樊廷录2,
刘萌娟3,
陈荣桓1,
梁楚涛1,
程万莉2,
陈延华4,
薛萐1, 5,
杨晓梅1, 5,,
1.西北农林科技大学资源环境学院 杨凌 712100
2.甘肃省农业科学院旱地农业研究所 兰州 730070
3.西北农林科技大学农学院 杨凌 712100
4.北京市农林科学院植物营养与资源研究所 北京 100007
5.西北农林科技大学水土保持研究所/黄土高原土壤侵蚀与旱地农业国家重点实验室 杨凌 712100
基金项目: 甘肃省旱作区水资源高效利用重点实验室基金HNSJJ-2019-03
黄土高原土壤侵蚀与旱地农业国家重点实验室基金A314021402-2017
陕西省引进国外博士专项F2020221008
详细信息
作者简介:黄珊, 主要研究方向为塑料污染对"植被-土壤"体系的影响机制研究。E-mail:15044932719@163.com
通讯作者:杨晓梅, 主要研究方向为农田污染物环境风险评估、土壤侵蚀与污染。E-mail:xiaomei.yang@nwafu.edu.cn
中图分类号:X826计量
文章访问数:87
HTML全文浏览量:95
PDF下载量:40
被引次数:0
出版历程
收稿日期:2020-11-18
录用日期:2021-01-31
网络出版日期:2021-06-22
刊出日期:2021-06-01
Effects of plastic film residues on the photosynthetic characteristics and biomass accumulation of soybean (Glycine max)
HUANG Shan1,,FAN Tinglu2,
LIU Mengjuan3,
CHEN Ronghuan1,
LIANG Chutao1,
CHENG Wanli2,
CHEN Yanhua4,
XUE Sha1, 5,
YANG Xiaomei1, 5,,
1. College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
2. Dry Farming Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
3. College of Agronomy, Northwest A & F University, Yangling 712100, China
4. Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100007, China
5. Institute of Soil and Water Conservation, Northwest A & F University/State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Yangling 712100, China
Funds: the Key Laboratory of Efficient Utilization of Water Resources on Dryland of Gansu ProvinceHNSJJ-2019-03
the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauA314021402-2017
the Talent Program of Shaanxi ProvinceF2020221008
More Information
Corresponding author:YANG Xiaomei, E-mail:xiaomei.yang@nwafu.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:农膜覆盖技术的应用及推广极大地提高了干旱半干旱地区的农业产量,促进了当地农业发展及社会经济效益。然而,由于农膜碎片化程度高、回收难度大、降解周期长,使得残留在土壤中的农膜日益增多,严重威胁着作物生长、土壤健康以及农业可持续发展。尽管农膜残留对土壤质量影响的研究较多,但对于其种类(可降解或不可降解)及残留累积量对作物光生理特征的研究还相对较少。本试验以大豆为研究对象,对比普通聚乙烯(PE)和生物降解(BP)两种农膜(残片大小为0.5~2 cm),研究不同农膜残留累积量(土壤重量的0、0.1%、0.5%、1.0%)下大豆花期及初荚期叶片光合作用光、CO2响应曲线特征及花期、收获期的植株生物量,探讨塑料类型及残留量对大豆光生理特征及生物量累积的影响。结果表明:PE残留导致大豆叶片光补偿点在花期降低23.96%,而初荚期升高51.38%,说明PE残留导致大豆叶片弱光利用能力在花期提升,但在初荚期被抑制。在初荚期,BP残留使光补偿点降低54.82%,且光饱合点升高58.12%,从而提高了叶片强光适应能力,增大了叶片光能利用范围。同时,PE和BP添加使暗呼吸速率分别增长30.56%和22.28%,从而导致干物质消耗增加。土壤中PE、BP残留量的增加,最大光合力分别降低36.49%和23.56%,表明大豆叶片CO2利用能力减弱;CO2补偿点分别降低67.96%和38.91%,从而提高了叶片低浓度CO2的利用能力,并降低光呼吸速率,从而减少了干物质的消耗。此外,不同农膜及残留量处理下,仅在花期0.1%与0.5%残留量的BP处理中,地下生物量随农膜残留量的增加显著降低,其他各处理间地上及地下生物量无明显变化。光响应及CO2响应曲线各拟合参数与生物量的Pearson相关性分析结果表明,收获期PE处理下,地上生物量与光补偿点呈显著负相关,而光呼吸速率、CO2补偿点、初始羧化效率与生物量(地上+地下)的积累有较强相关性。因此,PE农膜残留量增加提高了大豆花期叶片对于弱光的利用能力而减弱初荚期对弱光的利用能力,BP农膜残留量增加则会增强初荚期叶片对弱光的利用,也对大豆叶片适应强光的能力有所提升。
关键词:农膜残留/
大豆/
光合作用光响应曲线/
光合作用CO2响应曲线/
光生理特征/
生物量
Abstract:Agricultural plastic film mulching technology has greatly promoted the development of agricultural production and social economics, especially in the arid and semi-arid areas of China. However, due to high fragmentation, low recovery, and long-term degradation, the accumulation of plastic residues in the soil has increased annually, which threatens crop growth, soil health, and the sustainable development of agriculture. Although many studies have focused on the effects of agricultural film residues on soil quality, the effects of plastic type (degradable or non-degradable) and the cumulative abundance of plastic on crop photosynthetic characteristics have rarely been reported. In this study, soybean (Glycine max) was investigated for its light and carbon dioxide (CO2) response characteristics under different plastic residue addition (polyethylene[PE] and biodegradable plastic[BP] mulch film; plastic size:0.5-2 cm; addition levels:0, 0.1%, 0.5%, and 1.0%) at the flowering and early pod stages. Plant biomass and soil samples were collected at the flowering and harvesting stages to examine the effects of the different plastic residues on plant growth and soil quality. The results