删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

土壤含水量和密度对棉苗花芽分化的调控效应及其生理学机制

本站小编 Free考研考试/2022-01-01

秘雅迪1,,
李慧1,
冯海平1,
周子岳1,
刘连涛1,
张永江1,
白志英1, 2,
孙红春1,,
1.河北农业大学农学院/省部共建华北作物改良与调控国家重点实验室/河北省作物生长调控重点实验室 保定 071001
2.河北农业大学生命科学学院 保定 071001
基金项目: 河北省农业技术现代体系HBCT2018040201
河北省农业科技成果转化资金项目20826415D
河北省重点研发项目20326409D
国家自然科学基金项目31871569
河北农业大学大学生创新创业训练计划项目s202010086043

详细信息
作者简介:秘雅迪, 主要从事棉花栽培生理生态研究。E-mail: 1422972150@qq.com
通讯作者:孙红春, 主要从事棉花栽培生理生态研究。E-mail: sunhongchun@126.com
中图分类号:S56

计量

文章访问数:118
HTML全文浏览量:38
PDF下载量:19
被引次数:0
出版历程

收稿日期:2020-10-12
录用日期:2021-03-08
刊出日期:2021-07-01

Regulation and physiological mechanisms of flower bud differentiation in cotton seedlings under different soil water contents and planting densities

MI Yadi1,,
LI Hui1,
FENG Haiping1,
ZHOU Ziyue1,
LIU Liantao1,
ZHANG Yongjiang1,
BAI Zhiying1, 2,
SUN Hongchun1,,
1. College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding 071001, China
2. College of Life Science, Hebei Agricultural University, Baoding 071001, China
Funds: the Modern System of Agricultural Technology of Hebei ProvinceHBCT2018040201
the Agricultural Science and Technology Achievement Transformation Fund Project of Hebei Province20826415D
the Key Research and Development Project of Hebei Province20326409D
the National Natural Science Foundation of China31871569
the Innovation and Entrepreneurship Training Program for College Students in Hebei Provinces202010086043

