杨柯,
姜春霞,
张伟,
黄明镜,
刘化涛,
闫六英,
刘恩科,
翟广谦,
王娟玲,
山西农业大学山西有机旱作农业研究院/黄土高原东部旱作节水技术国家地方联合工程实验室/有机旱作山西省重点实验室 太原 030031
基金项目: 国家重点研发计划项目2016YFD0300305
山西省重点研发计划重点项目201703D211002
山西省农业科学院应用基础研究计划项目YCX2020YQ59
山西省农业科学院应用基础研究计划项目YBSJJ2016
详细信息
作者简介:张冬梅, 主要研究方向为旱作栽培技术研究。E-mail: 13803401159@163.com
通讯作者:王娟玲, 主要研究方向为旱作节水技术研究。E-mail: wjl_bb@163.com
中图分类号:S513;S352计量
文章访问数:168
HTML全文浏览量:8
PDF下载量:209
被引次数:0
出版历程
收稿日期:2020-07-21
录用日期:2020-11-09
刊出日期:2021-05-01
Effect of planting density on lodging change of spring maize after physiological maturity
ZHANG Dongmei,YANG Ke,
JIANG Chunxia,
ZHANG Wei,
HUANG Mingjing,
LIU Huatao,
YAN Liuying,
LIU Enke,
ZHAI Guangqian,
WANG Juanling,
Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University/National Local Joint Engineering Laboratory of Water-Saving Techniques for Dry Farming in the Eastern Loess Plateau/Key Laboratory of Organic Dry Farming of Shanxi Province, Taiyuan 030031, China
Funds: the National Key Research and Development Project of China2016YFD0300305
the Key Projects of Researchand Development Plan of Shanxi Province201703D211002
the Applied Basic Research Project of Shanxi Academy of AgriculturalSciencesYCX2020YQ59
the Applied Basic Research Project of Shanxi Academy of AgriculturalSciencesYBSJJ2016
More Information
Corresponding author:WANG Juanling, E-mail: wjl_bb@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:晋中盆地热量资源丰富,后期可供春玉米立秆脱水时间充足,抗倒性是该区域实施春玉米机械粒收的关键因素。增密种植与立秆延期收获是机械粒收技术发展和推广的重要措施,而玉米生长后期倒伏是限制种植密度进一步提升的重要因素,如何合理选择种植密度同时兼顾高产和抗倒就成为该区域实施春玉米机械粒收技术面临的重要问题。为此于2017—2019年在山西省农业科学院东阳试验示范基地,以29个玉米主栽品种和已审定、待审定、有潜力的宜机收品种为材料,分析了春玉米3个种植密度(6.0万株·hm-2、7.5万株·hm-2和9.0万株·hm-2)下生理成熟后倒伏情况。结果表明,随着种植密度增加,春玉米生理成熟期平均倒折率分别为0.4%、1.2%和2.5%,生理成熟后平均倒折率呈显著(P < 0.05)增加,且每推迟10 d玉米倒折率分别平均增加0.2个、0.7个和1.5个百分点。根据拟合方程,以GB/T 21962—2008规定的玉米机械粒收条件倒折率小于5%为标准,9.0万株·hm-2仅可立秆至10月2日,7.5万株·hm-2和6.0万株·hm-2可充分利用当地积温立秆脱水至11月。根据收获期产量和倒折率双向平均法,3年都稳定表现出高产抗倒的品种为‘金科玉3306’(7.5万株·hm-2)、‘金科玉3306’(9.0万株·hm-2)、‘迪卡517’(7.5万株·hm-2)和‘华农887’(7.5万株·hm-2),收获期平均产量为14 091.8 kg·hm-2,平均倒折率为1.7%,可推荐为该区域春玉米适宜机械粒收的品种和密度。一般可根据降水年型、灌溉条件以及品种耐密性等,合理选择6.0万株·hm-2或7.5万株·hm-2两种种植密度,以实现高产抗倒,最终提高春玉米机械粒收产量和质量。
关键词:春玉米/
密度/
机械粒收/
生理成熟/
倒伏
Abstract:Heat resources are abundant in the Jinzhong Basin and can be used for dehydration in the late growth stage of spring maize. Lodging resistance is the key limiting factor for direct mechanical grain harvesting in this region. High planting density and harvest delay are important factors for the development and popularization of mechanical grain harvesting technology, but lodging in the late growth stage of maize limits the increase in planting density. One problem with implementing spring maize mechanical grain harvesting technology in the Jinzhong Basin is the selection of an appropriate planting density with high yield and lodging resistance. A field experiment was conducted in the Dongyang Experiment and Demonstration Base of Shanxi Academy of Agricultural Sciences from 2017 to 2019, with three planting