张东升,
李萍,
宗毓铮,
郝兴宇,
山西农业大学农学院 太谷 030801
基金项目: 国家自然科学基金面上项目31871517
国家自然科学基金面上项目31971773
详细信息
作者简介:刘亚静, 主要研究方向为植物生理生态与分子生物学。E-mail: 15735167985@163.com
通讯作者:郝兴宇, 主要研究方向为农业气象及气候变化对农业的影响。E-mail: haoxingyu1976@126.com
中图分类号:S515计量
文章访问数:232
HTML全文浏览量:4
PDF下载量:298
被引次数:0
出版历程
收稿日期:2020-07-01
录用日期:2020-10-10
刊出日期:2021-03-01
Interactive effect of elevated CO2 concentration and drought on photosynthetic and physiological indexes of foxtail millet
LIU Yajing,ZHANG Dongsheng,
LI Ping,
ZONG Yuzheng,
HAO Xingyu,
College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
Funds: the National Natural Science Foundation of China31871517
the National Natural Science Foundation of China31971773
More Information
Corresponding author:HAO Xingyu, E-mail: haoxingyu1976@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为明确谷子光合作用以及抗旱生理过程对高大气CO2浓度和干旱交互作用的响应机制,在开顶式气室中(OTC)开展大气CO2浓度和干旱交互对谷子影响的研究。设置两个CO2浓度:环境CO2浓度(400 μmol·mol-1)和高CO2浓度(600 μmol·mol-1);两个水分处理:正常水分(70%~80%田间持水量)和干旱(45%~55%田间持水量),对高CO2浓度和干旱互作下谷子光合气体交换参数、荧光动力学参数及抗旱相关生理指标的变化进行了研究。结果表明:高CO2浓度可降低干旱条件下光合色素含量,加剧孕穗期谷子气孔关闭,减轻灌浆期干旱对谷子净光合速率的负效应并增加其水分利用效率。孕穗期高CO2处理使正常水分处理下谷子气孔导度下降66.7%,而干旱处理下减少77.7%;灌浆期高CO2使正常水分处理和干旱处理下谷子净光合速率分别增加19.0%和87.7%,水分利用效率增加37.1%和39.2%。干旱处理显著降低谷子除非光化学淬灭系数(NPQ)以外所有荧光动力学参数值,灌浆期高CO2能缓解该作用。高CO2处理显著减少纤维素含量和正常水分处理下过氧化物酶活性。干旱极显著升高POD活性(高CO2浓度)及脯氨酸含量、可溶性总糖、淀粉含量(环境CO2浓度)和纤维素含量(高CO2浓度)。因此CO2浓度升高能够改善谷子的PSⅡ光化学效率和提高抗氧化酶活性来增强谷子的抗旱性。
关键词:干旱/
高大气CO2/
光系统Ⅱ效率/
抗逆性
Abstract:There is a lack of knowledge on the interactive effects of elevated atmospheric carbon dioxide (CO2) concentrations ([CO2]) and drought on the photosynthesis and physiological processes underlying foxtail millet drought resistance. An experiment was conducted in an open-top chamber with two CO2 treatments, ambient [CO2] (CK, 400 μmol·mol-1) and elevated [CO2] (ECO2, 600 μmol·mol-1), and two water treatments, normal water (relative water content was 75%-85% soil capacity) and drought (relative water content was 35%-45% soil capacity). We quantified the interactive effects of elevated CO2 and drought on the gas exchange parameters, fluorescence parameters, and drought-resistant physiological indicators in millet. The results showed that elevated CO2 could reduce the content of photosynthetic pigment under drought conditions. Elevated [CO2] aggravated millet stomatal closure at the booting stage, alleviated the negative effects of drought on the net photosynthetic rate at the filling stage, and increased the water utilization efficiency. During the booting stage, elevated [CO2] resulted in a 66.7% reduction in stomatal conductance under normal water conditions and a 77.7% reduction under drought conditions. During the grouting period, under normal water conditions, elevated [CO2] led to a 19.0% increase in the grain net photosynthetic rate and a 37.1% increase in water use efficiency; under drought conditions, it led to an 87.7% increase in the grain net photosynthetic rate and a 39.2% increase in water use efficiency, respectively compared with that of ambient [CO2]. Drought significantly reduced all of the millet fluorescence kinetic parameters, except non-photochemical quenching (NPQ), and elevated [CO2] alleviated this effect in the grouting period. At the booting stage, ECO2 and drought showed significant interactive effects on the intrinsic efficiency of photosystem Ⅱ (PSⅡ) (Fv/Fm'), PSⅡ photochemistry (ΦPSⅡ), and the highest photosynthetic electron transport (ETR) and photochemical quenching coefficient (qP). Elevated [CO2] significantly reduced the content of cellulose and activity of peroxidase (POD) under normal water conditions. POD activity (under ECO2), and contents of proline, soluble total sugar, starch content (under CK), and the cellulose content (under ECO2) were significantly increased under drought conditions. We conclude that elevated [CO2] can enhance the drought resistance of C4 foxtail millet by improving the photochemical efficiency of photosystem Ⅱ and the activity of antioxidant enzymes.