More Information
Corresponding author:SUN Hongchun, E-mail: sunhongchun@126.com


摘要
HTML全文
(4)(4)
参考文献(35)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为探明土壤含水量和密度对棉苗花芽分化的调控效应及其生理学机制,于2019年在河北农业大学清苑试验站进行大田试验,以‘农大601’为材料,采用二因素裂区设计方法,主区为水分处理[充分灌溉(CK)和干旱(D)],副区为密度处理(6万株·hm-2、9万株·hm-2和12万株·hm-2),共6个处理,研究土壤含水量和密度对棉花花芽分化起始及进程的影响。结果表明:1)微观结构观察发现,干旱会加快棉花茎尖生长点的分化速度;高密度下,茎尖生长点横纵比变小,会减缓分化速度;同一密度处理,干旱下棉花始果枝节位有所降低;而同一水分处理下,增加密度棉花始果枝节位显著提高,两因素互作效应显著。2)干旱和密度处理对棉花茎尖生长点的可溶性蛋白质、可溶性糖及内源激素含量产生显著影响(P < 0.05)。2叶期时,干旱条件下,低密度处理可溶性蛋白质、可溶性糖和内源激素GA3含量较高,ZR含量较低,随着密度的增加,IAA/ABA、ZR/ABA和(IAA+ZR+GA3)/ABA比值呈增加趋势;随着花芽分化进行,各处理可溶性蛋白质和可溶性糖含量差异不显著,但高密度处理IAA/ABA、ZR/ABA和(IAA+ZR+GA3)/ABA比值显著低于其他处理,GA3/ABA比值高于其他处理。3)对调控花芽分化各指标的主成分分析结果表明,棉花2~3叶期时,茎尖生长点可溶性糖含量和内源激素ZR含量对花芽分化起始调控效应影响最大。因此,干旱条件下,6万株·hm-2处理棉花茎尖生长点分化速度较快,营养物质与内源激素GA3含量较高,ZR含量较低,有利于棉花花芽分化;而12万株·hm-2处理棉花茎尖生长点横纵比小,内源激素GA3/ABA比值高,减缓了花芽分化。研究结果为棉苗花芽分化的调控提供了理论依据。
关键词:棉花/
花芽分化期/
土壤含水量/
密度/
可溶性蛋白质/
可溶性糖/
内源激素
Abstract:Improving the characteristics of cotton flower bud differentiation is important for coordinating the relationship between vegetative growth and reproductive growth in cotton plants, building a good cotton population structure, and increasing yield. To explore the regulatory effects and physiological mechanisms of the water supply and planting densities on cotton seedling flower bud differentiation, this study employed two split-plot designed experiments in 2019 on the Qingyuan Experimental Plot of Hebei Agricultural University. The main plot had two water treatments[full irrigation (CK) and drought (D)], and the sub-plot contained three density treatments[6×104 plants·hm-2 (low density), 9×104 plants·hm-2(medium density), and 12×104 plants·hm-2 (high density)]. By using 'Nongda 601' as the experiment material, the effects of different water supplies and planting densities on floral bud differentiation stage and progression, and the related physiological indexes (hormone, soluble sugar, and soluble protein contents) of cotton seedlings were studied. Before cotton sowing, different amounts of soil moisture were set: the control treatment was 900 m3·hm-2, and the drought treatment was 450 m3·hm-2. The results of microstructure showed that: 1) The differentiation speed of cotton shoot apical meristem accelerated under drought conditions. Under high-density conditions, the aspect ratio of cotton shoot apical meristem decreased, which slowed the differentiation rate. Under the same planting density, the position of the first fruit branch lowered down, but under the same water treatment, the position of the first fruit branch significantly raised with increased planting density (P < 0.05). Therefore, the interaction effect of the two factors is significant. 2) The drought and density treatments significantly impacted the soluble protein, soluble sugar, and endogenous hormone contents of the cotton shoot apical meristem. At the 2-leaf stage, the soluble protein and soluble sugar contents of the low-density treatment were significantly higher than those of the other two treatments, and the contents of endogenous hormone gibberellin (GA3)was higher. The cytokinin (ZR) content was also lower. The ratios between endogenous hormones of indole-3-acetic acid/abscisic acid (IAA/ABA), ZR/ABA, and (IAA+ZR+GA3)/ABA increased with increasing plant density. With flower bud differentiation, there was no significant difference in the contents of soluble protein and soluble sugar among the treatments. However, the ratios of IAA/ABA, ZR/ABA, and (IAA+ZR+GA3)/ABA in the high-density treatment were significantly lower than those in other treatments (P < 0.05). The GA3/ABA ratio was higher than that in other treatments. 3) Principal component analysis of the indexes of flower bud differentiation showed that the contents of soluble sugar and ZR at the shoot apical meristem had the greatest influence on initial flower bud differentiation at the 2-leaf and 3-leaf stages. Therefore, under drought conditions, the shoot apical meristem of cotton at a density of 6×104 plants·hm-2 differentiated faster, the nutrient substance and GA3 content were higher, and the ZR content was lower, all of which was conducive to the initiation of cotton flower bud differentiation. However, the 12×104 plants·hm-2 treatment reduced the aspect ratio of the shoot apical meristem, increased the GA3/ABA ratio, and slowed flower bud differentiation. The results provide a theoretical basis for the regulation of flower bud differentiation in cotton.
Key words:Cotton/
Flower bud differentiation stage/
Soil moisture/
Planting density/
Soluble protein/
Soluble sugar/
Endogenous hormones

HTML全文


图1不同土壤含水量及种植密度处理下棉花2叶期和3叶期茎尖生长点的微观结构观察
CK: 充分灌溉; D: 干旱; 数字6、9和12表示密度为6万株·hm–2、9万株·hm–2和12万株·hm–2
Figure1.Microstructure of cotton shoot apical meristem at the two- and three-leaf stages under different soil water content and planting density treatments
CK: full irrigation; D: drought; 6, 9 and 12 mean planting densities of 6×104 plants·hm–2, 9×104 plants·hm–2 and 12×104 plants·hm–2, respectively.