showed that the light compensation point (LCP) of soybean leaves decreased by 23.96% at the flowering stage and increased by 51.38% at the beginning of the pod stage in the PE treatment groups, suggesting that the weak light utilization ability of soybean leaves increased at the flowering stage and decreased at the beginning pod stage. LCP decreased by 54.82%, and the light saturation point increased by 58.12% in the BP treatment groups at the beginning of the pod stage, which improved the ability of strong light adaptation and increased the range of light energy utilization. The PE and BP residues increased the dark respiration rate (Rd) by 30.56% and 22.28%, respectively, increasing dry substance consumption. With increasing amounts of plastics, the maximum photosynthetic capacity decreased by 36.49% and 23.56% in the PE and BP treatments, respectively, indicating that the CO2 utilization capacity of soybean was inhibited. Furthermore, the CO2 compensation point (CCP) decreased by 67.96% and 38.91% in the PE and BP treatments, respectively, which indicated the improved CO2 utilization capacity of the leaves at low CO2 levels. The photorespiration rate (Rp) also decreased, reducing dry substance consumption. At the flowering stage in the BP treatment with 0.1% and 0.5% plastic addition, the underground biomass decreased significantly with increased plastic residue (P < 0.05), but there were no significant differences in the aboveground and underground biomass among the other treatments. Pearson correlation analysis was used to analyze the fitting parameters of the light response and CO2 response curves with biomass. At the harvesting stage in the PE treatments, the aboveground biomass was negatively correlated with LCP, whereas Rp, CCP, and the initial carboxylation efficiency were strongly correlated with biomass accumulation (aboveground + underground). Further research is required to identify the mechanisms by which plastic residues affect crop growth, especially for the photosynthetic properties. Such work will enable a better understanding of the ecological risk of microplastics.
Key words:Plastic residue/
Soybean/
Photosynthetic light response curve/
Photosynthetic CO2 response curve/
Photosynthetic characteristics/
Biomass
HTML全文
图1聚乙烯薄膜(PE)和生物降解膜(BP)不同残留条件下大豆叶片光合作用光响应曲线拟合
A和B分别为聚乙烯和生物可降解农膜残留下大豆花期的拟合曲线; C、D分别为聚乙烯和生物可降解农膜残留下大豆初荚期的拟合曲线。CK为无农膜残留处理; 0.1%、0.5%和1.0%为农膜残留量占土壤的质量比。
Figure1.Light response curves of soybean photosynthesis under different treatments of polyethylene film (PE) and biodegradable plastic film (BP) residues in soils
A and B show the light response curves of soybean at the flowering stage under treatments of polyethylene film (PE) and biodegradable plastic film (BP) residues in soils; C and D show the light response curves of soybean at the pod stage under treatments of polyethylene film (PE) and biodegradable plastic film (BP) residues in soils. CK, 0.1%, 0.5% and 1.0% mean adding rates of microplastic of 0, 0.1%, 0.5% and 1.0% of soil weight.
下载: 全尺寸图片幻灯片
图2聚乙烯薄膜(PE)和生物降解膜(BP)不同残留条件下大豆叶片光合作用CO2响应拟合曲线
A和B分别为聚乙烯和生物可降解膜残留下大豆花期的拟合曲线; C、D分别为聚乙烯和生物可降解膜残留下大豆初荚期的拟合曲线。CK为无农膜残留处理; 0.1%、0.5%和1.0%为农膜残留量占土壤的质量比。
Figure2.CO2 response curves of soybean photosynthesis under different treatments of polyethylene film (PE) and biodegradable plastic film (BP) residues in soils
A and B show the CO2 response curves of soybean at the flowering stage under treatments of polyethylene film (PE) and biodegradable plastic film (BP) residues in soils; C and D show the CO2 response curves of soybean at the pod stage under treatments of polyethylene film (PE) and biodegradable plastic film (BP) residues in soils. CK, 0.1%, 0.5% and 1.0% mean adding rates of microplastic of 0, 0.1%, 0.5% and 1.0% of soil weight.