Key words:Drought/
Elevated CO2 concentration/
PSⅡ efficiency/
Stress resistance
HTML全文
图1大气CO2浓度升高和干旱对谷子孕穗期光合色素含量的影响
CK: 当前大气CO2浓度(400 μmol?mol?1); ECO2: 升高CO2浓度(600 μmol?mol?1)。不同小写字母表示差异达P < 5%显著水平。
Figure1.Effects of elevated CO2 concentration and drought on photosynthetic pigments contents of foxtail mille at booting stage
CK: ambient CO2 concentration (400 μmol?mol?1); ECO2: elevated CO2 concentration (600 μmol?mol?1). Different lowercase letters indicate significant differences at P < 5% level.
下载: 全尺寸图片幻灯片
图2大气CO2浓度升高与干旱对谷子气体交换参数的影响
CK: 当前大气CO2浓度(400 μmol?mol?1); ECO2: 升高CO2浓度(600 μmol?mol?1)。不同小写字母表示同一生育期不同处理间差异达P < 5%显著水平。
Figure2.Effects of elevated CO2 concentration and drought on gas exchange parameters of foxtail millet
CK: ambient CO2 concentration (400 μmol?mol?1); ECO2: elevated CO2 concentration (600 μmol?mol?1). Different lowercase letters indicate significant differences among treatments at the same growth stage at P < 5% level.
下载: 全尺寸图片幻灯片
图3大气CO2浓度升高和干旱对孕穗期谷子POD活性及脯氨酸、可溶性糖、淀粉和纤维素含量的影响
不同小写字母表示差异达P < 5%显著水平。
Figure3.Effects of elevated CO2 concentration and drought on POD activity and contents of proline, soluble sugar, starch and cellulose of foxtail millet at booting stage
Different lowercase letters indicate significant differences at P < 5% level.
下载: 全尺寸图片幻灯片
表1大气CO2浓度升高和干旱对谷子叶绿体荧光参数的影响
Table1.Effects of elevated CO2 concentration and drought on chloroplast fluorescence parameters of foxtail millet
生育期 Growth period | 处理 Treatment | Fv/Fm | Fv'/Fm' | ΦPSⅡ | ETR | qP | NPQ | |
孕穗期 Booting stage | 正常水分 Normal water | CK | 0.75±0.01a | 0.36±0.02a | 0.23±0.02a | 137.71±9.64a | 0.64±0.03a | 2.27±0.15b |
ECO2 | 0.75±0.00ab | 0.31±0.02b | 0.13±0.01b | 76.71±8.83b | 0.41± 0.04b | 2.42±0.14b | ||
干旱 Drought | CK | 0.72±0.01b | 0.27±0.01c | 0.08±0.01c | 47.16±3.52c | 0.30±0.02c | 2.71±0.24ab | |
ECO2 | 0.74±0.01ab | 0.31±0.01b | 0.07±0.01c | 43.08±3.94c | 0.23±0.02c | 2.96±0.09a | ||
P值 | CO2 | 0.63 | 0.92 | 0.00 | 0.00 | 0.00 | 0.22 | |
P value | Water | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
CO2×Water | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.75 | ||
灌浆期 Grain-filling stage | 正常水分 Normal water | CK | 0.73±0.01a | 0.41±0.01a | 0.23±0.01a | 135.10±8.47a | 0.56±0.03a | 1.65±0.11c |
ECO2 | 0.76±0.01a | 0.42±0.01a | 0.19±0.02a | 114.98±11.54a | 0.46±0.04b | 1.63±0.09b | ||
干旱 Drought | CK | 0.68±0.02b | 0.29±0.03b | 0.10±0.01b | 57.22±4.42b | 0.34±0.02c | 2.09±0.18ab | |
ECO2 | 0.71±0.01ab | 0.33±0.01b | 0.11±0.01b | 66.25±3.00b | 0.34±0.02c | 2.18±0.25a | ||
P值 | CO2 | 0.05 | 0.13 | 0.47 | 0.47 | 0.07 | 0.84 | |
P value | Water | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
CO2×Water | 0.83 | 0.47 | 0.07 | 0.07 | 0.07 | 0.72 | ||
