删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

长江中游稻田种植模式对土壤有机碳及碳库管理指数的影响

本站小编 Free考研考试/2022-01-01

袁嘉欣,
杨滨娟,
胡启良,
唐海鹰,
李淑娟,
黄国勤,
江西农业大学生态科学研究中心 南昌 330045
基金项目: 国家重点研发计划课题2016YFD0300208
国家自然科学基金项目41661070
中国工程院咨询研究课题2017-XZ-28-03

详细信息
作者简介:袁嘉欣, 主要研究方向为农业生态学。E-mail: 1319454104@qq.com
通讯作者:黄国勤, 研究方向为作物栽培、耕作制度、农田生态环境。E-mail: hgqjxes@sina.com
中图分类号:S344.17

计量

文章访问数:112
HTML全文浏览量:16
PDF下载量:34
被引次数:0
出版历程

收稿日期:2020-12-08
录用日期:2021-03-08
刊出日期:2021-07-01

Effects of paddy field cropping patterns on soil organic carbon and carbon pool management index in the middle reaches of the Yangtze River

YUAN Jiaxin,
YANG Binjuan,
HU Qiliang,
TANG Haiying,
LI Shujuan,
HUANG Guoqin,
Ecological Science Research Center of Jiangxi Agricultural University, Nanchang 330045, China
Funds: the National Key Research and Development Program of China2016YFD0300208
the National Natural Science Foundation of China41661070
the Research Project of the Chinese Academy of Engineering2017-XZ-28-03

More Information
Corresponding author:HUANG Guoqin, E-mail: hgqjxes@sina.com


摘要
HTML全文
(1)(5)
参考文献(39)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为探讨稻田种植模式对土壤有机碳库的影响,优化种植制度,以长江中游地区种植面积较广的紫云英-早稻-晚稻种植模式(CRR)为对照,设置油菜-早稻-晚稻(RRR)、马铃薯-早稻-晚稻(PRR)、紫云英-早稻-甘薯||晚大豆(CRI)、油菜-早稻-甘薯||晚大豆(RRI)5种种植模式,通过测定土壤有机碳、活性有机碳及其组分的含量和作物产量,分析其对土壤有机碳、活性有机碳及其组分、碳库管理指数及经济效益的影响。结果表明:晚稻收获后,与CRR处理相比,CRI、RRI、RRR处理的土壤有机碳含量提高12.06%~21.01%(P < 0.05),CRI、RRI、PRR处理的活性有机碳和微生物量碳含量比对照处理分别提高16.80%~20.45%和38.24%~50.00%(P < 0.05),各处理的可溶性有机碳含量提高3.13%~15.64%(P>0.05),CRI、RRI处理能显著促进土壤总有机碳和微生物量碳含量的积累,PRR处理则有利于土壤活性有机碳含量的积累。PRR处理提高了土壤碳库活度和碳库活度指数,RRI、CRI处理提高了土壤碳库指数,且CRI、RRI、PRR处理的土壤碳库管理指数均显著高于对照17.30%~33.49%(P < 0.05)。与对照相比,PRR、CRI处理的经济效益分别提高12.05%和9.86%(P < 0.05)。作物产量与微生物量碳存在极显著正相关关系(P < 0.01),土壤碳库管理指数与活性有机碳相关系数最高,呈极显著正相关(P < 0.01)。综上所述,与对照相比,各种植模式均有利于增加作物产量并可引起土壤有机碳及其组分的变化,其中紫云英-早稻-甘薯||晚大豆和马铃薯-早稻-晚稻模式的综合效果较好,可以在长江中游地区推广应用。
关键词:稻田/
种植模式/
土壤活性有机碳/
碳库管理指数/
经济效益
Abstract:To explore the effects of paddy field planting patterns on soil organic carbon pools and to optimize cropping systems, in this study, we examined five typical paddy field cropping patterns in the middle reaches of the Yangtze River, including Chinese milk vetch-early rice-late rice (CRR, control), rape-early rice-late rice (RRR), potato-early rice-late rice (PRR), Chinese milk vetch-early rice-sweet potato||late soybean (CRI), and rape-early rice-sweet potato||late soybean (RRI). Soil organic carbon, active organic carbon and its components, carbon pool management index, and economic benefits were analyzed by measuring the content of soil organic carbon, the active organic carbon components in the paddy fields, and the crops yields. The results showed that after late rice harvest, compared to CRR, the CRI, RRI, and RRR treatments increased the soil organic carbon content by 12.06%-21.01% (P < 0.05); the CRI, RRI, and PRR treatments increased the active organic carbon content and microbial biomass carbon content by 16.80%-20.45% and 38.24%-50.00% (P < 0.05), respectively; while CRR, RRI, RRR and PRR increased the dissolved organic carbon content by 3.13%-15.64% (P>0.05). The CRI and RRI treatments significantly promoted the accumulation of soil total organic carbon and microbial biomass carbon, while the PRR treatment promoted the accumulation of soil active organic carbon. Compared to CRR, PRR increased the soil carbon pool activity and carbon pool activity index; RRI and CRI increased the soil carbon pool index; and CRI, RRI, and PRR significantly increased the soil carbon pool management index by 17.30%-33.49% (P < 0.05). The economic benefits of PRR and CRI increased by 12.05% and 9.86%, respectively (P < 0.05). There was an extremely significant positive correlation between rice yield and microbial biomass carbon (P < 0.01), and the correlation coefficient between the soil carbon bank management index and active organic carbon was the highest, with a significant positive correlation (P < 0.01). In summary, each cropping pattern is beneficial for increasing crop yield and changing the content of soil organic carbon and its components. Among them, Chinese milk vetch-early rice-sweet potato||late soybean and potato-early rice-late rice have better comprehensive effects, which can be popularized and applied in the middle reaches of the Yangtze River.
Key words:Paddy field/
Cropping patterns/
Soil active organic carbon/
Carbon pool management index/
Economic benefits

