户少武2,
杨阳1,
童楷程1,
景立权2,
朱建国3,
王余龙2,
杨连新2,
王云霞1,,
1.扬州大学环境科学与工程学院 扬州 225009
2.扬州大学江苏省作物遗传生理重点实验室/江苏省作物栽培生理重点 实验室/江苏省粮食作物现代产业技术协同创新中心 扬州 225009
3.中国科学院南京土壤研究所土壤与农业可持续发展 国家重点实验室 南京 210008
基金项目: 国家自然科学基金项目31671618
国家自然科学基金项目31571597
国家自然科学基金项目31701352
详细信息
作者简介:牛玺朝, 主要从事大气变化与作物响应的研究。E-mail: 593003194@qq.com
通讯作者:王云霞, 主要研究方向为作物逆境生理和农产品品质。E-mail: yxwang@yzu.edu.cn
中图分类号:S511.2计量
文章访问数:207
HTML全文浏览量:5
PDF下载量:345
被引次数:0
出版历程
收稿日期:2020-07-09
录用日期:2020-11-11
刊出日期:2021-03-01
Effects of CO2 concentration enrichment on the grain quality of different rice varieties
NIU Xichao1,,HU Shaowu2,
YANG Yang1,
TONG Kaicheng1,
JING Liquan2,
ZHU Jianguo3,
WANG Yulong2,
YANG Lianxin2,
WANG Yunxia1,,
1. College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
2. Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
3. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
Funds: the National Natural Science Foundation of China31671618
the National Natural Science Foundation of China31571597
the National Natural Science Foundation of China31701352
More Information
Corresponding author:WANG Yunxia, E-mail: yxwang@yzu.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:大气CO2浓度升高导致全球变暖,同时亦对作物生长发育产生深刻影响。作为光合作用的底物,大气CO2的浓度升高增加水稻产量,但对稻米品质的影响及其品种间差异的研究相对较少且存在分歧。本研究利用稻田FACE(free air CO2 enrichment)技术平台,以8个水稻品种为材料,设背景CO2浓度(Ambient)和高CO2浓度(增200 μmol·mol-1,FACE)两个水平,研究大气CO2浓度升高对稻米加工品质、外观品质、食味品质以及部分营养品质的影响及其种间差异。本研究所有测定的品质性状供试品种间均存在显著或极显著差异。与Ambient相比,FACE处理下水稻糙米率、精米率和整精米率略降,但单位面积糙米、精米和整精米产量平均分别极显著增加23.7%、23.5%和20.9%。FACE处理对整精米长度、宽度和长宽比影响较小,但使整精米垩白率和垩白度平均分别增加18.6%和31.8%,均达极显著水平。FACE处理使所有品种稻米直链淀粉含量和胶稠度平均分别下降6.5%和3.1%,但均未达显著水平。从淀粉RVA谱看,FACE处理使所有品种峰值黏度、崩解值平均增加1.3%、6.9%,使热浆黏度、冷胶黏度、消减值分别下降2.2%、5.1%和65.6%,其中消减值达显著水平。FACE处理使所有品种整精米植酸含量平均增加5.3%,而蛋白质含量平均减少9.9%,均达显著水平。不同品种稻米品质性状对高CO2浓度的响应方向和程度存在一定差异,其中FACE处理与品种对整精米长度、垩白率、垩白度、峰值黏度、热浆黏度和最终黏度存在显著的互作效应。以上数据表明,大气CO2浓度升高使水稻产量大幅增加,稻米加工、外观和营养品质呈变劣趋势,但适口性可能变优,稻米品质对大气CO2浓度增高的响应存在不同程度的品种差异。
关键词:气候变化/
水稻/
CO2浓度增高/
稻米品质
Abstract:Increasing atmospheric carbon dioxide (CO2) concentration leads to global warming and has a profound effect on the growth and development of crops. As a substrate for plant photosynthesis, high CO2 concentration can increase rice yields, but the effect on rice quality is still unclear. The genotypic variation in rice quality in response to high CO2 concentration is less studied than rice yield. In this study, eight rice varieties were grown under ambient and elevated CO2 concentrations (200 μmol·mol-1 higher than ambient) in a free-air CO2 enrichment (FACE) platform. The effects of elevated CO2 concentrations on rice processing quality, appearance quality, eating quality, and nutritional quality were studied, and grain quality differences among rice varieties in response to elevated CO2 concentration were also investigated. All of the quality traits varied significantly among the tested varieties. Compared with rice plants grown under ambient CO2 concentration, plants grown under FACE treatment tended to have decreased brown rice percentage, white rice percentage, and head rice percentage, but had