CK: 当前大气CO2浓度(400 μmol?mol?1); ECO2: 升高CO2浓度(600 μmol?mol?1)。不同小写字母表示同一生育期不同处理间差异达P < 5%显著水平。CK: ambient CO2 concentration (400 μmol?mol?1); ECO2: elevated CO2 concentration (600 μmol?mol?1). Different lowercase letters indicate significant differences among treatments at the same growth stage at P < 5% level. |
下载: 导出CSV
参考文献
[1] | GRAY V. Climate change 2007: The physical science basis summary for policymakers[J]. Energy & Environment, 2007, 18(3/4): 433-440 http://www.ingentaconnect.com/content/mscp/ene/2007/00000018/F0020003/art00009 |
[2] | LI P, LI B Y, SENEWEERA S, et al. Photosynthesis and yield response to elevated CO2, C4 plant foxtail millet behaves similarly to C3 species[J]. Plant Science, 2019, 285: 239-247 doi: 10.1016/j.plantsci.2019.05.006 |
[3] | 曾长立, 王晓明, 张福锁, 等. 浅析C3植物和C4植物对大气中CO2浓度升高条件下的反应[J]. 江汉大学学报, 2001, 18(3): 6-14 doi: 10.3969/j.issn.1006-639X.2001.03.002 ZENG C L, WANG X M, ZHANG F S, et al. Some views on the responses of C3 plant and C4 plant to the atmospheric concentration of CO2 elevated[J]. Journal of Jianghan University, 2001, 18(3): 6-14 doi: 10.3969/j.issn.1006-639X.2001.03.002 |
[4] | 郝兴宇, 李萍, 林而达, 等. 大气CO2浓度升高对谷子生长发育与光合生理的影响[J]. 核农学报, 2010, 24(3): 589-593 http://d.wanfangdata.com.cn/Periodical/hnxb201003030 HAO X Y, LI P, LIN E D, et al. Effects of air CO2 enrichment on growth and photosynthetic physiology of millet[J]. Journal of Nuclear Agricultural Sciences, 2010, 24(3): 589-593 http://d.wanfangdata.com.cn/Periodical/hnxb201003030 |
[5] | 王美玉, 赵天宏, 张巍巍, 等. CO2浓度升高与温度、干旱相互作用对植物生理生态过程的影响[J]. 干旱地区农业研究, 2007, 25(2): 99-103 doi: 10.3321/j.issn:1000-7601.2007.02.021 WANG M Y, ZHAO T H, ZHANG W W, et al. Effects of interactions between elevated CO2 concentration and temperature, drought on physio-ecological processes of plants[J]. Agricultural Research in the Arid Areas, 2007, 25(2): 99-103 doi: 10.3321/j.issn:1000-7601.2007.02.021 |
[6] | 姜帅, 居辉, 吕小溪, 等. CO2浓度升高与水分互作对冬小麦生长发育的影响[J]. 中国农业气象, 2013, 34(4): 403-409 doi: 10.3969/j.issn.1000-6362.2013.04.005 JIANG S, JU H, LV X X, et al. Interactive effects of elevated carbon dioxide and water on the growth and development of winter wheat[J]. Chinese Journal of Agrometeorology, 2013, 34(4): 403-409 doi: 10.3969/j.issn.1000-6362.2013.04.005 |
[7] | 廖建雄, 王根轩. 干旱、CO2和温度升高对春小麦光合、蒸发蒸腾及水分利用效率的影响[J]. 应用生态学报, 2002, 13(5): 547-550 doi: 10.3321/j.issn:1001-9332.2002.05.008 LIAO J X, WANG G X. Effects of drought, CO2 concentration and temperature increasing on photosynthesis rate, evapotranspiration, and water use efficiency of spring wheat[J]. Chinese Journal of Applied Ecology, 2002, 13(5): 547-550 doi: 10.3321/j.issn:1001-9332.2002.05.008 |
[8] | WANG A P, LAM S K, HAO X Y, et al. Elevated CO2 reduces the adverse effects of drought stress on a high-yielding soybean (Glycine max (L. ) Merr. ) cultivar by increasing water use efficiency[J]. Plant Physiology and Biochemistry, 2018, 132: 660-665 doi: 10.1016/j.plaphy.2018.10.016 |