下载: 全尺寸图片幻灯片


图2不同土壤含水量及种植密度处理对棉花茎尖生长点可溶性蛋白质(A)和可溶性糖(B)含量的影响
CK: 充分灌溉; D: 干旱; 数字6、9和12表示密度为6万株·hm–2、9万株·hm–2和12万株·hm–2。不同小写字母表示同一时期不同处理间差异显著(P < 0.05)。
Figure2.Soluble protein (A) and soluble sugar (B) contents in cotton shoot apical meristem at two- and three-leaf stages under different soil water content and planting density treatments
CK: full irrigation; D: drought; 6, 9 and 12 mean planting densities of 6×104 plants·hm–2, 9×104 plants·hm–2 and 12×104 plants·hm–2, respectively. Different lowercase letters indicate significant differences at P < 0.05 level among treatments at the same leaf stage.


下载: 全尺寸图片幻灯片


图3不同土壤含水量及种植密度处理下棉花茎尖生长点内源激素含量的变化
CK: 充分灌溉; D: 干旱; 数字6、9和12表示密度为6万株·hm–2、9万株·hm–2和12万株·hm–2。不同小写字母表示同一时期不同处理间差异显著(P < 0.05)。
Figure3.Endogenous hormones contents in cotton shoot apical meristem at two- and three-leaf stages under different soil water content and planting density treatments
CK: full irrigation; D: drought; 6, 9 and 12 mean planting densities of 6×104 plants·hm–2, 9×104 plants·hm–2 and 12×104 plants·hm–2, respectively. Different lowercase letters indicate significant differences at P < 0.05 level among treatments at the same leaf stage.


下载: 全尺寸图片幻灯片


图4不同土壤含水量及种植密度处理下棉花茎尖生长点内源激素含量比例的变化
CK: 充分灌溉; D: 干旱; 数字6、9和12表示密度为6万株·hm–2、9万株·hm–2和12万株·hm–2。不同小写字母表示同一时期不同处理间差异显著(P < 0.05)。
Figure4.Ratios of endogenous hormones contents in cotton shoot apical meristem at two- and three-leaf stage under different soil water content and planting density treatments
CK: full irrigation; D: drought; 6, 9 and 12 mean planting densities of 6×104 plants·hm–2, 9×104 plants·hm–2 and 12×104 plants·hm–2, respectively. Different lowercase letters indicate significant differences at P < 0.05 level among treatments at the same leaf stage.


下载: 全尺寸图片幻灯片

表1不同水分处理棉花2叶期和6叶期不同土层田间土壤相对含水量
Table1.Relative water contents (percentage of field capacity) of different soil layers at 2-leaf stage and 6-leaf stage of cotton under different water treatments
播种后天数
Days after sowing (d)
时期
Stage
处理
Treatment
0~20 cm (%)20~40 cm (%)
262叶期
Two-leaf stage
CK6865
D5457
416叶期
Six-leaf stage
CK5560
D4548
CK: 充分灌溉; D: 干旱。CK: full irrigation; D: drought.


下载: 导出CSV
表2不同土壤含水量及种植密度处理对棉花茎尖生长点横纵比的影响
Table2.Effect of different soil water content and planting density treatments on the aspect ratio of cotton shoot apical meristem
时期StageCK–6CK–9CK–12D–6D–9D–12
2叶期Two-leaf stage2.64±0.11a2.45±0.06a2.23±0.04b2.56±0.10a2.44±0.12b2.16±0.09b
3叶期Three-leaf stage2.77±0.29a2.60±0.07a2.19±0.15ab2.72±0.08a2.54±0.06ab1.87±0.67b
CK: 充分灌溉; D: 干旱; 数字6、9和12表示密度为6万株·hm–2、9万株·hm–2和12万株·hm–2。不同小写字母不同处理间差异显著(P < 0.05)。CK: full irrigation; D: drought; 6, 9 and 12 mean planting densities of 6×104 plants·hm–2, 9×104 plants·hm–2 and 12×104 plants·hm–2, respectively. Different lowercase letters indicate significant differences among treatments at P < 0.05 level.