下载: 全尺寸图片幻灯片
图3聚乙烯薄膜(PE)和生物降解膜(BP)不同残留条件下的大豆花期以及初荚期地上部分及地下部分生物量
不同小写字母表示不同处理间差异显著(P < 0.05);无字母表示不同处理间差异不显著(P > 0.05)。
Figure3.Aboveground and underground biomasses of soybean at flowering stage and harvest stage under different treatments of polyethylene film (PE) and biodegradable plastic film (BP) residues in soils
Different lowercase letters indicate significant differences among different treatments (P < 0.05 level); Bars without letter are no significantly different (P > 0.05).
下载: 全尺寸图片幻灯片
表1聚乙烯薄膜(PE)和生物降解膜(BP)不同残留条件下大豆叶片光合作用光响应曲线拟合参数
Table1.Parameters of light response curves of soybean photosynthesis under different treatments of polyethylene film (PE) and biodegradable plastic film (BP) residues in soils
生育期 Growth stage | 农膜类型 Film type | 残留量 Residue amount (%) | AQY (μmol·m?2·s?1) | Pmax (μmol·m?2·s?1) | LSP (μmol·m?2·s?1) | LCP (μmol·m?2·s?1) | Rd (μmol·m?2·s?1) | R2 | |
花期 Flowering stage | 0 (CK) | 0.0561±0.0168b | 16.65±0.91b | 1457.92±402.5a | 55.67±8.27ab | 2.78±0.48bc | 0.9986 | ||
PE | 0.1 | 0.0627±0.0093ab | 13.85±3.61b | 1679.12±361.23a | 68.86±12.11a | 3.66±0.67ab | 0.9952 | ||
0.5 | 0.0727±0.0105ab | 19.33±3.57ab | 1572.64±305.55a | 43.49±10.66b | 2.83±0.31bc | 0.9981 | |||
1.0 | 0.0629±0.0233ab | 20.29±1.02ab | 1294.08±184.57a | 42.33±6.35b | 2.72±0.55bc | 0.9913 | |||
BP | 0.1 | 0.0953±0.0314a | 25.85±7.64a | 1425.51±307.67a | 48.32±4.27b | 3.98±0.8a | 0.9984 | ||
0.5 | 0.0430±0.0078b | 15.80±5.16b | 1492.74±313.36a | 70.76±7.38a | 2.75±0.45bc | 0.9894 | |||
1.0 | 0.0643±0.0047ab | 16.60±3.2b | 1489.46±398.97a | 66.68±4.49a | 3.79±0.22ab | 0.9973 | |||
初荚期 Initial pod stage | 0 (CK) | 0.0638±0.0165a | 14.36±4.28a | 1747.71±498.24d | 26.25±5.03b | 1.50±0.16b | 0.9916 | ||
PE | 0.1 | 0.0501±0.0074a | 15.51±1.25a | 1766.79±323.96d | 33.48±1.16b | 1.58±0.27b | 0.9985 | ||
0.5 | 0.0327±0.006a | 14.84±3.43a | 2092.45±703.71bcd | 53.99±7.40a | 1.60±0.05ab | 0.9960 | |||
1.0 | 0.0480±0.0192a | 19.05±2.65a | 1867.31±161.32cd | 50.34±6.26a | 2.16±0.60a | 0.9952 | |||
BP | 0.1 | 0.0599±0.0282a | 9.07±1.44b | 4172.99±547.6a | 14.97±1.98c | 1.63±0.18ab | 0.9961 | ||
0.5 | 0.0650±0.0073a | 17.22±0.35a | 3358.69±284.79ab | 11.86±2.77c | 1.93±0.20a | 0.9980 | |||
1.0 | 0.0628±0.0065a | 17.49±1.06a | 2741.94±632.62bc | 31.16±0.94b | 1.81±0.21ab | 0.9939 | |||
AQY:初始量子效率; Pmax:最大净光合速率; LSP:光饱和点; LCP:光补偿点; Rd:暗呼吸速率; R2:决定系数。不同小写字母表示不同农膜类型不同残留量间在P < 0.05水平差异显著。AQY: initial quantum efficiency; Pmax: maximum net photosynthetic; LSP: light saturation point; LCP: light compensation point; Rd: dark respiration rate; R2: coefficient of determination. Different lowercase letters indicate significant differences among different residue amounts of different film types at P < 0.05 level. |
下载: 导出CSV
表2聚乙烯薄膜(PE)和生物降解膜(BP)不同残留条件下大豆叶片光合作用CO2响应曲线拟合参数
Table2.Parameters of CO2 response curves of soybean photosynthesis under different treatments of polyethylene film (PE) and biodegradable plastic film (BP) residues in soils
生育期 Growth stage | 农膜类型 Film type | 残留量 Residue amount (%) | η (μmol·m?2·s?1) | Amax (μmol·m?2·s?1) | CSP (μmol·m?2·s?1) | CCP (μmol·m?2·s?1) | Rp (μmol·m?2·s?1) | R2 | |
花期 Flowering stage | 0 (CK) | 0.2059±0.0745b | 31.12±2.76ab | 859.29±281.98ab | 60.34±6.68a | 11.30±2.54b | 0.9617 | ||
PE | 0.1 | 0.2362±0.0548b | 36.16±4.51a | 989.55±136.80ab | 63.27±2.33a | 12.60±1.93b | 0.9982 | ||
0.5 | 0.2329±0.0766b | 33.17±0.48ab | 1103.56±225.15ab | 61.27±3.71a | 10.46±5.42b | 0.9926 | |||
1.0 | 0.1824±0.0196b | 38.70±3.52a | 1243.05±45.60a | 66.48±12.78a | 10.41±1.02b | 0.9911 | |||
BP | 0.1 | 0.4925±0.0983a | 30.81±2.67ab | 1186.31±116.27a | 56.67±3.02a | 18.82±2.37a | 0.9833 | ||
0.5 | 0.2758±0.0890b | 27.06±7.54b | 787.38±65.75b | 65.99±7.69a | 16.45±3.80ab | 0.9400 | |||
