplastics[J]. Marine Pollution Bulletin, 2018, 135:581-586 doi: 10.1016/j.marpolbul.2018.07.061
[29]张凯娜, 李嘉, 李晓强, 等.微塑料表面土霉素的吸附-解吸机制与动力学过程[J].环境化学, 2017, 36(12):2531-2540 doi: 10.7524/j.issn.0254-6108.2017032703
ZHANG K N, LI J, LI X Q, et al. Mechanisms and kinetics of oxytetracycline adsorption-desorption onto microplastics[J]. Environmental Chemistry, 2017, 36(12):2531-2540 doi: 10.7524/j.issn.0254-6108.2017032703
[30]BAKIR A, ROWLAND S J, THOMPSON R C. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions[J]. Environmental Pollution, 2014, 185:16-23 doi: 10.1016/j.envpol.2013.10.007
[31]庞敬文, 陈守益, 宋晓梅, 等.聚丙烯对泰乐菌素的吸附特性研究[J].广州化工, 2018, 46(3):59-61 doi: 10.3969/j.issn.1001-9677.2018.03.021
PANG J W, CHEN S Y, SONG X M, et al. Adsorption performance of tylosin to polypropylene[J]. Guangzhou Chemical Industry, 2018, 46(3):59-61 doi: 10.3969/j.issn.1001-9677.2018.03.021
[32]BAKIR A, ROWLAND S J, THOMPSON R C. Transport of persistent organic pollutants by microplastics in estuarine conditions[J]. Estuarine, Coastal and Shelf Science, 2014, 140:14-21 doi: 10.1016/j.ecss.2014.01.004
[33]HU J Q, YANG S Z, GUO L, et al. Microscopic investigation on the adsorption of lubrication oil on microplastics[J]. Journal of Molecular Liquids, 2017, 227:351-355 doi: 10.1016/j.molliq.2016.12.043
[34]CRAWFORD C B, QUINN B. Microplastic collection techniques[M]//Microplastic Pollutants. Amsterdam:Elsevier, 2017:179-202
[35]陈守益.微塑料的老化过程及其对污染物吸附的影响机制[D].淮南: 安徽理工大学, 2019
CHEN S Y. The aging process of microplastics and its influence on the sorption of pollutants[D]. Huainan: Anhui University of Science & Technology, 2019
[36]LIU G Z, ZHU Z L, YANG Y X, et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater[J]. Environmental Pollution, 2019, 246:26-33 doi: 10.1016/j.envpol.2018.11.100
[37]屈沙沙.聚乙烯微珠对三氯生的吸附/解吸行为机制研究[D].北京: 中国疾病预防控制中心, 2018
QU S S. Study on adsorption/desorption behavior of polyethylene microbeads for tricloson[D]. Beijing: Chinese Center for Disease Control and Provention, 2018
[38]ZHAN Z W, WANG J D, PENG J P, et al. Sorption of 3, 3', 4, 4'-tetrachlorobiphenyl by microplastics:a case study of polypropylene[J]. Marine Pollution Bulletin, 2016, 110(1):559-563 doi: 10.1016/j.marpolbul.2016.05.036
[39]SEIDENSTICKER S, ZARFL C, CIRPKA O A, et al. Shift in mass transfer of wastewater contaminants from microplastics in the presence of dissolved substances[J]. Environmental Science & Technology, 2017, 51(21):12254-12263 doi: 10.1021/acs.est.7b02664
[40]RUMMEL C D, JAHNKE A, GOROKHOVA E, et al. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment[J]. Environmental Science & Technology Letters, 2017, 4(7):258-267 doi: 10.1021/acs.estlett.7b00164
[41]XU B L, LIU F, CRYDER Z, et al. Microplastics in the soil environment:Occurrence, risks, interactions and fate-A review[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(21):2175-2222 doi: 10.1080/10643389.2019.1694822
[42]TEUTEN E L, SAQUING J M, KNAPPE D R U, et al. Transport and release of chemicals from plastics to the environment and to wildlife[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1526):2027-2045 doi: 10.1098/rstb.2008.0284
[43]TEUTEN E L, ROWLAND S J, GALLOWAY T S, et al. Potential for plastics to transport hydrophobic contaminants[J]. Environmental Science & Technology, 2007, 41(22):7759-7764