HTML全文


图1稻田不同种植模式对土壤总有机碳含量的影响
CRR(CK): 紫云英-早稻-晚稻; CRI: 紫云英-早稻-甘薯||晚大豆; RRR: 油菜-早稻-晚稻; RRI: 油菜-早稻-甘薯||晚大豆; PRR: 马铃薯-早稻-晚稻。不同小写字母表示处理间差异显著(P < 0.05)。
Figure1.Effects of different cropping patterns in paddy fields on total soil organic carbon content
CRR (CK): Chinese milk vetch-early rice-late rice; CRI: Chinese milk vetch-early rice-sweet potato||late soybean; RRR: rape-early rice-late rice; RRI: rape-early rice-sweet potato||late soybean; PRR: potato-early rice-late rice. Different lowercase letters mean significant difference among treatments at P < 0.05 level.


下载: 全尺寸图片幻灯片

表1稻田不同种植模式对土壤活性有机碳组分及碳素有效率的影响
Table1.Effects of different cropping patterns in paddy fields on contents of soil active organic carbon and its' components and carbon efficiency
采样时间
Sampling time
处理
Treatment
活性有机碳
Active organic carbon (g·kg–1)
活性有机碳有效率
Efficiency of active organic carbon (%)
可溶性有机碳
Dissolved organic carbon (g·kg–1)
可溶性有机碳有效率
Efficiency of dissolved organic carbon (%)
微生物量碳
Microbial biomass carbon (g·kg–1)
微生物量碳有效率
Efficiency of microbial biomass carbon (%)
早稻收获后
After the early rice is harvested
CRR(CK)1.78±0.03b10.10±1.21b0.15±0.01c0.86±0.04ab0.30±0.02a1.63±0.32c
CRI2.08±0.23a10.58±0.68b0.19±0.01b1.01±0.22ab0.34±0.04a1.77±0.34ab
RRR2.12±0.22a10.43±1.82b0.23±0.02a1.11±0.02a0.37±0.06a1.61±0.10c
RRI2.25±0.11a10.43±1.88b0.16±0.02bc0.77±0.17b0.39±0.06a1.86±0.36ab
PRR2.36±0.12a14.38±2.56a0.14±0.01c0.87±0.06ab0.37±0.09a2.20±0.06a
晚稻收获后
After the late rice is harvested
CRR(CK)4.94±0.18b29.72±3.5ab0.32±0.01a1.91±0.04a0.34±0.05c2.06±0.39b
CRI5.77±0.13a30.38±4.2ab0.36±0.04a1.88±0.15a0.50±0.02a2.62±0.04ab
RRR4.55±0.27b24.28±2.4b0.33±0.03a1.77±0.21a0.39±0.03bc2.09±0.23b
RRI5.85±0.23a28.87±1.6ab0.37±0.03a1.81±0.18a0.51±0.06a2.34±0.44ab
PRR5.95±0.26a36.61±5.7a0.34±0.02a2.09±0.23a0.47±0.05ab2.85±0.34a