significantly increased yields of brown rice, white rice, and head rice (by 23.7%, 23.5%, and 20.9%, respectively). FACE treatment had little effect on the head rice length, head rice width, and the ratio of head rice length to width, but significantly increased the chalky rice rate and chalkiness degree. Averaged across all rice varieties, the elevated CO2 concentration increased the chalky rice rate and chalkiness degree by 18.6% and 31.8%, respectively. FACE treatment reduced the amylose concentration and gel consistency by an average of 6.5% and 3.1%, respectively, but the reduction was not significant. The response in the rapid visco analyzer (RVA) profile of rice starch to elevated CO2 concentration was also studied. FACE treatment increased the mean value of peak viscosity and breakdown by 1.3% and 6.9%, respectively, for all varieties, but decreased the mean value of hot viscosity, cold viscosity, and setback by 2.2%, 5.1%, and 65.6%, respectively. However, only the reduction in setback was statistically significant. The phytic acid concentration of the rice grains significantly increased by 5.3% on average, whereas the protein content significantly decreased by 9.9% under FACE conditions. The response of the rice quality traits to high CO2 concentration varied in direction and magnitude among different varieties. An interaction between CO2 treatment and rice variety was found for head rice length, chalky rice rate, chalkiness degree, peak viscosity, hot viscosity, and cold viscosity. The above data suggest that increased atmospheric CO2 concentration significantly increased grain yield, but tended to diminish the processing quality, appearance quality, and nutritional quality of the rice grains while improving the palatability of cooked rice. The response of rice grain quality to elevated CO2 concentration varied across rice varieties.
Key words:Climate change/
Rice/
CO2 concentration enrichment/
Rice quality
HTML全文
图1大气CO2浓度升高对不同品种稻米垩白粒率(a)和垩白度(b)的影响
Ambient: 环境CO2浓度; FACE: 开放式空气CO2浓度增高。图中数据为均值±标准误差(n=3)。**和*分别表示同一品种2个CO2处理间在P < 0.01和P < 0.05差异显著。
Figure1.Effects of CO2 concentration enrichment on rice chalky grain rate and chalkiness of different rice varieties
Ambient: ambient CO2 concentration; FACE: free air CO2 enrichment. All values are mean±standard error (n=3). ** and * indicate significant difference between two CO2 treatments for the same variety at P < 0.01 and P < 0.05 levels, respectively.
下载: 全尺寸图片幻灯片
图2大气CO2浓度升高对不同水稻品种稻米蛋白质(a)和植酸(b)含量的影响
Ambient: 环境CO2浓度; FACE: 开放式空气中CO2浓度增高。图中数据为均值±标准误差(n=3), *分别表示同一品种2个CO2处理间在P < 0.05水平差异显著。
Figure2.Effects of CO2 concentration enrichment on protein (a) and phytic acid (b) contents of different rice varieties
Ambient: ambient CO2 concentration; FACE: free air CO2 enrichment. All values are mean ± standard error (n=3). * indicates significant difference between two CO2 treatments for the same variety at P < 0.05 level.
下载: 全尺寸图片幻灯片
表1大气CO2浓度升高对不同品种稻米加工品质的影响
Table1.Effects of CO2 concentration enrichment on processing quality of different rice varieties ?