densities (6.0×104, 7.5×104, and 9.0×104 plants·hm-2) and 29 maize cultivars. Changes in lodging at three planting densities were analyzed after the spring maize matured physiologically. The results showed that the average lodging rate for three planting densities at physiological maturity was 0.4% (6.0×104 plants·hm-2), 1.2% (7.5×104 plants·hm-2), and 2.5% (9.0×104 plants·hm-2). After physiological maturity, the average lodging rate increased significantly (P < 0.05). For every 10 days of delay, the lodging rate for three planting densities increased by 0.2 (6.0×104 plants·hm-2), 0.7 (7.5×104 plants·hm-2) and 1.5 (9.0×104 plants·hm-2) percentage points. The national standard GB/T 21962-2008 mentions that the lodging rate of maize should be less than 5% under mechanical grain harvesting conditions. According to the fitting equation, the lodging rate for the 9.0×104 plants·hm-2 density was higher than 5% after October 2. However, the lodging rates for the 6.0×104 plants·hm-2 and 7.5×104 plants·hm-2 densities were less than 5% until November. Therefore, maize grown at 6.0×104 plants·hm-2 and 7.5×104 plants·hm-2 could make full use of the local accumulated temperature for dehydration. According to the two-way average method with yield and lodging rate of the harvest period, the varieties and densities with high yield and lodging resistance in three years were always 'Jinkeyu3306' (7.5×104 plants·hm-2), 'Jinkeyu3306' (9.0×104 plants·hm-2), 'Dika517' (7.5×104 plants·hm-2), and 'Huanong887' (7.5×104 plants·hm-2). The average yield was 14 091.8 kg·hm-2, and the average lodging rate was 1.7%. These varieties and densities of spring maize were suitable for mechanical grain harvesting in the region. The planting densities of 6.0×104 plants·hm-2 or 7.5×104 plants·hm-2 were suitable according to the annual precipitation, irrigation conditions, and the density tolerance of the varieties to achieve high yield and lodging resistance.
Key words:Spring maize/
Density/
Mechanical grain harvest/
Physiological maturity/
Lodging
HTML全文
图12017—2019年与多年(1980—2010年)平均玉米生长期及立秆期逐旬平均温度和降水量变化
Figure1.Average ten-day temperature and precipitation from April to December in 2017?2019 and the mean data from 1980 to 2010 during spring maize growth season and after physiological maturity
下载: 全尺寸图片幻灯片
表12017—2019年试验玉米品种
Table1.Maize cultivars of experiment from 2017 to 2019
年份Year | 品种Cultivar | 品种数Cultivars number |
2017 | 郑单958、粒收1号、金科玉3306、迪卡517、东单913、华农887、广德5号、张1453、华美1号、Q9916、DF6396、LS2042、先玉1622、豫单9953、龙生668、并单72、先玉696、kx9384、中航102、德育919Zhengdan 958, Lishou 1, Jinkeyu 3306, Dika 517, Dongdan 913, Huanong 887, Guangde 5, Zhang 1453, Huamei 1, Q9916, DF6396, LS2042, Xianyu 1622, Yudan 9953, Longsheng 668, Bingdan 72, Xianyu 696, kx9384, Zhonghang 102, Deyu 919 | 20 |
2018 | 郑单958、粒收1号、金科玉3306、迪卡517、华美1号、泽玉8911、东单913、华农887、广德5号、京农科728、Q9916、DF6396、DF607、利单638、科沃674、中地88Zhengdan 958, Lishou 1, Jinkeyu 3306, Dika 517, Huamei 1, Zeyu 8911, Dongdan 913, Huanong 887, Guangde 5, Jingnongke 728, Q9916, DF6396, DF607, Lidan 638, Kewo 674, Zhongdi 88 | 16 |