[9] | 武海霞, 郭丽丽, 郝立华, 等. 水分和CO2浓度对冬小麦气孔特征、气体交换参数和生物量的影响[J]. 作物学报, 2018, 44(10): 1570-1576 http://d.wanfangdata.com.cn/periodical/zuowxb201810016 WU H X, GUO L L, HAO L H, et al. Effects of water and CO2 concentration on stomatal traits, leaf gas exchange, and biomass of winter wheat[J]. Acta Agronomica Sinica, 2018, 44(10): 1570-1576 http://d.wanfangdata.com.cn/periodical/zuowxb201810016 |
[10] | 王修兰, 徐师华, 梁红. CO2浓度增加对C3、C4作物生育和产量影响的实验研究[J]. 中国农业科学, 1998, 31(1): 56-62 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK801.008.htm WANG X L, XU S H, LIANG H. The experimental study of the effects of CO2 concentration enrichment on growth, development and yield of C3 and C4 crops[J]. Scientia Agricultura Sinica, 1998, 31(1): 56-62 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK801.008.htm |
[11] | QIAO Y F, MIAO S J, LI Q, et al. Elevated CO2 and temperature increase grain oil concentration but their impacts on grain yield differ between soybean and maize grown in a temperate region[J]. Science of the Total Environment, 2019, 666: 405-413 doi: 10.1016/j.scitotenv.2019.02.149 |
[12] | HAO X Y, LI P, LI H Y, et al. Elevated CO2 increased photosynthesis and yield without decreasing stomatal conductance in broomcorn millet[J]. Photosynthetica, 2017, 55(1): 176-183 doi: 10.1007/s11099-016-0226-6 |
[13] | 刘敏轩, 张婷, 师志刚, 等. 干旱胁迫对冀谷34幼苗生理特性的影响[J]. 河北农业科学, 2018, 22(2): 6-11 https://www.zhangqiaokeyan.com/academic-journal-cn_journal-hebei-agricultural-sciences_thesis/0201234423152.html LIU M X, ZHANG T, SHI Z G, et al. Effect of drought stress on physiological characteristics of foxtail millet variety Jigu 34[J]. Journal of Hebei Agricultural Sciences, 2018, 22(2): 6-11 https://www.zhangqiaokeyan.com/academic-journal-cn_journal-hebei-agricultural-sciences_thesis/0201234423152.html |
[14] | BENCZE S, BAMBERGER Z, JANDA T, et al. Physiological response of wheat varieties to elevated atmospheric CO2 and low water supply levels[J]. Photosynthetica, 2014, 52(1): 71-82 doi: 10.1007/s11099-014-0008-y |
[15] | 张文, 智慧, 柳斌辉, 等. 谷子孕穗期一些生理性状与品种抗旱性的关系[J]. 华北农学报, 2011, 26(3): 128-133 https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB201103027.htm ZHANG W, ZHI H, LIU B H, et al. Relationship between drought tolerance ability and some physiological characteristics of foxtail millet at booting stage[J]. Acta Agriculturae Boreali-sinica, 2011, 26(3): 128-133 https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB201103027.htm |
[16] | 袁蕊, 郝兴宇, 胡晓雪, 等. 干旱对谷子灌浆期光合生理及生长发育的影响[J]. 山西农业大学学报: 自然科学版, 2017, 37(6): 396-401 doi: 10.3969/j.issn.1671-8151.2017.06.005 YUAN R, HAO X Y, HU X X, et al. Effects of drought on photosynthetic physiology and growth of millet during grain filling[J]. Journal of Shanxi Agricultural University: Natural Science Edition, 2017, 37(6): 396-401 doi: 10.3969/j.issn.1671-8151.2017.06.005 |