品种 Variety | 糙米率Brown rice percentage | 精米率White rice percentage | 整精米率Head rice percentage | |||||
Ambient | FACE | Ambient | FACE | Ambient | FACE | |||
淮稻5号HD5 | 83.7±0.1 | 82.9±0.1** | 75.5±0.4 | 74.4±0.1* | 71.9±0.7 | 69.0±0.6* | ||
南粳46 NJ46 | 84.0±0.2 | 83.6±0.2 | 77.7±0.2 | 77.2±0.4 | 71.3±2.6 | 68.5±1.3 | ||
南粳5055 NJ5055 | 83.4±0.2 | 79.3±3.3 | 76.3±0.2 | 72.2±3.0 | 66.2±1.6 | 64.4±4.1 | ||
桂农占GNZ | 81.5±0.3 | 81.1±0.0 | 76.9±0.3 | 76.6±0.2 | 69.4±2.3 | 67.0±0.5 | ||
中早39 ZZ39 | 79.5±0.6 | 80.1±0.8 | 72.6±0.9 | 72.7±0.5 | 38.8±1.0 | 37.4±7.7 | ||
丰优香占FYXZ | 80.9±0.3 | 80.3±0.4 | 74.9±0.2 | 74.3±0.5 | 65.8±0.9 | 61.9±0.4* | ||
隆两优1988 LLY1988 | 80.5±0.2 | 82.7±2.6 | 75.2±0.2 | 77.3±2.3 | 70.8±1.0 | 74.2±2.6 | ||
甬优1540 YY1540 | 81.4±0.3 | 80.9±0.1 | 76.7±0.4 | 76.2±0.3 | 74.2±0.1 | 73.0±1.2 | ||
ANOVA | ||||||||
CO2 | 0.314 | 0.184 | 0.201 | |||||
品种Variety (V) | 0.073 | 0.018 | < 0.001 | |||||
CO2×V | 0.332 | 0.242 | 0.894 | |||||
Ambient: 环境CO2浓度; FACE: 开放式空气CO2浓度增高。**和*分别表示同一品种2个CO2处理间在P < 0.01和P < 0.05水平差异显著。加粗数字表示达P < 0.05或P < 0.01显著水平。Ambient: ambient CO2 concentration; FACE: free air CO2 enrichment. ** and * indicate significant difference between two CO2 treatments for the same variety at P < 0.01 and P < 0.05 levels, respectively. Bold numbers indicate significant levels of P < 0.05 or P < 0.01. |
下载: 导出CSV
表2大气CO2浓度升高对不同水稻品种糙米、精米和整精米产量的影响
Table2.Effects of CO2 concentration enrichment on brown rice, white rice and head rice yield of different rice varieties?
品种 Variety | 糙米产量Brown rice yield | 精米产量White rice yield | 整精米产量Head rice yield | |||||
Ambient | FACE | Ambient | FACE | Ambient | FACE | |||
淮稻5号HD5 | 683.4±37.6 | 817.3±16.4* | 616.4±32.7 | 732.9±15.9* | 586.8±29.5 | 680.6±19.1 | ||
南粳46 NJ46 | 620.7±40.1 | 781.5±85.5 | 574.1±36.2 | 722.2±79.0 | 524.8±15.1 | 643.1±82.3 | ||
南粳5055 NJ5055 | 629.3±24.7 | 813.9±42.0* | 575.9±22.5 | 741.0±38.1* | 500.3±31.3 | 658.5±16.8** | ||
桂农占GNZ | 660.9±19.0 | 729.4±73.7 | 623.8±18.7 | 689.2±69.9 | 564.2±35.7 | 602.0±60.1 | ||
中早39 ZZ39 | 512.9±60.1 | 662.1±48.6 | 468.4±56.9 | 600.8±42.1 | 250.9±33.9 | 313.4±83.4 | ||
丰优香占FYXZ | 839.8±66.1 | 937.3±84.3 | 777.5±61.8 | 867.2±76.7 | 684.3±62.4 | 721.9±63.7 | ||
隆两优1988 LLY1988 | 766.1±74.3 | 1045.5±96.0 | 715.4±68.4 | 976.9±88.3 | 675.4±72.4 | 938.9±93.7 | ||
甬优1540 YY1540 | 923.9±31.6 | 1112.1±50.3* | 870.5±31.2 | 1047.6±49.1* | 841.8±25.7 | 1003.5±57.3 | ||
ANOVA | ||||||||
CO2 | < 0.001 | < 0.001 | 0.001 | |||||
品种Variety (V) | < 0.001 | < 0.001 | < 0.001 | |||||
CO2×V | 0.689 | 0.677 | 0.466 | |||||
Ambient: 环境CO2浓度; FACE: 开放式空气CO2浓度增高。**和*分别表示同一品种2个CO2处理间在P < 0.01和P < 0.05水平差异显著。加粗数字表示达P < 0.05或P < 0.01显著水平。Ambient: ambient CO2 concentration; FACE: free air CO2 enrichment. ** and * indicate significant difference between two CO2 treatments for the same variety at P < 0.01 and P < 0.05 levels, respectively. Bold numbers indicate significant levels of P < 0.05 or P < 0.01. |
下载: 导出CSV
表3大气CO2浓度升高对不同水稻品种整精米长度、宽度和长宽比的影响
Table3.Effects of CO2 concentration enrichment on head rice length, width and ratio of length to width of different rice varieties