CRR(CK): 紫云英-早稻-晚稻; CRI: 紫云英-早稻-甘薯||晚大豆; RRR: 油菜-早稻-晚稻; RRI: 油菜-早稻-甘薯||晚大豆; PRR: 马铃薯-早稻-晚稻。数据为3个重复的平均值±标准差, 同列不同小写字母表示处理间差异显著(P < 0.05)。CRR(CK): Chinese milk vetch-early rice-late rice; CRI: Chinese milk vetch-early rice-sweet potato||late soybean; RRR: rape-early rice-late rice; RRI: rape-early rice-sweet potato||late soybean; PRR: potato-early rice-late rice. The data are means ± standard deviations. Different lowercase letters in the same column mean significant difference among treatments at P < 0.05 level.


下载: 导出CSV
表2稻田不同种植模式对土壤碳库管理指数的影响
Table2.Effects of different cropping patterns in paddy fields on soil carbon pool management indexes
采样时间
Sampling time
处理
Treatment
稳态碳
Stable carbon (g·kg–1)
碳库指数
Carbon pool index
碳库活度
Activity of carbon pool
碳库活度指数
Carbon pool activity index
碳库管理指数
Carbon pool management index
早稻收获后
After the early rice is harvested
CRR(CK)15.94±1.04bc1.06±0.06b0.11±0.01b0.77±0.06b81.71±1.94c
CRI17.71±0.97ab1.19±0.07a0.12±0.01b0.81±0.08b96.20±11.39bc
RRR18.49±0.71a1.23±0.03a0.12±0.02b0.80±0.11b97.87±11.81b
RRI19.12±0.84a1.28±0.06a0.12±0.00b0.81±0.01b104.24±5.24ab
PRR14.45±1.23c1.01±0.08b0.16±0.01a1.13±0.04a113.48±5.08a
晚稻收获后
After the late rice is harvested
CRR(CK)11.82±0.97bc1.01±0.05b0.44±0.19ab2.90±0.35bc290.67±21.79bc
CRI13.26±1.14ab1.14±0.06a0.44±0.04ab3.02±0.30b343.14±17.59ab
RRR14.22±0.92a1.13±0.05a0.32±0.04b2.22±0.30c249.32±28.03c
RRI14.42±0.41a1.22±0.02a0.41±0.03ab2.80±0.21bc340.95±26.13ab
PRR10.54±1.12c0.99±0.08b0.58±0.10a3.94±0.63a387.90±40.02a
CRR(CK): 紫云英-早稻-晚稻; CRI: 紫云英-早稻-甘薯||晚大豆; RRR: 油菜-早稻-晚稻; RRI: 油菜-早稻-甘薯||晚大豆; PRR: 马铃薯-早稻-晚稻。数据为3个重复的平均值±标准差, 同列不同小写字母表示处理间差异显著(P < 0.05)。CRR (CK): Chinese milk vetch-early rice-late rice; CRI: Chinese milk vetch-early rice-sweet potato||late soybean; RRR: rape-early rice-late rice; RRI: rape-early rice-sweet potato||late soybean; PRR: potato-early rice-late rice. The data are means ± standard deviation. Different lowercase letters in the same column mean significant difference among treatments at P < 0.05 level.