1.0 | 0.2604±0.0501b | 27.05±5.38b | 902.16±127.19ab | 69.49±9.11a | 12.60±3.71b | 0.9091 | |||
初荚期 Initial pod stage | 0 (CK) | 0.2172±0.0578a | 31.71±2.66a | 949.54±179.39a | 120.62±15.53a | 19.33±6.61b | 0.9654 | ||
PE | 0.1 | 0.1342±0.0280ab | 29.31±3.30ab | 1008.64±31.95a | 118.39±19.77a | 39.39±18.51a | 0.9690 | ||
0.5 | 0.1075±0.0000bc | 20.14±3.31c | 1061.74±343.64a | 78.64±10.77bc | 11.14±1.55b | 0.9765 | |||
1.0 | 0.0522±0.0135c | 30.65±5.38a | 1388.51±485.36a | 38.65±12.35d | 4.38±1.54b | 0.9579 | |||
BP | 0.1 | 0.1411±0.0430ab | 28.90±1.38ab | 948.71±204.36a | 90.09±5.46abc | 10.86±2.50b | 0.9810 | ||
0.5 | 0.1166±0.0296bc | 28.30±1.07ab | 1081.58±136.54a | 73.69±13.24c | 7.40±2.36b | 0.9802 | |||
1.0 | 0.0848±0.0154bc | 24.48±3.66bc | 1232.68±357.43a | 96.78±3.08abc | 7.44±0.91b | 0.8296 | |||
η:初始羧化效率; Amax:最大光合能力; CSP: CO2饱和点; CCP: CO2补偿点; Rp:光呼吸速率; R2:决定系数。不同小写字母表示不同农膜类型不同残留量间在P < 0.05水平差异显著。η: initial carboxylation efficiency; Amax: maximum photosynthetic capacity; CSP: CO2 saturation point; CCP: CO2 compensation point; Rp: photorespiration rate; R2: coefficient of determination. Different lowercase letters indicate significant differences among different residue amounts of different film types at P < 0.05 level. |
下载: 导出CSV
表3聚乙烯薄膜(PE)和生物降解膜(BP)残留下大豆地上部分和地下部分生物量与光合作物光响应和CO2响应曲线参数的相关性
Table3.Pearson correlation analysis between soybean biomass (aboveground and underground) and photosynthesis curve fitting parameters under different treatments of polyethylene film (PE) and biodegradable plastic film (BP) residues in soils
生育期 Growth stage | 农膜类型 Film type | 生物量 Biomass | 光响应曲线拟合参数 Photosynthesis-light response curve parameter | CO2响应曲线拟合参数 Photosynthesis-CO2 response curve parameter | |||||||||
AQY | Pmax | LSP | LCP | Rd | η | Amax | CSP | CCP | Rp | ||||
花期 Flowering stage | PE | 地上Aboveground | 0.218 | 0.287 | 0.516 | ?0.388 | ?0.383 | ?0.508 | 0.042 | 0.120 | 0.350 | 0.140 | |
地下Underground | ?0.094 | 0.171 | ?0.277 | ?0.282 | ?0.433 | ?0.440 | 0.680* | 0.454 | 0.407 | ?0.251 | |||
BP | 地上Aboveground | 0.059 | 0.128 | 0.241 | ?0.348 | 0.005 | 0.046 | 0.166 | 0.291 | ?0.160 | ?0.027 | ||
地下Underground | ?0.064 | ?0.426 | ?0.090 | 0.240 | 0.254 | ?0.450 | 0.106 | 0.082 | 0.424 | ?0.577* | |||
收获期 Harvest stage | PE | 地上Aboveground | 0.464 | ?0.225 | 0.043 | ?0.761** | ?0.533 | 0.700* | 0.262 | ?0.331 | 0.580* | 0.555 | |
地下Underground | 0.000 | 0.138 | ?0.296 | ?0.177 | ?0.163 | ?0.028 | 0.192 | 0.226 | ?0.051 | 0.259 | |||
BP | 地上Aboveground | 0.551 | ?0.269 | ?0.302 | 0.074 | 0.092 | 0.368 | 0.195 | ?0.307 | 0.286 | 0.412 | ||
地下Underground | ?0.431 | ?0.407 | ?0.128 | ?0.117 | ?0.276 | 0.613* | 0.173 | ?0.523 | 0.166 | 0.458 | |||
AQY:初始量子效率; Pmax:最大净光合速率; LSP:光饱和点; LCP:光补偿点; Rd:暗呼吸速率; η:初始羧化效率; Amax:最大光合能力; CSP: CO2饱和点; CCP: CO2补偿点; Rp:光呼吸速率。*和**分别表示在P < 0.05和P < 0.01显著相关。AQY: initial quantum efficiency; Pmax: maximum net photosynthetic; LSP: light saturation point; LCP: light compensation point; Rd: dark respiration rate; η: initial carboxylation efficiency; Amax: maximum photosynthetic capacity; CSP: CO2 saturation point; CCP: CO2 compensation point; Rp: photorespiration rate. * and ** mean significant correlation at P < 0.05 and P < 0.01 levels, respectively. |
下载: 导出CSV
参考文献
[1] | FAN T L, WANG S Y, LI Y P, et al. Film mulched furrow-ridge water harvesting planting improves agronomic productivity and water use efficiency in rainfed areas[J]. Agricultural Water Management, 2019, 217:1-10 doi: 10.1016/j.agwat.2019.02.031 |
[2] | QI Y L, YANG X M, PELAEZ A M, et al. Macro- and micro-plastics in soil-plant system:Effects of plastic mulch film residues on wheat (Triticum aestivum) growth[J]. Science of the Total Environment, 2018, 645:1048-1056 doi: 10.1016/j.scitotenv.2018.07.229 |