品种 Variety | 长度 Head rice length (cm) | 宽度 Head rice width (cm) | 长宽比 Ratio of head rice length to width | |||||
Ambient | FACE | Ambient | FACE | Ambient | FACE | |||
淮稻5号HD5 | 4.78±0.02 | 4.63±0.01** | 2.75±0.01 | 2.70±0.00* | 1.74±0.02 | 1.71±0.01 | ||
南粳46 NJ46 | 4.65±0.01 | 4.65±0.00 | 2.79±0.02 | 2.80±0.01 | 1.67±0.01 | 1.66±0.01 | ||
南粳5055 NJ5055 | 4.47±0.01 | 4.38±0.00** | 2.69±0.01 | 2.65±0.01* | 1.66±0.01 | 1.66±0.01 | ||
桂农占GNZ | 6.06±0.02 | 6.02±0.02 | 1.99±0.01 | 1.99±0.02 | 3.05±0.00 | 3.03±0.03 | ||
中早39 ZZ39 | 4.99±0.03 | 5.01±0.01 | 2.54±0.01 | 2.57±0.00 | 1.97±0.00 | 1.95±0.00* | ||
丰优香占FYXZ | 6.83±0.01 | 6.86±0.00 | 2.02±0.02 | 2.02±0.01 | 3.38±0.03 | 3.39±0.01 | ||
隆两优1988 LLY1988 | 6.31±0.01 | 6.31±0.01 | 2.14±0.04 | 2.14±0.01 | 2.95±0.06 | 2.95±0.02 | ||
甬优1540 YY1540 | 5.32±0.02 | 5.30±0.03 | 2.38±0.01 | 2.38±0.00 | 2.23±0.01 | 2.23±0.01 | ||
ANOVA | ||||||||
CO2 | < 0.001 | 0.380 | 0.433 | |||||
品种Variety (V) | < 0.001 | < 0.001 | < 0.001 | |||||
CO2×V | < 0.001 | 0.436 | 0.989 | |||||
Ambient: 环境CO2浓度; FACE: 开放式空气CO2浓度增高。**和*分别表示同一品种2个CO2处理间在P < 0.01和P < 0.05水平差异显著。加粗数字表示达P < 0.05或P < 0.01显著水平。Ambient: ambient CO2 concentration; FACE: free air CO2 enrichment. ** and * indicate significant difference between two CO2 treatments for the same variety at P < 0.01 and P < 0.05 levels, respectively. Bold numbers indicate significant levels of P < 0.05 or P < 0.01. |
下载: 导出CSV
表4大气CO2浓度升高对不同水稻品种直链淀粉含量和胶稠度的影响
Table4.Effects of CO2 concentration enrichment on amylose content and gel consistency of different rice varieties
品种Variety | 直链淀粉含量Amylose content (%) | 胶稠度Gel consistency (mm) | |||
Ambient | FACE | Ambient | FACE | ||
淮稻5号HD5 | 16.5±0.8 | 15.2±1.2 | 77.7±3.5 | 73.6±5.2 | |
南粳46 NJ46 | 10.7±0.4 | 11.0±1.3 | 73.8±4.0 | 80.3±2.6 | |
南粳5055 NJ5055 | 9.8±1.8 | 9.2±0.2 | 86.8±2.9 | 74.8±4.5 | |
桂农占GNZ | 23.3±1.8 | 20.2±2.8 | 27.9±0.6 | 29.1±0.6 | |
中早39 ZZ39 | 27.2±5.0 | 29.1±4.1 | 48.3±10.2 | 47.5±11.7 | |
丰优香占FYXZ | 10.8±0.8 | 12.9±1.1 | 64.6±4.0 | 55.2±2.3 | |
隆两优1988 LLY1988 | 15.5±0.7 | 15.6±1.2 | 79.9±3.4 | 83.5±3.1 | |
甬优1540 YY1540 | 20.8±0.8 | 17.5±1.1 | 69.0±9.3 | 61.3±1.1 | |
ANOVA | |||||
CO2 | 0.104 | 0.165 | |||
品种Variety (V) | < 0.001 | < 0.001 | |||
CO2×V | 0.359 | 0.571 | |||
Ambient: 环境CO2浓度; FACE: 开放式空气CO2浓度增高。加粗数字表示达P < 0.05或P < 0.01显著水平。Ambient: ambient CO2 concentration; FACE: free air CO2 enrichment. Bold numbers indicate significant levels of P < 0.05 or P < 0.01. |
下载: 导出CSV
表5大气CO2浓度升高对不同品种稻米淀粉RVA黏滞特性的影响
Table5.Effects of CO2 concentration enrichment on RVA parameters of different rice varieties
品种 Variety | CO2 | 峰值黏度 PV (cP) | 热浆黏度 HV (cP) | 崩解值 BD(cP) | 冷浆黏度 CV (cP) | 消减值 SB(cP) | 峰值时间 PT (min) | 糊化温度 GT (℃) |
淮稻5号 HD5 | Ambient | 4499±261 | 2484±79 | 2016±210 | 4106±104 | -394±164 | 6.16±0.06 | 75.7±1.0 |
FACE | 4331±251 | 2010±96* | 2261±166 | 3560±80* | -771±180 | 5.80±0.10* | 74.6±0.7 | |
南粳 46NJ46 | Ambient | 4290±81 | 2027±86 | 2263±7 | 3028±90 | -1261±21 | 5.89±0.08 | 73.4±0.5 |