下载: 导出CSV
表3稻田不同种植模式的水稻产量
Table3.Rice yields of different cropping patterns in paddy fields?kg·hm–2
处理
Treatment
早稻产量
Early rice yield
晚稻产量
Late rice yield
两季总产量
Total yield
CRR(CK)7559.60±243.09ab10 176.67±141.60b17 736.26±362.95c
CRI6892.93±240.25bc13 752.37±465.95a20 645.30±342.01a
RRR6512.12±155.71bc10 650.33±140.94b17 162.45±383.28c
RRI5931.31±624.74c12 957.64±468.63a18 888.95±381.63b
PRR8086.87±187.3a10 763.44±415.51b18 850.31±421.75b
CRR(CK): 紫云英-早稻-晚稻; CRI: 紫云英-早稻-甘薯||晚大豆; RRR: 油菜-早稻-晚稻; RRI: 油菜-早稻-甘薯||晚大豆; PRR: 马铃薯-早稻-晚稻。处理CRI、RRI的晚稻产量由旱作物产量根据当季作物价格比折算成晚稻产量; 数据为3个重复的平均值±标准差, 同列不同小写字母表示处理间差异显著(P < 0.05)。CRR(CK): Chinese milk vetch-early rice-late rice; CRI: Chinese milk vetch-early rice-sweet potato||late soybean; RRR: rape-early rice-late rice; RRI: rape-early rice-sweet potato||late soybean; PRR: potato-early rice-late rice. The late rice yield of CRI and RRI treatments were converted from the dry crop yield into the late rice yield based on the crop price ratio of the current season. The data are means ± standard deviation. Different lowercase letters in the same column mean significant difference among treatments at P < 0.05 level.


下载: 导出CSV
表4稻田不同种植模式对经济效益的影响
Table4.Effects of different cropping patterns in paddy fields on economic incomes?¥?hm–2
处理
Treatment
产量收入
Grain income
农业投入Agricultural input经济效益
Economic income
土地租金
Land rent
种子
Seed
肥料
Fertilizer
农药
Pesticide
耕作
Tillage
CRR(CK)46 114.28c8995.5024601768.80947.537496.2524 446.20±1634.48b
CRI53 677.79a8995.5073783209.40710.647496.2526 857.70±1540.20a
RRR44 622.38c8995.5022501768.80947.537496.2523 164.30±825.37b
RRI49 111.28b8995.5071683209.40710.647496.2522 501.19±1718.62b
PRR49 010.81b8995.5024101768.80947.537496.2527 392.73±1899.28a
CRR(CK): 紫云英-早稻-晚稻; CRI: 紫云英-早稻-甘薯||晚大豆; RRR: 油菜-早稻-晚稻; RRI: 油菜-早稻-甘薯||晚大豆; PRR: 马铃薯-早稻-晚稻。处理CRI、RRI的晚稻产量由旱地作物产量根据当季作物价格比折算成晚稻产量; 2019年晚稻谷子收购价为2.6元·kg–1, 晚大豆价格为4.75元·kg–1, 甘薯价格为1.35元·kg–1。数据为3个重复的平均值±标准差, 同列不同小写字母表示处理间差异显著(P < 0.05)。CRR(CK): Chinese milk vetch-early rice-late rice; CRI: Chinese milk vetch-early rice-sweet potato||late soybean; RRR: rape-early rice-late rice; RRI: rape-early rice-sweet potato||late soybean; PRR: potato-early rice-late rice. The late rice yield of CRI and RRI treatments were converted from the dryland crop yield into the late rice yield based on the crop price ratio of the current season. The purchase price of late rice in 2019 was 2.6 ¥·kg–1, late soybean price was 4.75 ¥·kg–1 and sweet potato price was 1.35 ¥·kg–1. The data are means ± standard deviation. Different lowercase letters in the same column mean significant difference among treatments at P < 0.05 level.