2019 | 郑单958、粒收1号、金科玉3306、迪卡517、华美1号、中地88、东单913、华农887、广德5号、京农科728、Q9916、DF6396、DF607、DF617、瑞普909、泽玉8911、大丰30Zhengdan 958, Lishou 1, Jinkeyu 3306, Dika 517, Huamei 1, Zhongdi 88, Dongdan 913, Huanong 887, Guangde 5, Jingnongke 728, Q9916, DF6396, DF607, DF617, Ruipu 909, Zeyu 8911, Dafeng 30 | 17 |
下载: 导出CSV
表22017—2019年不同春玉米品种生理成熟后可利用立秆脱水时间
Table2.Available dehydration time in the field after physiological maturity of different spring maize cultivars in 2017?2019
2017 | 2018 | 2019 | |||||||
品种Cultivar | 生理成熟期(月-日)Physiological maturity (month-day) | 品种Cultivar | 生理成熟期(月-日) Physiological maturity (month-day) | 品种Cultivar | 生理成熟期(月-日) Physiological maturity (month-day) | ||||
郑单958 Zhengdan 958 | 09-28 | 郑单958 Zhengdan 958 | 09-17 | 郑单958 Zhengdan 958 | 09-14 | ||||
粒收1号Lishou 1 | 09-27 | 粒收1号Lishou 1 | 09-20 | 粒收1号Lishou 1 | 09-14 | ||||
金科玉3306 Jinkeyu 3306 | 09-26 | 金科玉3306 Jinkeyu 3306 | 09-13 | 金科玉3306 Jinkeyu 3306 | 09-13 | ||||
迪卡517 Dika 517 | 09-26 | 迪卡517 Dika 517 | 09-13 | 迪卡517 Dika 517 | 09-10 | ||||
东单913 Dongdan 913 | 09-25 | 东单913 Dongdan 913 | 09-11 | 东单913 Dongdan 913 | 09-07 | ||||
华农887 Huanong 887 | 09-20 | 华农887 Huanong 887 | 09-12 | 华农887 Huanong 887 | 09-09 | ||||
广德5号Guangde 5 | 09-21 | 广德5号Guangde 5 | 09-06 | 广德5号Guangde 5 | 09-08 | ||||
张1453 Zhang 1453 | 09-23 | 京农科728 Jingnongke 728 | 09-06 | 京农科728 Jingnongke 728 | 08-30 | ||||
华美1号Huamei 1 | 09-19 | 华美1号Huamei 1 | 09-06 | 华美1号Huamei 1 | 09-04 | ||||
Q9916 | 09-25 | Q9916 | 09-11 | Q9916 | 09-11 | ||||
DF6396 | 09-27 | DF6396 | 09-17 | DF6396 | 09-12 | ||||
LS2042 | 09-20 | DF607 | 09-11 | DF607 | 09-10 | ||||
先玉1622 Xianyu 1622 | 09-21 | 中地88 Zhongdi 88 | 09-20 | 中地88 Zhongdi 88 | 09-16 | ||||
豫单9953 Yudan 9953 | 09-19 | 泽玉8911 Zeyu 8911 | 09-13 | 泽玉8911 Zeyu 8911 | 09-11 | ||||
龙生668 Longsheng 668 | 09-23 | 利单638 Lidan 638 | 09-13 | 瑞普909 Ruipu 909 | 09-11 | ||||
并单72 Bingdan 72 | 09-23 | 科沃674 Kewo 674 | 09-14 | DF617 | 09-10 | ||||
先玉696 Xianyu 696 | 09-23 | 大丰30 Dafeng 30 | 09-04 | ||||||
kx9384 | 09-19 | ||||||||
中航102 Zhonghang 102 | 09-26 | ||||||||
德育919 Deyu 919 | 09-19 | ||||||||
平均Average | 09-23 | 09-13 | 09-11 | ||||||
50%置信区间50% confidence interval | 09-20—09-26 | 09-11—09-14 | 09-09—09-12 | ||||||
可利用立秆脱水天数Days ofavailable dehydration (d) | 34~40 | 46~49 | 48~51 |
下载: 导出CSV
表32017年不同品种、密度春玉米生理成熟后不同时间(月-日)的倒折率
Table3.Lodging rates of different spring maize cultivars under different densities in different date (month-day) after physiological maturity in 2017?
表42018年不同品种、密度春玉米生理成熟后不同时间(月-日)的倒折率
Table4.Lodging rates of different spring maize cultivars under different densities in different date (month-day) after physiological maturity in 2018?
表52019年不同品种、密度春玉米生理成熟后不同时间(月-日)的倒折率
Table5.Lodging rates of different spring maize cultivars under different densities in different date (month-day) after physiological maturity in 2019?