FACE | 4615±149 | 2208±6 | 2407±147 | 3213±14 | -1402±150 | 5.89±0.10 | 72.8±0.5 | |
南粳 5055NJ5055 | Ambient | 3777±61 | 2103±136 | 1674±76 | 3094±165 | -683±105 | 6.04±0.09 | 76.2±0.5 |
FACE | 3792±19 | 2085±55 | 1708±38 | 3186±54 | -606±39 | 6.04±0.06 | 76.5±0.3 | |
桂农占 GNZ | Ambient | 4075±118 | 3355±197 | 720±84 | 6345±197 | 2270±135 | 6.40±0.08 | 89.1±0.6 |
FACE | 4114±115 | 3527±32 | 587±134 | 6031±416 | 1917±302 | 6.60±0.19 | 89.2±0.9 | |
中早 39ZZ39 | Ambient | 3448±97 | 2751±10 | 697±106 | 5886±184 | 2437±176 | 6.33±0.07 | 88.9±0.5 |
FACE | 3862±114 | 3006±9** | 856±123 | 5929±196 | 2067±83 | 6.34±0.14 | 87.4±1.3 | |
丰优香占 FYXZ | Ambient | 4483±333 | 2559±56 | 1924±283 | 4414±87 | -69±252 | 6.29±0.15 | 86.5±2.1 |
FACE | 4442±146 | 2431±77 | 2011±95 | 4179±121 | -267±46 | 6.16±0.04 | 86.3±0.0 | |
隆两优1988 LLY1988 | Ambient | 3197±55 | 1940±38 | 1257±91 | 3877±74 | 680±129 | 5.89±0.06 | 88.6±0.4 |
FACE | 3753±205 | 2157±90 | 1596±127 | 4080±116 | 327±140 | 6.00±0.04 | 87.1±0.4 | |
甬优1540 YY1540 | Ambient | 4539±212 | 2685±150 | 1855±84 | 4948±163 | 409±81 | 6.20±0.04 | 86.2±1.2 |
FACE | 3731±69* | 2174±89* | 1557±136 | 4277±68* | 546±119 | 6.00±0.04* | 87.8±0.4 | |
ANOVA | ||||||||
CO2品种Variety (V)CO2×V | 0.655 | 0.505 | 0.339 | 0.073 | 0.019 | 0.336 | 0.473 | |
< 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | ||
0.044 | 0.003 | 0.446 | 0.025 | 0.394 | 0.121 | 0.694 | ||
Ambient: 环境CO2浓度; FACE: 开放式空气CO2浓度增高。**和*分别表示同一品种2个CO2处理间在P < 0.01和P < 0.05水平差异显著。加粗数字表示达P < 0.05和P < 0.01显著水平。Ambient: ambient CO2 concentration; FACE: free air CO2 enrichment; ** and * indicate significant difference between two CO2 treatments for the same variety at P < 0.01 and P < 0.05 levels, respectively. Bold numbers indicate significant levels of P < 0.05 or P < 0.01. PV: peak viscosity; HV: hot viscosity; BD: breakdown; CV: cold viscosity; SB: setback; PT: peak time; GT: gelatinization temperature. |
下载: 导出CSV
参考文献
[1] | WMO (World Meteorological Organization). WMO Greenhouse Gas Bulletin. The State of Greenhouse Gases in the Atmosphere Based on Global Observations Through 2016[R]. WMO, 2017: 13-14 |
[2] | PACHAUR R K, ALLEN M R, BARROS V R. Climate Change 2014: Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ, and ⅢI to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Geneva: IPCC, 2014 |
[3] | GRiSP (Global Rice Science Partnership). Rice Almanac[M]. 4th ed. Los Ba?os, Philippines: International Rice Research Institute, 2013 |
[4] | ZHU C W, KOBAYASHI K, LOLADZE I, et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries[J]. Science Advances, 2018, 4(5): eaaq1012 doi: 10.1126/sciadv.aaq1012 |
[5] | 董桂春, 王余龙, 黄建晔, 等. 稻米品质性状对开放式空气二氧化碳浓度增高的响应[J]. 应用生态学报, 2004, 15(7): 1217-1222 doi: 10.3321/j.issn:1001-9332.2004.07.023 DONG G C, WANG Y L, HUANG J Y, et al. Response of rice grain quality traits to free-air CO2 enrichment[J]. Chinese Journal of Applied Ecology, 2004, 15(7): 1217-1222 doi: 10.3321/j.issn:1001-9332.2004.07.023 |