下载: 导出CSV
表5稻田土壤活性有机碳、碳库管理指数与产量的相关性
Table5.Correlations between soil active organic carbon, carbon pool management index and yield in rice field
总有机碳
Total organic carbon
活性有机碳
Active organic carbon
可溶性有机碳
Dissolved organic carbon
微生物量碳
Microbial biomass carbon
活性有机碳有效率
Efficiency of active organic carbon
可溶性有机碳有效率
Efficiency of dissolved organic carbon
微生物量碳有效率
Efficiency of microbial biomass carbon
土壤碳库管理指数
Carbon pool management index
活性有机碳
Active organic carbon
0.460
可溶性有机碳
Dissolved organic carbon
0.679**0.412
微生物量碳
Microbial biomass carbon
0.576*0.655**0.474
活性有机碳有效率
Efficiency of active organic carbon
–0.4750.562*–0.1750.143
可溶性有机碳有效率
Efficiency of dissolved organic carbon
–0.544*0.4620.189–0.2430.528*
微生物量碳有效率
Efficiency of microbial biomass carbon
–0.3040.601*–0.0820.751**0.659**0.268
土壤碳库管理指数
Carbon pool management index
0.1740.957**0.2700.551*0.780**0.546*0.667**
产量Yield0.747**0.576*0.2960.685**–0.130–0.684**0.0610.370
*、**分别表示显著(P < 0.05)和极显著(P < 0.01)相关。* and ** mean significant correlation at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV

参考文献(39)
[1]LAR R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304: 1623-1627 doi: 10.1126/science.1097396
[2]LAL R. Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration[J]. Food Security, 2010, 2(2): 169-177 doi: 10.1007/s12571-010-0060-9
[3]PAUSTIAN K, LEHMANN J, OGLE S, et al. Climate-smart soils[J]. Nature, 2016, 532(7597): 49-57 doi: 10.1038/nature17174
[4]李硕, 李有兵, 王淑娟, 等. 关中平原作物秸秆不同还田方式对土壤有机碳和碳库管理指数的影响[J]. 应用生态学报, 2015, 26(4): 1215-1222 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201504034.htm
LI S, LI Y B, WANG S J, et al. Effects of different straw-returning regimes on soil organic carbon and carbon pool management index in Guanzhong Plain, Northwest China[J]. Chinese Journal of Applied Ecology, 2015, 26(4): 1215-1222 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201504034.htm
[5]HAYNES R J. Labile organic matter fractions as central components of the quality of agricultural soils: an overview[J]. 2005, 85: 221-268
[6]李东, 高明. 土壤有机碳循环研究进展[J]. 江西农业学报, 2008, 20(2): 60-63 doi: 10.3969/j.issn.1001-8581.2008.02.023
LI D, GAO M. Research progress of soil organic carbon recycle[J]. Acta Agriculturae Jiangxi, 2008, 20(2): 60-63 doi: 10.3969/j.issn.1001-8581.2008.02.023
[7]周莉, 李保国, 周广胜. 土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展, 2005, 20(1): 99-105 https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200501015.htm
ZHOU L, LI B G, ZHOU G S. Advances in controlling factors of soil organic carbon[J]. Advance in Earth Sciences, 2005, 20(1): 99-105 https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200501015.htm
[8]傅华, 陈亚明, 王彦荣, 等. 阿拉善主要草地类型土壤有机碳特征及其影响因素[J]. 生态学报, 2004, 24(3): 469-476 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200403011.htm
FU H, CHEN Y M, WANG Y R, et al. Organic carbon content in major grassland types in Alex, Inner Mongolia[J]. Acta Ecologica Sinica, 2004, 24(3): 469-476 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200403011.htm
[9]王丹英, 彭建, 徐春梅, 等. 油菜作绿肥还田的培肥效应及对水稻生长的影响[J]. 中国水稻科学, 2012, 26(1): 85-91 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201201013.htm
WANG D Y, PENG J, XU C M, et al. Effects of rape straw manuring on soil fertility and rice growth[J]. Chinese Journal of Rice Science, 2012, 26(1): 85-91 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201201013.htm
[10]唐海明, 程凯凯, 肖小平, 等. 不同冬季覆盖作物对双季稻田土壤有机碳的影响[J]. 应用生态学报, 2017, 28(2): 465-473 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201702013.htm
TANG H M, CHENG K K, XIAO X P, et al. Effects of different winter cover crops on soil organic carbon in a double cropping rice paddy field[J]. Chinese Journal of Applied Ecology, 2017, 28(2): 465-473 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201702013.htm
[11]陈窈君, 张迪, 胡学玉, 等. 生物炭对农田土壤-植物系统有机碳储量的影响[J]. 环境科学与技术, 2017, 40(11): 8-16 https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201711002.htm
CHEN Y J, ZHANG D, HU X Y, et al. Effects of biochar on organic carbon storage in farmland soil-plant system[J]. Environmental Science & Technology, 2017, 40(11): 8-16 https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201711002.htm
[12]WRIGHT A L, HONS F M. Soil carbon and nitrogen storage in aggregates from different tillage and crop regimes[J]. Soil Science Society of America Journal, 2005, 69(1): 141-147 doi: 10.2136/sssaj2005.0141a
[13]郭金瑞, 宋振伟, 彭宪现, 等. 东北黑土区长期不同种植模式下土壤碳氮特征评价[J]. 农业工程学报, 2015, 31(6): 178-185 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201506024.htm
GUO J R, SONG Z W, PENG X X, et al. Evaluation in soil carbon and nitrogen characteristics under long-term cropping regimes in black soil region of Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(6): 178-185 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201506024.htm
[14]吴鹏博, 李立军, 张艳丽, 等. 轮作结合施肥对土壤有机碳及其组分和土壤养分的影响[J]. 土壤通报, 2020, 51(2): 416-422 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202002020.htm
WU P B, LI L J, ZHANG Y L, et al. Effects of rotation and fertilization on soil organic carbon and its fractions and soil nutrients[J]. Chinese Journal of Soil Science, 2020, 51(2): 416-422 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB202002020.htm