下载: 导出CSV
表3不同土壤含水量及种植密度处理对棉花茎尖生长点分化速度的影响
Table3.Effect of different soil water content and planting density treatments on the differentiation process of cotton shoot apical meristem
处理
Treatment
现蕾节位
Budding nodes
始果枝节高度
First fruiting branch height (cm)
生长速度Speed of growth
(node.d–1)(cm.d–1)
CK–66.11±0.19bc22.78±0.88b0.22±0.01bc0.81±0.03b
CK–96.50±0.17ab26.56±0.82a0.23±0.01ab0.95±0.03a
CK–126.97±0.29a27.11±0.39a0.24±0.01a0.93±0.01a
D–65.39±0.10d18.44±0.92d0.18±0.00d0.62±0.03c
D–95.78±0.19cd20.37±1.36c0.19±0.01d0.66±0.04c
D–126.53±0.24ab19.72±0.05cd0.20±0.01c0.62±0.00c
种植密度Planting density*******
土壤水分Soil water********
种植密度×土壤水分Planting density×soil waterns*ns*
CK: 充分灌溉; D: 干旱; 数字6、9和12表示密度为6万株·hm–2、9万株·hm–2和12万株·hm–2。不同小写字母表示不同处理间差异显著(P < 0.05)。*表示在P < 0.05水平影响显著; **表示在P < 0.01水平影响显著; ns表示影响不显著。CK: full irrigation; D: drought; 6, 9 and 12 mean planting densities of 6×104 plants·hm–2, 9×104 plants·hm–2 and 12×104 plants·hm–2, respectively. Different lowercase letters indicate significant differences at P < 0.05 level. *: significant influence at P < 0.05 level; **: significant influence at P < 0.01 level; ns: no significant influence.


下载: 导出CSV
表4不同时期棉花茎尖生长点可溶性糖、蛋白质及内源激素含量的主成分分析得分系数矩阵
Table4.Principal component analysis score coefficient matrix of soluble sugar, protein and endogenous hormones contents in cotton shoot apical meristem at two- and three-leaf stages
时期
Stage
主成分
Principal component
可溶性蛋白质
Soluble protein
可溶性糖
Soluble sugar
IAAZRGA3ABAIAA/ABAZR/ABAGA3/ABA(IAA+ZR +GA3)/ABA
2叶期
2-leaf stage
1–0.137–0.060–0.0240.119–0.104–0.1320.1340.131–0.1300.130
20.147–0.1600.4110.1990.251–0.0900.1270.1180.0630.133
30.1100.454–0.132–0.2040.226–0.2300.1890.2100.2560.216
3叶期
3-leaf stage
10.126–0.0040.0850.0530.1570.160–0.114–0.1580.150–0.133
20.219–0.2410.304–0.041–0.017–0.0560.2800.0600.0030.225
30.1150.4790.2350.4990.183–0.0330.1580.129–0.0500.163