[3] | FARMER J, ZHANG B, JIN X X, et al. Long-term effect of plastic film mulching and fertilization on bacterial communities in a brown soil revealed by high through-put sequencing[J]. Archives of Agronomy and Soil Science, 2017, 63(2):230-241 doi: 10.1080/03650340.2016.1193667 |
[4] | 张丹, 刘宏斌, 马忠明, 等.残膜对农田土壤养分含量及微生物特征的影响[J].中国农业科学, 2017, 50(2):310-319 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201702010.htm ZHANG D, LIU H B, MA Z M, et al. Effect of residual plastic film on soil nutrient contents and microbial characteristics in the farmland[J]. Scientia Agricultura Sinica, 2017, 50(2):310-319 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201702010.htm |
[5] | 王志超, 李仙岳, 史海滨, 等.农膜残留对土壤水动力参数及土壤结构的影响[J].农业机械学报, 2015, 46(5):101-106 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201505015.htm WANG Z C, LI X Y, SHI H B, et al. Effects of residual plastic film on soil hydrodynamic parameters and soil structure[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5):101-106 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201505015.htm |
[6] | RILLIG M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46(12):6453-6454 http://europepmc.org/abstract/med/22676039 |
[7] | HUANG Y, LIU Q, JIA W Q, et al. Agricultural plastic mulching as a source of microplastics in the terrestrial environment[J]. Environmental Pollution, 2020, 260:114096 doi: 10.1016/j.envpol.2020.114096 |
[8] | IQBAL S, XU J C, ALLEN S D, et al. Unraveling consequences of soil micro- and nano-plastic pollution on soil-plant system:Implications for nitrogen (N) cycling and soil microbial activity[J]. Chemosphere, 2020, 260:127578 doi: 10.1016/j.chemosphere.2020.127578 |
[9] | YANG X M, LWANGA E H, BEMANI A, et al. Biogenic transport of glyphosate in the presence of LDPE microplastics:a mesocosm experiment[J]. Environmental Pollution, 2019, 245:829-835 doi: 10.1016/j.envpol.2018.11.044 |
[10] | RILLIG M C, DE SOUZA MACHADO A A, LEHMANN A, et al. Evolutionary implications of microplastics for soil biota[J]. Environmental Chemistry, 2019, 16(1):3 doi: 10.1071/EN18118 |
[11] | 徐荣乐, 海热提.塑料地膜对小麦种子萌发及幼苗抗氧化酶系统的影响[J].生态环境学报, 2010, 19(11):2702-2707 doi: 10.3969/j.issn.1674-5906.2010.11.032 XU R L, HAI R T. Effects of plastic film on seed germination and the activities of antioxidant enzyme of wheat (Triticum aestivum L.) seedlings[J]. Ecology and Environmental Sciences, 2010, 19(11):2702-2707 doi: 10.3969/j.issn.1674-5906.2010.11.032 |
[12] | 程红玉, 肖占文, 赵芸晨, 等.地膜残留对春玉米生长发育和产量的影响[J].农业开发与装备, 2019(9):108-109 doi: 10.3969/j.issn.1673-9205.2019.09.082 CHENG H Y, XIAO Z W, ZHAO Y C, et al. Effects of plastic film residue on growth and yield of spring maize[J]. Agricultural Development & Equipments, 2019(9):108-109 doi: 10.3969/j.issn.1673-9205.2019.09.082 |
[13] | KASIRAJAN S, NGOUAJIO M. Polyethylene and biodegradable mulches for agricultural applications:a review[J]. Agronomy for Sustainable Development, 2012, 32(2):501-529 |
[14] | 黄少辉, 李俊良, 王继芳, 等.残留地膜对马铃薯生长及产量的影响[J].中国马铃薯, 2019, 33(1):28-33 doi: 10.3969/j.issn.1672-3635.2019.01.005 HUANG S H, LI J L, WANG J F, et al. Effects of residual plastic film in soil on growth and yield of potato[J]. Chinese Potato Journal, 2019, 33(1):28-33 doi: 10.3969/j.issn.1672-3635.2019.01.005 |
[15] | 高青海, 陆晓民.残留地膜对番茄幼苗形态和生理特性的影响[J].热带亚热带植物学报, 2011, 19(5):425-429 doi: 10.3969/j.issn.1005-3395.2011.05.006 GAO Q H, LU X M. Effects of plastic film residue on morphology and physiological characteristics of tomato seedlings[J]. Journal of Tropical and Subtropical Botany, 2011, 19(5):425-429 doi: 10.3969/j.issn.1005-3395.2011.05.006 |