[6] | 景立权, 赖上坤, 王云霞, 等. 大气CO2浓度和温度互作对水稻生长发育的影响[J]. 生态学报, 2016, 36(14): 4254-4265 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201614005.htm JING L Q, LAI S K, WANG Y X, et al. Combined effect of increasing atmospheric CO2 concentration and temperature on growth and development of rice: A research review[J]. Acta Ecologica Sinica, 2016, 36(14): 4254-4265 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201614005.htm |
[7] | 王云霞, 杨连新. 水稻品质对主要气候变化因子的响应[J]. 农业环境科学学报, 2020, 39(4): 822-833 http://d.wanfangdata.com.cn/periodical/nyhjbh202004019 WANG Y X, YANG L X. Response of rice quality to major climate change factors[J]. Journal of Agro-Environment Science, 2020, 39(4): 822-833 http://d.wanfangdata.com.cn/periodical/nyhjbh202004019 |
[8] | 邵在胜, 赵轶鹏, 宋琪玲, 等. 大气CO2和O3浓度升高对水稻'汕优63'叶片光合作用的影响[J]. 中国生态农业学报, 2014, 22(4): 422-429 http://www.cnki.com.cn/Article/CJFDTotal-ZGTN201404008.htm SHAO Z S, ZHAO Y P, SONG Q L, et al. Impact of elevated atmospheric carbon dioxide and ozone concentrations on leaf photosynthesis of 'Shanyou 63' hybrid rice[J]. Chinese Journal of Eco-Agriculture, 2014, 22(4): 422-429 http://www.cnki.com.cn/Article/CJFDTotal-ZGTN201404008.htm |
[9] | 耿春梅, 王宗爽, 任丽红, 等. 大气臭氧浓度升高对农作物产量的影响[J]. 环境科学研究, 2014, 27(3): 239-245 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201403003.htm GENG C M, WANG Z S, REN L H, et al. Study on the impact of elevated atmospheric ozone on crop yield[J]. Research of Environmental Sciences, 2014, 27(3): 239-245 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201403003.htm |
[10] | 王亚波, 魏思雨, 孙月, 等. 大气臭氧胁迫对稻季土壤Cd生物有效性的影响[J]. 农业环境科学学报, 2017, 36(8): 1462-1469 http://www.cnki.com.cn/Article/CJFDTotal-NHBH201708002.htm WANG Y B, WEI S Y, SUN Y, et al. Atmospheric ozone stress improving biological availability of Cd in soil during the rice season[J]. Journal of Agro-Environment Science, 2017, 36(8): 1462-1469 http://www.cnki.com.cn/Article/CJFDTotal-NHBH201708002.htm |
[11] | 黄益宗, 隋立华, 王玮, 等. O3对水稻叶片氮代谢、脯氨酸和谷胱甘肽含量的影响[J]. 生态毒理学报, 2013, 8(1): 69-76 https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201301012.htm HUANG Y Z, SUI L H, WANG Y, et al. Effects of ozone on nitrogen metabolism, proline and glutathione of rice leaf[J]. Asian Journal of Ecotoxicology, 2013, 8(1): 69-76 https://www.cnki.com.cn/Article/CJFDTOTAL-STDL201301012.htm |
[12] | 周三妮, 王云霞, 赖上坤, 等. FACE下二氧化碳、施氮量、密度和锌肥对Ⅱ优084稻米锌浓度及有效性的影响[J]. 中国水稻科学, 2014, 28(3): 289-296 doi: 10.3969/j.issn.1001-7216.2014.03.008 ZHOU S N, WANG Y X, LAI S K, et al. Effects of elevated CO2 concentration, nitrogen fertilization, planting density and foliar Zn application on rice Zn concentration and bioavailability of supper rice Ⅱyou 084 under FACE conditions[J]. Chinese Journal of Rice Science, 2014, 28(3): 289-296 doi: 10.3969/j.issn.1001-7216.2014.03.008 |
[13] | 周三妮, 赖上坤, 吴艳珍, 等. 大气CO2浓度升高和叶面施锌对武运粳23稻米不同部位锌浓度和有效性的影响[J]. 农业环境科学学报, 2014, 33(9): 1686-1692 http://d.wanfangdata.com.cn/Periodical_nyhjbh201409003.aspx ZHOU S N, LAI S K, WU Y Z, et al. Effects of elevated CO2 concentration and foliar Zn application on Zn concentration and bioavailability in different parts of grains of rice Wuyunjing 23[J]. Journal of Agro-Environment Science, 2014, 33(9): 1686-1692 http://d.wanfangdata.com.cn/Periodical_nyhjbh201409003.aspx |