下载: 导出CSV

参考文献(35)
[1]喻树迅. 我国棉花生产现状与发展趋势[J]. 中国工程科学, 2013, 15(4): 9-13 doi: 10.3969/j.issn.1009-1742.2013.04.004
YU S X. Present situation and development trend of cotton production in China[J]. Engineering Sciences, 2013, 15(4): 9-13 doi: 10.3969/j.issn.1009-1742.2013.04.004
[2]董建军, 代建龙, 李霞, 等. 黄河流域棉花轻简化栽培技术评述[J]. 中国农业科学, 2017, 50(22): 4290-4298 doi: 10.3864/j.issn.0578-1752.2017.22.005
DONG J J, DAI J L, LI X, et al. Review of light and simplified cotton cultivation technology in the Yellow River valley[J]. Scientia Agricultura Sinica, 2017, 50(22): 4290-4298 doi: 10.3864/j.issn.0578-1752.2017.22.005
[3]牛玉萍, 陈宗奎, 杨林川, 等. 干旱区滴灌模式和种植密度对棉花生长和产量性能的影响[J]. 作物学报, 2016, 42(10): 1506-1515 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201610016.htm
NIU Y P, CHEN Z K, YANG L C, et al. Effect of drip irrigation pattern and planting density on growth and yield performance of cotton in arid area[J]. Acta Agronomica Sinica, 2016, 42(10): 1506-1515 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201610016.htm
[4]王燕, 王树林, 张谦, 等. 机采棉主要农艺性状与密度相关性分析[J]. 作物杂志, 2019, (6): 66-70 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ201906011.htm
WANG Y, WANG S L, ZHANG Q, et al. Correlation analysis between main agronomic traits and density in mechanical harvest cotton[J]. Crops, 2019, (6): 66-70 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ201906011.htm
[5]罗丹, 马晓蕾, 牛静, 等. 棉花花芽分化及其影响因素研究进展[J]. 中国棉花, 2020, 47(1): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-ZMZZ202001002.htm
LUO D, MA X L, NIU J, et al. Advances in cotton floral bud differentiation and its influencing factors[J]. China Cotton, 2020, 47(1): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-ZMZZ202001002.htm
[6]董合忠, 李振怀, 罗振, 等. 密度和留叶枝对棉株产量的空间分布和熟相的影响[J]. 中国生态农业学报, 2010, 18(4): 792-798 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201004026.htm
DONG H Z, LI Z H, LUO Z, et al. Effect of plant density and vegetative branch retention on within-plant yield distribution and maturity performance of cotton[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 792-798 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201004026.htm
[7]JUNG C, MüLLER A E. Flowering time control and applications in plant breeding[J]. Trends in Plant Science, 2009, 14(10): 563-573 doi: 10.1016/j.tplants.2009.07.005
[8]LI T, ZHANG Y J, DAI J L, et al. High plant density inhibits vegetative branching in cotton by altering hormone contents and photosynthetic production[J]. Field Crops Research, 2019, 230: 121-131 doi: 10.1016/j.fcr.2018.10.016
[9]支晓宇, 韩迎春, 王国平, 等. 不同密度下棉花群体光辐射空间分布及生物量和纤维品质的变化[J]. 棉花学报, 2017, 29(4): 365-373 https://www.cnki.com.cn/Article/CJFDTOTAL-MHXB201704007.htm
ZHI X Y, HAN Y C, WANG G P, et al. Changes to the PAR spatial distribution, biomass, and fiber quality in response to plant densities[J]. Cotton Science, 2017, 29(4): 365-373 https://www.cnki.com.cn/Article/CJFDTOTAL-MHXB201704007.htm
[10]WEN Y, ROWLAND D, PICCINNI G, et al. Lint yield, lint quality and economic of cotton production under traditional and regulated deficit irrigation schemes in Southwest Texas[J]. Cotton Science, 2013, 17(1): 10-22 http://www.researchgate.net/publication/235794073_Lint_yield_lint_quality_and_economic_returns_of_cotton_production_under_traditional_and_regulated_deficit_irrigation_schemes_in_Southwest_Texas
[11]邓永胜, 高利英, 韩宗福, 等. 短季棉花芽分化及分化进程中的生理特性研究[J]. 山东农业科学, 2018, 50(12): 20-25 https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201812004.htm
DENG Y S, GAO L Y, HAN Z F, et al. Study on flower bud differentiation and physiological metabolism characteristics in short season cotton[J]. Shandong Agricultural Sciences, 2018, 50(12): 20-25 https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201812004.htm