[16] | 祖米来提·吐尔干, 林涛, 王亮, 等.地膜残留对连作棉田土壤氮素、根系形态及产量形成的影响[J].棉花学报, 2017, 29(4):374-384 https://www.cnki.com.cn/Article/CJFDTOTAL-MHXB201704008.htm ZUMILAITI T, LIN T, WANG L, et al. Effects of plastic film residues on soil nitrogen content, root distribution, and cotton yield during the long-term continuous cropping of cotton[J]. Cotton Science, 2017, 29(4):374-384 https://www.cnki.com.cn/Article/CJFDTOTAL-MHXB201704008.htm |
[17] | 朱永官.土壤-植物系统中的微界面过程及其生态环境效应[J].环境科学学报, 2003, 23(2):205-210 doi: 10.3321/j.issn:0253-2468.2003.02.010 ZHU Y G. Micro-interfacial processes in soil-plant systems and their environmental impacts[J]. Acta Scientiae Circumstantiae, 2003, 23(2):205-210 doi: 10.3321/j.issn:0253-2468.2003.02.010 |
[18] | 宋书宏, 王文斌, 孙恩玉, 等.大豆单产327.2公斤研究初报[J].大豆通报, 2001, (2):7-23 doi: 10.3969/j.issn.1674-3547.2001.02.006 SONG S H, WANG W B, SUN E Y, et al. First report of soybean 327.2 kg per unit area of Mu[J]. Soybean Bulletin, 2001, (2):7-23 doi: 10.3969/j.issn.1674-3547.2001.02.006 |
[19] | 沈允钢.植物生命活动与人类未来[J].科技导报, 2011, 29(32):3 https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201132006.htm SHEN Y G. Botanical vital-activity and human future[J]. Science & Technology Review, 2011, 29(32):3 https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201132006.htm |
[20] | 程建峰, 陈根云, 沈允钢.植物叶片特征与光合性能的关系[J].中国生态农业学报, 2012, 20(4):466-473 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201204015.htm CHENG J F, CHEN G Y, SHEN Y G. Relational analysis of leaf characteristics and photosynthetic capacities of plants[J]. Chinese Journal of Eco-Agriculture, 2012, 20(4):466-473 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201204015.htm |
[21] | SHARP R E, MATTHEWS M A, BOYER J S. Kok effect and the quantum yield of photosynthesis:light partially inhibits dark respiration[J]. Plant Physiology, 1984, 75(1):95-101 doi: 10.1104/pp.75.1.95 |
[22] | 周玉梅, 韩士杰, 张军辉, 等.不同CO2浓度下长白山3种树木幼苗的光合特性[J].应用生态学报, 2002, 13(1):41-44 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200201008.htm ZHOU Y M, HAN S J, ZHANG J H, et al. Photosynthetic characteristics of three tree species seedlings in Changbai Mountain under different CO2 concentrations[J]. Chinese Journal of Applied Ecology, 2002, 13(1):41-44 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200201008.htm |
[23] | 刘宇锋, 萧浪涛, 童建华, 等.非直线双曲线模型在光合光响应曲线数据分析中的应用[J].中国农学通报, 2005, 21(8):76-79 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200508020.htm LIU Y F, XIAO L T, TONG J H, et al. Primary application on the non-rectangular Hyperbola model for photosynthetic light-response curve[J]. Chinese Agricultural Science Bulletin, 2005, 21(8):76-79 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200508020.htm |
[24] | 刘杨杨, 李俊, 于强, 等.甘蔗叶片光合CO2响应参数分析及其品种间差异[J].中国农业气象, 2019, 40(10):637-646 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201910004.htm LIU Y Y, LI J, YU Q, et al. Sugarcane leaf photosynthetic CO2 responses parameters and their difference among varieties[J]. Chinese Journal of Agrometeorology, 2019, 40(10):637-646 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201910004.htm |
[25] | 叶子飘, 王怡娟, 王令俐, 等.大豆叶片光呼吸对光强和CO2浓度的响应[J].生态学杂志, 2017, 36(9):2535-2541 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201709020.htm YE Z P, WANG Y J, WANG L L, et al. Response of photorespiration of Glycine max leaves to light intensity and CO2 concentration[J]. Chinese Journal of Ecology, 2017, 36(9):2535-2541 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201709020.htm |
[26] | 任红旭, 陈雄, 吴冬秀. CO2浓度升高对干旱胁迫下蚕豆光合作用和抗氧化能力的影响[J].作物学报, 2001, 27(6):729-736 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200106007.htm REN H X, CHEN X, WU D X. Effects of elevated CO2 on photosynthesis and antioxidative ability of broad B ean plants grown under drought condition[J]. Acta Agronomica Sinica, 2001, 27(6):729-736 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200106007.htm |