[15]肖小平, 唐海明, 聂泽民, 等. 冬季覆盖作物残茬还田对双季稻田土壤有机碳和碳库管理指数的影响[J]. 中国生态农业学报, 2013, 21(10): 1202-1208 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201310006.htm
XIAO X P, TANG H M, NIE Z M, et al. Effects of winter cover crop straw recycling on soil organic carbon and soil carbon pool management index in paddy fields[J]. Chinese Journal of Eco-Agriculture, 2013, 21(10): 1202-1208 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201310006.htm
[16]龙攀, 苏姗, 黄亚男, 等. 双季稻田冬季种植模式对土壤有机碳和碳库管理指数的影响[J]. 应用生态学报, 2019, 30(4): 1135-1142 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201904007.htm
LONG P, SU S, HUANG Y N, et al. Effects of winter cropping mode on soil organic carbon and carbon management index of double rice paddy[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1135-1142 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201904007.htm
[17]杨滨娟, 黄国勤, 兰延, 等. 施氮和冬种绿肥对土壤活性有机碳及碳库管理指数的影响[J]. 应用生态学报, 2014, 25(10): 2907-2913 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201410020.htm
YANG B J, HUANG G Q, LAN Y, et al. Effects of nitrogen application and winter green manure on soil active organic carbon and the soil carbon pool management index[J]. Chinese Journal of Applied Ecology, 2014, 25(10): 2907-2913 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201410020.htm
[18]鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000
LU R K. Methods for Agricultural Chemical Analysis of Soils[M]. Beijing: China Agricultural Science and Technology Press, 2000
[19]LEFROY R D B, BLAIR G J, STRONG W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil, 1993, 155/156(1): 399-402 doi: 10.1007/BF00025067
[20]吴金水. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社, 2006
WU J S. Soil Microbial Biomass Determination Method and Its Application[M]. Beijing: Meteorological Press, 2006
[21]HAYNES R J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand[J]. Soil Biology and Biochemistry, 2000, 32(2): 211-219
[22]HOUGHTON R A, HACKLER J L, LAWRENCE K T. The US carbon budget: contributions from land-use change[J]. Science, 1999, 285(5427): 574-578 http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=2064985&site=ehost-live
[23]ZENG Y H, WU J F, HE H, et al. Soil carbon pool management index under different straw retention regimes[J]. Agricultural Science & Technology, 2012, 13(4): 818-822 http://www.cabdirect.org/abstracts/20123331216.html
[24]吴玉红, 郝兴顺, 田霄鸿, 等. 秸秆还田对汉中盆地稻田土壤有机碳组分、碳储量及水稻产量的影响[J]. 水土保持学报, 2017, 31(4): 325-331 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201704051.htm
WU Y H, HAO X S, TIAN X H, et al. Effect of straw returning on the contents of soil organic carbon fractions, carbon storage and crop yields of paddy field in Hanzhong basin[J]. Journal of Soil and Water Conservation, 2017, 31(4): 325-331 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201704051.htm
[25]杨滨娟, 孙丹平, 张颖睿, 等. 不同水旱复种轮作方式对稻田土壤有机碳及其组分的影响[J]. 应用生态学报, 2019, 30(2): 456-462 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201902013.htm
YANG B J, SUN D P, ZHANG Y R, et al. Effects of different paddy-upland multiple cropping rotation systems on soil organic carbon and its fractions in paddy field[J]. Chinese Journal of Applied Ecology, 2019, 30(2): 456-462 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201902013.htm
[26]曹培, 朱杰, 朱波, 等. 稻田水旱轮作系统对土壤有机碳及产量的短期影响[J]. 安徽农业科学, 2019, 47(4): 81-85, 101 https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201904022.htm
CAO P, ZHU J, ZHU B, et al. Short-term effects of paddy-upland rotation systems on soil organic carbon and yield[J]. Journal of Anhui Agricultural Sciences, 2019, 47(4): 81-85, 101 https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201904022.htm
[27]彭华, 纪雄辉, 吴家梅, 等. 不同稻草还田模式下双季稻土壤有机碳及碳库管理指数研究[J]. 生态环境学报, 2016, 25(4): 563-568 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201604003.htm