[44]BHAGAT J, NISHIMURA N, SHIMADA Y. Toxicological interactions of microplastics/nanoplastics and environmental contaminants:Current knowledge and future perspectives[J]. Journal of Hazardous Materials, 2021, 405:123913 doi: 10.1016/j.jhazmat.2020.123913
[45]LEE H, SHIM W J, KWON J H. Sorption capacity of plastic debris for hydrophobic organic chemicals[J]. Science of the Total Environment, 2014, 470/471:1545-1552 doi: 10.1016/j.scitotenv.2013.08.023
[46]HüFFER T, HOFMANN T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution[J]. Environmental Pollution, 2016, 214:194-201 doi: 10.1016/j.envpol.2016.04.018
[47]HüFFER T, WENIGER A K, HOFMANN T. Sorption of organic compounds by aged polystyrene microplastic particles[J]. Environmental Pollution, 2018, 236:218-225 doi: 10.1016/j.envpol.2018.01.022
[48]ZHANG X J, ZHENG M G, WANG L, et al. Sorption of three synthetic musks by microplastics[J]. Marine Pollution Bulletin, 2018, 126:606-609 doi: 10.1016/j.marpolbul.2017.09.025
[49]BAKIR A, ROWLAND S J, THOMPSON R C. Competitive sorption of persistent organic pollutants onto microplastics in the marine environment[J]. Marine Pollution Bulletin, 2012, 64(12):2782-2789 doi: 10.1016/j.marpolbul.2012.09.010
[50]GAO F L, LI J X, SUN C J, et al. Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment[J]. Marine Pollution Bulletin, 2019, 144:61-67 doi: 10.1016/j.marpolbul.2019.04.039
[51]ROCHMAN C M, HENTSCHEL B T, TEH S J. Long-term sorption of metals is similar among plastic types:implications for plastic debris in aquatic environments[J]. PLoS One, 2014, 9(1):e85433 DOI: 10.1371/journal.pone.0085433
[52]YU F, YANG C F, ZHU Z L, et al. Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment[J]. Science of the Total Environment, 2019, 694:133643 doi: 10.1016/j.scitotenv.2019.133643
[53]高丰蕾.海洋微塑料的分离方法建立及对重金属吸附特征研究[D].青岛: 国家海洋局第一海洋研究所, 2018
GAO F L. Study on isolation method of microplastics in marine environment and adsorption of heavy metals[D]. Qingdao: First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, 2018
[54]TURNER A, HOLMES L A. Adsorption of trace metals by microplastic pellets in fresh water[J]. Environmental Chemistry, 2015, 12(5):600 doi: 10.1071/EN14143
[55]HOLMES L A, TURNER A, THOMPSON R C. Interactions between trace metals and plastic production pellets under estuarine conditions[J]. Marine Chemistry, 2014, 167:25-32 doi: 10.1016/j.marchem.2014.06.001
[56]MEI W P, CHEN G E, BAO J Q, et al. Interactions between microplastics and organic compounds in aquatic environments:a mini review[J]. Science of the Total Environment, 2020, 736:139472 doi: 10.1016/j.scitotenv.2020.139472
[57]HODSON M E, DUFFUS-HODSON C A, CLARK A, et al. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates[J]. Environmental Science & Technology, 2017, 51(8):4714-4721 doi: 10.1021/acs.est.7b00635
[58]LIU P, ZHAN X, WU X W, et al. Effect of weathering on environmental behavior of microplastics:Properties, sorption and potential risks[J]. Chemosphere, 2020, 242:125193 doi: 10.1016/j.chemosphere.2019.125193
[59]ASHTON K, HOLMES L, TURNER A. Association of metals with plastic production pellets in the marine environment[J]. Marine Pollution Bulletin, 2010, 60(11):2050-2055 doi: 10.1016/j.marpolbul.2010.07.014

相关话题/环境 北京 过程 资源 农业