[17] | 刘紫娟, 李萍, 宗毓铮, 等. 干旱胁迫对糜子生理及产量的影响[J]. 山西农业科学, 2016, 44(9): 1279-1283 doi: 10.3969/j.issn.1002-2481.2016.09.12 LIU Z J, LI P, ZONG Y Z, et al. Effects of drought on physiology and yield in broomcorn millet[J]. Journal of Shanxi Agricultural Sciences, 2016, 44(9): 1279-1283 doi: 10.3969/j.issn.1002-2481.2016.09.12 |
[18] | 李红英, 程鸿燕, 郭昱, 等. 谷子抗旱机制研究进展[J]. 山西农业大学学报: 自然科学版, 2018, 38(1): 6-10 https://www.cnki.com.cn/Article/CJFDTOTAL-SXNY201801002.htm LI H Y, CHENG H Y, GUO Y, et al. Progress in the mechanisms of drought tolerance in foxtail millet[J]. Journal of Shanxi Agricultural University: Natural Science Edition, 2018, 38(1): 6-10 https://www.cnki.com.cn/Article/CJFDTOTAL-SXNY201801002.htm |
[19] | 刘紫娟, 李萍, 宗毓铮, 等. 大气CO2浓度升高对谷子生长发育及玉米螟发生的影响[J]. 中国生态农业学报, 2017, 25(1): 55-60 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201701008.htm LIU Z J, LI P, ZONG Y Z, et al. Effect of elevated[CO2] on growth and attack of Asian corn borers (Ostrinia furnacalis) in foxtail millet (Setaria italica)[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 55-60 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201701008.htm |
[20] | 严加坤, 吴晓红, 赵旭阳. 不同年代谷子品种响应干旱胁迫的生理机制[J]. 陕西农业科学, 2018, 64(12): 64-69 doi: 10.3969/j.issn.0488-5368.2018.12.019 YAN J K, WU X H, ZHAO X Y. Physiological mechanism of millet varieties in different ages in response to drought stress[J]. Shaanxi Journal of Agricultural Sciences, 2018, 64(12): 64-69 doi: 10.3969/j.issn.0488-5368.2018.12.019 |
[21] | 贾斯淳, 王娜, 郝兴宇, 等. 不同干旱胁迫处理对大豆品种生长及逆境生理的影响[J]. 华北农学报, 2019, 34(5): 137-144 https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB201905023.htm JIA S C, WANG N, HAO X Y, et al. Effects of different drought stresses on growth and physiological properties of soybean[J]. Acta Agriculturae Boreali-sinica, 2019, 34(5): 137-144 https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB201905023.htm |
[22] | 陈芬, 余高, 陈容, 等. 减磷配施有机肥对辣椒生长及光合荧光特性的影响[J]. 西北农林科技大学学报: 自然科学版, 2021, (7): 1-12 CHEN F, YU G, CHEN R, et al. Effects of reduced application of chemical phosphorus combined with organic fertilizer on growth and photosynthetic fluorescence characteristics of Capsicums annuum L. [J]. Journal of Northwest A & F University: Natural Science Edition, 2021, (7): 1-12 |
[23] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 164-165, 260-261 LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2000: 164-165, 260-261 |