PENG H, JI X H, WU J M, et al. Organic carbon and carbon pool management index in soil under different rice straw returning way in double-croping paddy fields[J]. Ecology and Environmental Sciences, 2016, 25(4): 563-568 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201604003.htm
[28]马艳芹, 黄国勤. 紫云英还田配施氮肥对稻田土壤碳库的影响[J]. 生态学杂志, 2019, 38(1): 129-135 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201901021.htm
MA Y Q, HUANG G Q. Effects of combined application of Chinese milk vetch (Astragalus sinicus L.) and nitrogen fertilizer on paddy soil carbon pool[J]. Chinese Journal of Ecology, 2019, 38(1): 129-135 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201901021.htm
[29]HAO Y, LAL R, OWENS L B, et al. Effect of cropland management and slope position on soil organic carbon pool at the North Appalachian Experimental Watersheds[J]. Soil and Tillage Research, 2002, 68(2): 133-142
[30]王丽宏, 胡跃高, 杨光立, 等. 农田冬季覆盖作物对土壤有机碳含量和主作物产量的影响[J]. 干旱地区农业研究, 2006, 24(6): 64-67 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ200606014.htm
WANG L H, HU Y G, YANG G L, et al. The effect of winter cover crop on soil organic carbon and crop yield[J]. Agricultural Research in the Arid Areas, 2006, 24(6): 64-67 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ200606014.htm
[31]ANDERSON T H, DOMSCH K H. Ratios of microbial biomass carbon to total organic carbon in arable soils[J]. Soil Biology and Biochemistry, 1989, 21(4): 471-479
[32]强胜. 植物学[M]. 北京: 高等教育出版社, 2006
QIANG S. Phytology[M]. Beijing: Higher Education Press, 2006
[33]李清华, 王飞, 林诚, 等. 水旱轮作对冷浸田土壤碳、氮、磷养分活化的影响[J]. 水土保持学报, 2015, 29(6): 113-117 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201506021.htm
LI Q H, WANG F, LIN C, et al. Effects of paddy-upland rotation on the nutrient activation of soil carbon, nitrogen and phosphorus in cold waterlogged paddy field[J]. Journal of Soil and Water Conservation, 2015, 29(6): 113-117 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201506021.htm
[34]曹培, 徐莹, 朱杰, 等. 不同种植模式对稻田土壤活性有机碳组分及产量的短期影响[J]. 生态学杂志, 2019, 38(9): 2788-2798 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201909026.htm
CAO P, XU Y, ZHU J, et al. Short-term effects of different cropping patterns on soil labile organic carbon fractions and yields of paddy fields[J]. Chinese Journal of Ecology, 2019, 38(9): 2788-2798 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201909026.htm
[35]朱波, 胡跃高, 曾昭海, 等. 双季稻区冬种覆盖作物对土壤微生物量的影响[J]. 生态环境, 2008, 17(5): 2074-2077 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200805070.htm
ZHU B, HU Y G, ZENG Z H, et al. Cover crop effects on the soil microbial biomass in double-rice cropping system[J]. Ecology and Environment, 2008, 17(5): 2074-2077 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200805070.htm
[36]CHAUDHARY S, DHERI G S, BRAR B S. Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat cropping system[J]. Soil and Tillage Research, 2017, 166: 59-66
[37]王淑彬, 王礼献, 杨文亭, 等. 南方不同"冬种+双季稻"种植模式对土壤有机碳和作物产量的影响[J]. 生态学报, 2018, 38(18): 6603-6610 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201818024.htm
WANG S B, WANG L X, YANG W T, et al. Effects of multiple winter cropping on soil organic carbon and double-cropping rice yield in the south of China[J]. Acta Ecologica Sinica, 2018, 38(18): 6603-6610 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201818024.htm
[38]张鹏, 钟川, 周泉, 等. 不同冬种模式对稻田土壤碳库管理指数的影响[J]. 中国生态农业学报(中英文), 2019, 27(8): 1163-1171 doi: 10.13930/j.cnki.cjea.180995
ZHANG P, ZHONG C, ZHOU Q, et al. Effects of different winter planting patterns on carbon management index of paddy field[J]. Chinese Journal of Eco-Agriculture, 2019, 27(8): 1163-1171 doi: 10.13930/j.cnki.cjea.180995
[39]徐明岗, 于荣, 孙小凤, 等. 长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J]. 植物营养与肥料学报, 2006, 12(4): 459-465 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF200604000.htm
XU M G, YU R, SUN X F, et al. Effects of long-term fertilization on labile organic matter and carbon management index (CMI) of the typical soils of China[J]. Plant Nutrition and Fertilizer Science, 2006, 12(4): 459-465 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF200604000.htm

相关话题/土壤 管理 作物 微生物 生态