[27] | DAMESIN C. Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica:from the seasonal pattern to an annual balance[J]. New Phytologist, 2003, 158(3):465-475 |
[28] | 熊飞璇, 张金文.农用地膜残留对作物生长发育的危害及其防治途径[J].农业科技与信息, 2016, (31):80-82 https://www.cnki.com.cn/Article/CJFDTOTAL-NYKJ201631048.htm XIONG F X, ZHANG J W. Damage of agricultural film on crop growth and control measures[J]. Information of Agricultural Science and Technology, 2016, (31):80-82 https://www.cnki.com.cn/Article/CJFDTOTAL-NYKJ201631048.htm |
[29] | 叶子飘, 于强.光合作用光响应模型的比较[J].植物生态学报, 2008, 32(6):1356-1361 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB200806019.htm YE Z P, YU Q. Comparison of new and several classical models of photosynthesis in response to irradiance[J]. Journal of Plant Ecology, 2008, 32(6):1356-1361 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB200806019.htm |
[30] | 叶子飘, 王建林.植物光合-光响应模型的比较分析[J].井冈山学院学报, 2009, 30(2):9-13 https://www.cnki.com.cn/Article/CJFDTOTAL-JGSS200902003.htm YE Z P, WANG J L. Comparison and analysis of light-response models of plant photosynthesis[J]. Journal of Jinggangshan University, 2009, 30(2):9-13 https://www.cnki.com.cn/Article/CJFDTOTAL-JGSS200902003.htm |
[31] | 郭春芳, 孙云, 张木清.土壤水分胁迫对茶树光合作用-光响应特性的影响[J].中国生态农业学报, 2008, 16(6):1413-1418 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200806015.htm GUO C F, SUN Y, ZHANG M Q. Effect of soil water stress on photosynthetic light response curve of tea plant (Camellia sinensis)[J]. Chinese Journal of Eco-Agriculture, 2008, 16(6):1413-1418 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200806015.htm |
[32] | 肖光辉, 卢红玲, 彭新德.土壤镉污染对农作物的危害研究进展[J].湖南农业科学, 2015, (9):83-86 https://www.cnki.com.cn/Article/CJFDTOTAL-HNNK201509028.htm XIAO G H, LU H L, PENG X D. Research advances in harmful effects of soil Cd pollution on crops[J]. Hunan Agricultural Sciences, 2015, (9):83-86 https://www.cnki.com.cn/Article/CJFDTOTAL-HNNK201509028.htm |
[33] | READ D J, LEAKE J R, PEREZ-MORENO J. Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes[J]. Canadian Journal of Botany, 2004, 82(8):1243-1263 http://europepmc.org/abstract/AGR/IND43654234 |
[34] | 张曦文, 刘铁东, 程国侦, 等.不同光处理对玉米叶片光响应曲线和二氧化碳响应曲线的影响[J].辽宁农业科学, 2018, (1):13-16 https://www.cnki.com.cn/Article/CJFDTOTAL-LNNY201801003.htm ZHANG X W, LIU T D, CHENG G Z, et al. Effects of different light treatments on light response curve and carbon dioxide response curve of maize leaves[J]. Liaoning Agricultural Sciences, 2018, (1):13-16 https://www.cnki.com.cn/Article/CJFDTOTAL-LNNY201801003.htm |
[35] | 张婷婷, 郭太君.白檀光合作用光补偿点和光饱和点的研究[J].黑龙江科学, 2017, 8(2):156-157 https://www.cnki.com.cn/Article/CJFDTOTAL-HELJ201702073.htm ZHANG T T, GUO T J. Study on light compensation point and light saturation point of photosynthesis of Symplocos paniculata[J]. Heilongjiang Science, 2017, 8(2):156-157 https://www.cnki.com.cn/Article/CJFDTOTAL-HELJ201702073.htm |
[36] | FARQUHAR G D, CAEMMERER S, BERRY J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1):78-90 http://www.bioone.org/servlet/linkout?suffix=i0022-0493-99-1-222-b04&dbid=16&doi=10.1603%2F0022-0493(2006)099[0222%3APRORAS]2.0.CO%3B2&key=10.1007%2FBF00386231 |
[37] | 许克福, 黄成林, 庄艳.洒金东瀛珊瑚光合生理特性的研究[J].安徽农业大学学报, 2009, 36(4):618-622 https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU200904021.htm XU K F, HUANG C L, ZHUANG Y. Photosynthetic physiological characters of Aucuba japonica f. variegata[J]. Journal of Anhui Agricultural University, 2009, 36(4):618-622 https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU200904021.htm |
[38] | 林萌萌, 孙涛, 尹继乾, 等.不同生物降解地膜对花生光合特性和产量的影响[J].中国农学通报, 2015, 31(27):190-197 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201527035.htm LIN M M, SUN T, YIN J Q, et al. Effects of different biodegradable films mulching on the photosynthetic characteristics and yield of peanut[J]. Chinese Agricultural Science Bulletin, 2015, 31(27):190-197 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201527035.htm |