表62017—2019年不同种植密度春玉米生理成熟后最迟立秆期预测
Table6.Prediction of the latest standing stage after physiological maturity of spring maize with different densities in 2017?2019
年份Year | 种植密度Plant density (×104plants·hm–2) | 拟合方程Fitting equation | R2 | 样本量Sample size | 生理成熟期倒折率Lodging rate at physiological maturity (%) | 每推迟10 d增加的倒折率Lodging rate increasing every 10 days after physiological maturity (%) | 生理成熟期(月-日)Physiological maturity(month-day) | 预测最迟立秆期(月-日) Prediction of the latest standing stage (month-day) | ||
2017 | 6.0 | y=0.0285x+0.5721 | 0.9573 | 60 | 0.6 | 0.3 | 09-23 | — | ||
7.5 | y=0.1191x+1.7525 | 0.9463 | 60 | 1.8 | 1.2 | 09-23 | 10-20 | |||
9.0 | y=0.2527x+4.0682 | 0.9120 | 60 | 4.1 | 2.5 | 09-23 | 09-26 | |||
2018 | 6.0 | y=0.0304x+0.4957 | 0.9657 | 84 | 0.5 | 0.3 | 09-13 | — | ||
7.5 | y=0.0559x+1.6802 | 0.9732 | 84 | 1.7 | 0.6 | 09-13 | 11-10 | |||
9.0 | y=0.1078x+3.1327 | 0.9857 | 84 | 2.1 | 1.1 | 09-13 | 09-30 | |||
2019 | 6.0 | y=0.0104x-0.107 | 0.8887 | 87 | 0.0 | 0.1 | 09-11 | — | ||
7.5 | y=0.0258x-0.1602 | 0.9670 | 87 | 0.0 | 0.3 | 09-11 | — | |||
9.0 | y=0.0777x+0.3659 | 0.9853 | 87 | 0.4 | 0.8 | 09-11 | 11-09 | |||
平均Average | 6.0 | 0.4 | 0.2 | 09-15 | — | |||||
7.5 | 1.2 | 0.7 | 09-15 | 11-09 | ||||||
9.0 | 2.5 | 1.5 | 09-15 | 10-02 | ||||||
“—”为11月10日之后。“—” shows after Nov. 10. |
下载: 导出CSV
表72017—2019年不同品种、年份及种植密度下的春玉米产量
Table7.Yields of spring maize with different densities and cultivars in different years in 2017-2019?
表82017—2019年春玉米收获期产量和倒折率双向平均法分类和筛选
Table8.Classification and selection results of two-way average method with yield and lodging rate of harvest period of spring maize in 2017-2019
参考文献
[1] | 李少昆. 我国玉米机械粒收质量影响因素及粒收技术的发展方向[J]. 石河子大学学报: 自然科学版, 2017, 35(3): 265-272 https://www.cnki.com.cn/Article/CJFDTOTAL-SHZN201703001.htm LI S K. Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology[J]. Journal of Shihezi University: Natural Science, 2017, 35(3): 265-272 https://www.cnki.com.cn/Article/CJFDTOTAL-SHZN201703001.htm |
[2] | 李少昆, 王克如, 谢瑞芝, 等. 实施密植高产机械化生产实现玉米高产高效协同[J]. 作物杂志, 2016, (4): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ201604001.htm LI S K, WANG K R, XIE R Z, et al. Implementing higher population and full mechanization technologies to achieve high yield and high efficiency in maize production[J]. Crops, 2016, (4): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ201604001.htm |
[3] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 21962-2008玉米收获机械技术条件[S]. 北京: 中国标准出版社, 2008 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Management Committee. GB/T 21962-2008 Technical Requirements for Maize Combine Harvester[S]. Beijing: China Standards Press, 2008 |
[4] | 王克如, 李少昆. 玉米机械粒收破碎率研究进展[J]. 中国农业科学, 2017, 50(11): 2018-2026 doi: 10.3864/j.issn.0578-1752.2017.11.007 WANG K R, LI S K. Progresses in research on grain broken rate by mechanical grain harvesting[J]. Scientia Agricultura Sinica, 2017, 50(11): 2018-2026 doi: 10.3864/j.issn.0578-1752.2017.11.007 |
[5] | 薛军, 李璐璐, 谢瑞芝, 等. 倒伏对玉米机械粒收田间损失和收获效率的影响[J]. 作物学报, 2018, 44(12): 1774-1781 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201812006.htm XUE J, LI L L, XIE R Z, et al. Effect of lodging on maize grain losing and harvest efficiency in mechanical grain harvest[J]. Acta Agronomica Sinica, 2018, 44(12): 1774-1781 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201812006.htm |