[12]CHENG S S, CHEN P Y, SU Z Z, et al. High-resolution temporal dynamic transcriptome landscape reveals a GhCAL-mediated flowering regulatory pathway in cotton (Gossypium hirsutum L.)[J]. Plant Biotechnology Journal, 2021, 19(1): 153-166 doi: 10.1111/pbi.13449
[13]王士红, 杨中旭, 史加亮, 等. 增密减氮对棉花干物质和氮素积累分配及产量的影响[J]. 作物学报, 2020, 46(3): 395-407 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW202003008.htm
WANG S H, YANG Z X, SHI J L, et al. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton[J]. Acta Agronomica Sinica, 2020, 46(3): 395-407 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW202003008.htm
[14]KHAN A, WANG L S, ALI S, et al. Optimal planting density and sowing date can improve cotton yield by maintaining reproductive organ biomass and enhancing potassium uptake[J]. Field Crops Research, 2017, 214: 164-174 doi: 10.1016/j.fcr.2017.09.016
[15]武萍萍, 周碧燕. 杨桃新梢花芽分化及其碳水化合物含量的变化[J]. 园艺学报, 2007, 34(5): 1151-1156 doi: 10.3321/j.issn:0513-353x.2007.05.014
WU P P, ZHOU B Y. Flower bud differentiation and changes of carbohydrate in new shoots in Averrhoa carambola[J]. Acta Horticulturae Sinica, 2007, 34(5): 1151-1156 doi: 10.3321/j.issn:0513-353x.2007.05.014
[16]林桂玉, 黄在范, 张翠华, 等. 菊花花芽分化期超微弱发光及生理代谢的变化[J]. 园艺学报, 2008, 35(12): 1819-1824 doi: 10.3321/j.issn:0513-353X.2008.12.015
LIN G Y, HUANG Z F, ZHANG C H, et al. Changes in ultraweak luminescence intensity, respiration rate and physiological metabolism of Chrysanthemum during floral differentiation[J]. Acta Horticulturae Sinica, 2008, 35(12): 1819-1824 doi: 10.3321/j.issn:0513-353X.2008.12.015
[17]赵秋芳, 陈娅萍, 顾文亮, 等. 香草兰花芽分化期蛋白质及碳水化合物变化研究[J]. 热带作物学报, 2015, 36(6): 1053-1058 doi: 10.3969/j.issn.1000-2561.2015.06.008
ZHAO Q F, CHEN Y P, GU W L, et al. Change of protein and carbohydrate in Vanilla planifolia Andrews during flower bud differentiation period[J]. Chinese Journal of Tropical Crops, 2015, 36(6): 1053-1058 doi: 10.3969/j.issn.1000-2561.2015.06.008
[18]张科, 郭鑫鑫, 刘西岗, 等. 植物花分生组织终止发育机制的研究进展[J]. 中国生态农业学报, 2018, 26(10): 1573-1584 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201810017.htm
ZHANG K, GUO X X, LIU X G, et al. Advances in research on floral meristem determinacy mechanisms in plants[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1573-1584 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201810017.htm
[19]任桂杰, 董合忠, 陈永喆, 等. 棉花花芽分化时期茎尖内源激素的变化[J]. 西北植物学报, 2002, 22(2): 113-118 https://www.cnki.com.cn/Article/CJFDTOTAL-DNYX200202020.htm
REN G J, DONG H Z, CHEN Y Z, et al. Studies on endogenous hormone changes in the stem terminal of Gossypium hirsutum during flower bud differentiation[J]. Acta Botanica Boreali-Occidentalia Sinica, 2002, 22(2): 113-118 https://www.cnki.com.cn/Article/CJFDTOTAL-DNYX200202020.htm
[20]FANG S, GAO K, HU W, et al. Chemical priming of seed alters cotton floral bud differentiation by inducing changes in hormones, metabolites and gene expression[J]. Plant Physiology and Biochemistry, 2018, 130: 633-640 doi: 10.1016/j.plaphy.2018.08.010
[21]李威. 陆地棉花芽分化诱导阶段茎尖的表达谱分析[D]. 武汉: 华中农业大学, 2011
LI W. Transcriptome profiling of upland cotton shoot apex during floral induction[D]. Wuhan: Huazhong Agricultural University, 2011
[22]杨捷频. 常规石蜡切片方法的改良[J]. 生物学杂志, 2006, 23(1): 45-46 doi: 10.3969/j.issn.2095-1736.2006.01.015
YANG J P. Improvement of traditional paraffin section preparation methods[J]. Journal of Biology, 2006, 23(1): 45-46 doi: 10.3969/j.issn.2095-1736.2006.01.015
[23]邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000
ZOU Q. Guidance of Plant Physiology Experiments[M]. Beijing: China Agriculture Press, 2000