[14] | MYERS S S, ZANOBETTI A, KLOOG I, et al. Increasing CO2 threatens human nutrition[J]. Nature, 2014, 510(7503): 139-142 doi: 10.1038/nature13179 |
[15] | 周晓冬, 赖上坤, 周娟, 等. 开放式空气中CO2浓度增高(FACE)对常规粳稻蛋白质和氨基酸含量的影响[J]. 农业环境科学学报, 2012, 31(7): 1264-1270 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201207005.htm ZHOU X D, LAI S K, ZHOU J, et al. The impact of free air CO2 enrichment (FACE) on protein and amino acids concentration of conventional japonica rice[J]. Journal of Agro-Environment Science, 2012, 31(7): 1264-1270 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201207005.htm |
[16] | ZHU C W, KOBAYASHI K, LOLADZE I, et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries[J]. Science Advances, 2018, 4(5): eaaq1012 doi: 10.1126/sciadv.aaq1012 |
[17] | 王东明, 陶冶, 朱建国, 等. 稻米外观与加工品质对大气CO2浓度升高的响应[J]. 中国水稻科学, 2019, 33(4): 338-346 http://www.cnki.com.cn/Article/CJFDTotal-ZGSK201904007.htm WANG D M, TAO Y, ZHU J G, et al. Responses of rice appearance and processing quality to elevated atmospheric CO2 concentration[J]. Chinese Journal of Rice Science, 2019, 33(4): 338-346 http://www.cnki.com.cn/Article/CJFDTotal-ZGSK201904007.htm |
[18] | YANG L X, WANG Y L, DONG G C, et al. The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice[J]. Field Crops Research, 2007, 102(2): 128-140 doi: 10.1016/j.fcr.2007.03.006 |
[19] | LONG S P, AINSWORTH E A, LEAKEY A D B, et al. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations[J]. Science, 2006, 312(5782): 1918-1921 doi: 10.1126/science.1114722 |
[20] | 刘钢, 韩勇, 朱建国, 等. 稻麦轮作FACE系统平台Ⅰ. 系统结构与控制[J]. 应用生态学报, 2002, 13(10): 1253-1258 doi: 10.3321/j.issn:1001-9332.2002.10.012 LIU G, HAN Y, ZHU J G, et al. Rice-wheat rotational FACE platform Ⅰ. System structure and control[J]. Chinese Journal of Applied Ecology, 2002, 13(10): 1253-1258 doi: 10.3321/j.issn:1001-9332.2002.10.012 |
[21] | HU S W, WANG Y X, YANG L X. Response of rice yield traits to elevated atmospheric CO2 concentration and its interaction with cultivar, nitrogen application rate and temperature: a meta-analysis of 20 years FACE studies[J]. Science of the Total Environment, 2020, doi:10.1016/j.scitotenv. 2020.142797 |
[22] | 李军营, 徐长亮, 谢辉, 等. CO2浓度升高加快水稻灌浆前期籽粒的生长发育进程[J]. 作物学报, 2006, 32(6): 905-910 doi: 10.3321/j.issn:0496-3490.2006.06.020 LI J Y, XU C L, XIE H, et al. Acceleration of grain growth and development process by FACE during early grain filling stage of rice (Oryza sativa L. )[J]. Acta Agronomica Sinica, 2006, 32(6): 905-910 doi: 10.3321/j.issn:0496-3490.2006.06.020 |
[23] | 胡健, 杨连新, 周娟, 等. 开放式空气CO2浓度增高(FACE)对水稻灌浆动态的影响[J]. 中国农业科学, 2007, 40(11): 2443-2451 doi: 10.3321/j.issn:0578-1752.2007.11.007 HU J, YANG L X, ZHOU J, et al. Effect of free-air CO2 enrichment (FACE) on grain filling dynamics of rice[J]. Scientia Agricultura Sinica, 2007, 40(11): 2443-2451 doi: 10.3321/j.issn:0578-1752.2007.11.007 |