[24] | 李强, 唐微, 石园园, 等. 蒽酮-硫酸法和3, 5-二硝基水杨酸法测定杜仲水提液多糖含量[J]. 食品工业科技, 2010, 31(10): 370-371 https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201010099.htm LI Q, TANG W, SHI Y Y, et al. Determination of polysaccharide in water extraction from Eucommia ulmoides Oliver by 3, 5-dinitrosalicylic acid (DNS) method and anthrone-sulfuric method[J]. Science and Technology of Food Industry, 2010, 31(10): 370-371 https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201010099.htm |
[25] | 邱献锟, 刘宪虎, 许明子, 等. 水稻大粒种质淀粉积累特性研究[J]. 安徽农业科学, 2010, 38(13): 6668-6672 http://www.cqvip.com/Main/Detail.aspx?id=34618377 QIU X K, LIU X H, XU M Z, et al. Study on starch accumulation characteristics on large seed of rice[J]. Journal of Anhui Agricultural Sciences, 2010, 38(13): 6668-6672 http://www.cqvip.com/Main/Detail.aspx?id=34618377 |
[26] | 宝俐, 董金龙, 李汛, 等. CO2浓度升高和氮素供应对黄瓜叶片光合色素的影响[J]. 土壤, 2016, 48(4): 653-660 http://qikan.cqvip.com/Qikan/Article/Detail?id=669859230 BAO L, DONG J L, LI X, et al. Effects of elevated CO2, N concentration and N forms on photosynthetic pigments concentration and composition[J]. Soils, 2016, 48(4): 653-660 http://qikan.cqvip.com/Qikan/Article/Detail?id=669859230 |
[27] | 刘济明, 李佳, 文爱华, 等. 米槁幼苗光合色素与光合特征对干旱胁迫的响应[J]. 江苏农业科学, 2019, 47(9): 171-174 http://d.wanfangdata.com.cn/periodical/jsnykx201909038 LIU J M, LI J, WEN A H, et al. Responses of photosynthetic pigment and photosynthetic characteristics of Cinnamomum migao to drought stress[J]. Jiangsu Agricultural Sciences, 2019, 47(9): 171-174 http://d.wanfangdata.com.cn/periodical/jsnykx201909038 |
[28] | ALLEN JR L H, KAKANI V G, VU J C V, et al. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum[J]. Journal of Plant Physiology, 2011, 168(16): 1909-1918 http://www.ncbi.nlm.nih.gov/pubmed/21676489 |
[29] | 王兰兰, 李琦, 宋晓卉, 等. 环境条件对植物叶绿素荧光参数影响研究进展[J]. 沈阳师范大学学报: 自然科学版, 2019, 37(4): 362-367 https://www.cnki.com.cn/Article/CJFDTOTAL-SYSX201904013.htm WANG L L, LI Q, SONG X H, et al. Effects of environmental conditions on chlorophyll fluorescence parameters of plants[J]. Journal of Shenyang Normal University: Natural Science Edition, 2019, 37(4): 362-367 https://www.cnki.com.cn/Article/CJFDTOTAL-SYSX201904013.htm |
[30] | 李清明, 刘彬彬, 艾希珍. CO2浓度倍增对干旱胁迫下黄瓜幼苗膜脂过氧化及抗氧化系统的影响[J]. 生态学报, 2010, 30(22): 6063-6071 http://www.cnki.com.cn/Article/CJFDTotal-STXB201022007.htm LI Q M, LIU B B, AI X Z. Effects of doubled CO2 concentration on lipid peroxidation and antioxidant system of cucumber seedlings under drought stresses[J]. Acta Ecologica Sinica, 2010, 30(22): 6063-6071 http://www.cnki.com.cn/Article/CJFDTotal-STXB201022007.htm |
[31] | VIJAYALAKSHMI T, VARALAXMI Y, JAINENDER S, et al. Physiological and biochemical basis of water-deficit stress tolerance in pearl millet hybrid and parents[J]. American Journal of Plant Sciences, 2012, 3(12): 1730-1740 http://www.researchgate.net/publication/259119790_Physiological_and_Biological_Basis_of_Water-_Deficit_Stress_Tolerance_in_Pearl_Millet_Hybrid_and_Parents |