[24]ZHANG D M, LUO Z, LIU S H, et al. Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton[J]. Field Crops Research, 2016, 197: 1-9 doi: 10.1016/j.fcr.2016.06.003
[25]DEVLIN P F, ROBSON P R H, PATEL S R, et al. Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time[J]. Plant Physiology, 1999, 119(3): 909-915 doi: 10.1104/pp.119.3.909
[26]王香茹. 黄河流域棉区适于机械采收的棉花播期和密度研究[D]. 北京: 中国农业大学, 2016
WANG X R. The managing of planting date and plant density for mechanical harvesting of cotton in the Yellow River valley of China[D]. Beijing: China Agricultural University, 2016
[27]章建新, 贾珂珂, 艾红玉. 中熟超高产大豆品种的花荚形成及时空分布[J]. 大豆科学, 2013, 32(3): 316-320 https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX201303009.htm
ZHANG J X, JIA K K, AI H Y. Formation and space-time distribution of flowers and pods for mid-mature super-high-yielding soybeans[J]. Soybean Science, 2013, 32(3): 316-320 https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX201303009.htm
[28]周强. 越橘花芽分化与体内物质代谢关系研究[D]. 长春: 吉林农业大学, 2017
ZHOU Q. Study on the relationship between flower bud differentiation and the metabolism of substances in blueberry[D]. Changchun: Jilin Agricultural University, 2017
[29]马亮, 李飞, 张金宝, 等. 不同陆地棉品种花芽分化与茎尖内源激素的关系[J]. 江苏农业科学, 2018, 46(16): 71-75 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201816018.htm
MA L, LI F, ZHANG J B, et al. Relationship between flower bud differentiation and shoot tip endogenous hormones of different upland cotton varieties[J]. Jiangsu Agricultural Sciences, 2018, 46(16): 71-75 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201816018.htm
[30]冯枫, 杨际双. 切花秋菊'神马'花芽分化与内源激素的关系[J]. 中国农业科学, 2011, 44(3): 552-561 doi: 10.3864/j.ssn.0578-1752.2011.03.016
FENG F, YANG J S. Relationship between floral bud differentiation and endogenous hormones in autumn-cutting Chrysanthemum morifolium 'jinba'[J]. Scientia Agricultura Sinica, 2011, 44(3): 552-561 doi: 10.3864/j.ssn.0578-1752.2011.03.016
[31]李东晓, 李存东, 孙传范, 等. 干旱对棉花主茎叶片内源激素含量与平衡的影响[J]. 棉花学报, 2010, 22(3): 231-235 doi: 10.3969/j.issn.1002-7807.2010.03.007
LI D X, LI C D, SUN C F, et al. The effects of drought on endogenous hormone contents and balance in main stem leaves of cotton[J]. Cotton Science, 2010, 22(3): 231-235 doi: 10.3969/j.issn.1002-7807.2010.03.007
[32]WONG C E, SINGH M B, BHALLA P L. Molecular processes underlying the floral transition in the soybean shoot apical meristem[J]. The Plant Journal, 2009, 57(5): 832-845 doi: 10.1111/j.1365-313X.2008.03730.x
[33]王桢, 李心, 李青竹, 等. 不同温度调控下西红花花芽分化进程及内源激素动态变化[J]. 西北农林科技大学学报: 自然科学版, 2021, 49(4): 102-112
WANG Z, LI X, LI Q Z, et al. Process of floral bud differentiation and dynamic changes of endogenous hormones under different temperatures in saffron (Crocus sativus L.)[J]. Journal of Northwest A & F University: Natural Science Edition, 2021, 49(4): 102-112
[34]万春雁, 糜林, 李金凤, 等. 苗期不同水分处理对草莓花芽分化及果实早熟化的影响[J]. 果树学报, 2016, 33(12): 1523-1531 https://www.cnki.com.cn/Article/CJFDTOTAL-GSKK201612008.htm
WAN C Y, MI L, LI J F, et al. Effect of different water treatments at seedling stage on flower bud differentiation and prematurity of strawberry[J]. Journal of Fruit Science, 2016, 33(12): 1523-1531 https://www.cnki.com.cn/Article/CJFDTOTAL-GSKK201612008.htm
[35]张莹婷, 杨秀莲, 何岭, 等. 2种石蒜花芽分化与碳水化合物、抗氧化物酶及内源激素变化的关系[J]. 安徽农业大学学报, 2019, 46(2): 342-349 https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU201902023.htm
ZHANG Y T, YANG X L, HE L, et al. Relationships between flower bud differentiation in two kinds of Lycoris and the changes of carbohydrate, antioxidant enzymes and endogenous hormones[J]. Journal of Anhui Agricultural University, 2019, 46(2): 342-349 https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU201902023.htm

相关话题/棉花 作物 数字 图片 生理