[24] | 舒庆尧, 吴殿星, 夏英武, 等. 稻米淀粉RVA谱特征与食用品质的关系[J]. 中国农业科学, 1998, 31(3): 25-29 http://www.cqvip.com/QK/90161X/199803/3102149.html SHU Q Y, WU D X, XIA Y W, et al. Relationship between rice starch RVA profile characteristics and edible quality in Oryza sativa L. [J]. Scientia Agricultura Sinica, 1998, 31(3): 25-29 http://www.cqvip.com/QK/90161X/199803/3102149.html |
[25] | 胡培松, 翟虎渠, 唐绍清, 等. 利用RVA快速鉴定稻米蒸煮及食味品质的研究[J]. 作物学报, 2004, 30(6): 519-524 doi: 10.3321/j.issn:0496-3490.2004.06.001 HU P S, ZHAI H Q, TANG S Q, et al. Rapid evaluation of rice cooking and palatability quality by RVA profile[J]. Acta Agronomica Sinica, 2004, 30(6): 519-524 doi: 10.3321/j.issn:0496-3490.2004.06.001 |
[26] | 吕川根. 栽培密度和施肥方法对稻米品质影响的研究[J]. 中国水稻科学, 1988, 2(3): 141-144 doi: 10.3321/j.issn:1001-7216.1988.03.007 LYU C G. Effects of crop density and fertilization on rice grain quality (Oryza sativa L. )[J]. Chinese Journal of Rice Science, 1988, 2(3): 141-144 doi: 10.3321/j.issn:1001-7216.1988.03.007 |
[27] | 胡群, 夏敏, 张洪程, 等. 氮肥运筹对钵苗机插优质食味水稻产量及品质的影响[J]. 作物学报, 2017, 43(3): 420-431 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201703012.htm HU Q, XIA M, ZHANG H C, et al. Effect of nitrogen application regime on yield and quality of mechanical pot-seedlings transplanting rice with good taste quality[J]. Acta Agronomica Sinica, 2017, 43(3): 420-431 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201703012.htm |
[28] | 金正勋, 秋太权, 孙艳丽, 等. 氮肥对稻米垩白及蒸煮食味品质特性的影响[J]. 植物营养与肥料学报, 2001, 7(1): 31-35 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF200101004.htm JIN Z X, QIU T Q, SUN Y L, et al. Effects of nitrogen fertilizer on chalkness ratio and cooking and eating quality properties of rice grain[J]. Plant Nutrition and Fertilizer Science, 2001, 7(1): 31-35 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF200101004.htm |
[29] | USUI Y, SAKAI H, TOKIDA T, et al. Heat-tolerant rice cultivars retain grain appearance quality under free-air CO2 enrichment[J]. Rice, 2014, 7(1): 6 doi: 10.1186/s12284-014-0006-5 |
[30] | TAUB D R, MILLER B, ALLEN H. Effects of elevated CO2 on the protein concentration of food crops: A meta-analysis[J]. Global Change Biology, 2008, 14(3): 565-575 doi: 10.1111/j.1365-2486.2007.01511.x |
[31] | PANG J, ZHU J G, XIE Z B, et al. A new explanation of the N concentration decrease in tissues of rice (Oryza sativa L. ) exposed to elevated atmospheric pCO2[J]. Environmental and Experimental Botany, 2006, 57(1/2): 98-105 http://www.sciencedirect.com/science/article/pii/S0098847205000663 |
[32] | 王伟露, 袁嫚嫚, 朱建国, 等. ERF3促根突变体缓解高浓度CO2对粳稻植株氮吸收的负效应[J]. 生态环境学报, 2018, 27(7): 1203-1210 http://www.cqvip.com/main/zcps.aspx?c=1&id=7000731893 WANG W L, YUAN M M, ZHU J G, et al. Evaluation of the impact of large root mutant ERF3 on alleviating negative effect of elevated CO2 on nitrogen uptake of japonica rice[J]. Ecology and Environmental Sciences, 2018, 27(7): 1203-1210 http://www.cqvip.com/main/zcps.aspx?c=1&id=7000731893 |
[33] | UJⅡE K, ISHIMARU K, HIROTSU N, et al. How elevated CO2 affects our nutrition in rice, and how we can deal with it[J]. PLoS One, 2019, 14(3): e0212840 doi: 10.1371/journal.pone.0212840 |