[39] | 张占琴, 魏建军, 战勇, 等.不同可降解地膜对棉花生理及产量的影响[J].新疆农业科学, 2010, 47(10):1947-1951 https://www.cnki.com.cn/Article/CJFDTOTAL-XJNX201010009.htm ZHANG Z Q, WEI J J, ZHAN Y, et al. Effects of different degradable plastic film on yield and physiology of cotton[J]. Xinjiang Agricultural Sciences, 2010, 47(10):1947-1951 https://www.cnki.com.cn/Article/CJFDTOTAL-XJNX201010009.htm |
[40] | 叶子飘, 段世华, 康华靖.不同CO2浓度下大豆叶片的水分利用效率比较[J].核农学报, 2019, 33(5):1006-1015 https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201905021.htm YE Z P, DUAN S H, KANG H J. Comparison of water use efficiency for Glycine max leaves under different CO2 concentration[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(5):1006-1015 https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201905021.htm |
[41] | LI W H. Photosynthetic characteristics of leaf and non-leaf organs of soybenn Glycine max (L.) Merr.[J]. Shanghai:Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 2000 http://www.irgrid.ac.cn/handle/1471x/42438 |
[42] | 王东, 于振文, 李延奇, 等.施氮量对济麦20旗叶光合特性和蔗糖合成及籽粒产量的影响[J].作物学报, 2007, 33(6):903-908 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200706005.htm WANG D, YU Z W, LI Y Q, et al. Effects of nitrogen fertilizer rate on photosynthetic character, sucrose synthesis in flag leaves and grain yield of strong gluten wheat Jimai 20[J]. Acta Agronomica Sinica, 2007, 33(6):903-908 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200706005.htm |
[43] | 叶子飘, 于强.光合作用对胞间和大气CO2响应曲线的比较[J].生态学杂志, 2009, 28(11):2233-2238 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200911013.htm YE Z P, YU Q. A comparison of response curves of winter wheat photosynthesis to flag leaf inte rcellular and air CO2 concentrations[J]. Chinese Journal of Ecology, 2009, 28(11):2233-2238 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200911013.htm |
[44] | 叶子飘, 康华靖, 杨小龙.不同CO2浓度下番茄幼苗叶片的光能利用效率[J].应用生态学报, 2016, 27(8):2543-2550 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201608020.htm YE Z P, KANG H J, YANG X L. Light-use efficiency of tomato seedling leaves at different CO2 concentrations[J]. Chinese Journal of Applied Ecology, 2016, 27(8):2543-2550 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201608020.htm |
[45] | 赵素荣, 张书荣, 徐霞, 等.农膜残留污染研究[J].农业环境与发展, 1998, 15(3):7-10 https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ803.002.htm ZHAO S R, ZHANG S R, XU X, et al. Study on the agricultural plastic sheeting residue pollution[J]. Agro-Environment and Development, 1998, 15(3):7-10 https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ803.002.htm |
[46] | 何文清, 严昌荣, 赵彩霞, 等.我国地膜应用污染现状及其防治途径研究[J].农业环境科学学报, 2009, 28(3):533-538 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200903025.htm HE W Q, YAN C R, ZHAO C X, et al. Study on the pollution by plastic mulch film and its countermeasures in China[J]. Journal of Agro-Environment Science, 2009, 28(3):533-538 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200903025.htm |
[47] | MENG F R, YANG X M, RIKSEN M, et al. Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics[J]. Science of the Total Environment, 2021, 755:142516 http://www.sciencedirect.com/science/article/pii/S0048969720360459 |
[48] | DE SOUZA MACHADO A A, LAU C W, TILL J, et al. Impacts of microplastics on the soil biophysical environment[J]. Environmental Science & Technology, 2018, 52(17):9656-9665 http://smartsearch.nstl.gov.cn/paper_detail.html?id=e2fcd33a1fc9d7c1f48dc3e8bf8a13e3 |
[49] | HUERTA LWANGA E, GERTSEN H, GOOREN H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris[J]. Environmental Pollution, 2017, 220:523-531 http://www.sciencedirect.com/science/article/pii/S026974911631572X |