[6] | 薛军, 王群, 李璐璐, 等. 玉米生理成熟后倒伏变化及其影响因素[J]. 作物学报, 2018, 44(12): 1782-1792 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201812007.htm XUE J, WANG Q, LI L L, et al. Changes of maize lodging after physiological maturity and its influencing factors[J]. Acta Agronomica Sinica, 2018, 44(12): 1782-1792 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201812007.htm |
[7] | 薛军, 董朋飞, 胡树平, 等. 玉米倒伏对机械粒收损失的影响及倒伏减损收获技术[J]. 玉米科学, 2020, 28(6): 116-120 XUE J, DONG P F, HU S P, et al. Effect of lodging on maize grain loss and loss reduction technology in mechanical grain harvest[J]. Journal of Maize Sciences, 2020, 28(6): 116-120 |
[8] | 薛军, 王克如, 谢瑞芝, 等. 玉米生长后期倒伏研究进展[J]. 中国农业科学, 2018, 51(10): 1845-1854 doi: 10.3864/j.issn.0578-1752.2018.10.004 XUE J, WANG K R, XIE R Z, et al. Research progress of maize lodging during late stage[J]. Scientia Agricultura Sinica, 2018, 51(10): 1845-1854 doi: 10.3864/j.issn.0578-1752.2018.10.004 |
[9] | 潘伟光, 巩志磊, 卢海阳. 农户玉米收获环节采用机械化的影响因素分析——基于山东省的实证研究[J]. 中国农学通报, 2014, 30(14): 165-172 doi: 10.11924/j.issn.1000-6850.2013-2713 PAN W G, GONG Z L, LU H Y. Factors analysis on producers' application of mechanized maize harvesting-based on empirical research of Shandong Province[J]. Chinese Agricultural Science Bulletin, 2014, 30(14): 165-172 doi: 10.11924/j.issn.1000-6850.2013-2713 |
[10] | 宫帅, 郭正宇, 张中东, 等. 山西玉米子粒含水率与机械粒收收获质量的关系分析[J]. 玉米科学, 2018, 26(4): 63-67 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201804011.htm GONG S, GUO Z Y, ZHANG Z D, et al. Analysis of relationship between maize grain moisture content and quality of mechanical grain harvest in Shanxi[J]. Journal of Maize Sciences, 2018, 26(4): 63-67 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201804011.htm |
[11] | 李洪, 阎晓光, 王国梁, 等. 山西省春玉米机械粒收品种筛选与大田示范[J]. 玉米科学, 2018, 26(5): 117-122 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201805020.htm LI H, YAN X G, WANG G L, et al. Cultivars selection of high yield spring maize suitable for mechanical kernel harvest and field demonstration in Shanxi[J]. Journal of Maize Sciences, 2018, 26(5): 117-122 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201805020.htm |
[12] | 钮笑晓, 张洁, 姚宏亮, 等. 山西省玉米适籽粒直收品种筛选试验研究[J]. 中国农学通报, 2017, 33(24): 20-26 doi: 10.11924/j.issn.1000-6850.casb17040048 NIU X X, ZHANG J, YAO H L, et al. Selection of mechanical harvest maize varieties in Shanxi Province[J]. Chinese Agricultural Science Bulletin, 2017, 33(24): 20-26 doi: 10.11924/j.issn.1000-6850.casb17040048 |
[13] | 姜春霞, 杨柯, 张冬梅, 等. 山西中晚熟区春玉米宜粒收品种筛选试验[J]. 山西农业科学, 2019, 47(10): 1778-1782 doi: 10.3969/j.issn.1002-2481.2019.10.21 JIANG C X, YANG K, ZHANG D M, et al. Study on mechanically harvesting maize cultivar selection in medium-late maturity region of Shanxi Province[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(10): 1778-1782 doi: 10.3969/j.issn.1002-2481.2019.10.21 |
[14] | 马晓君, 路明远, 邢春景, 等. 群体密度对夏玉米穗下茎秆性状及抗倒伏力学特性的影响[J]. 玉米科学, 2018, 26(4): 118-125 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201804020.htm MA X J, LU M Y, XING C J, et al. Effects of planting density on stalk and lodging-resistance in summer maize[J]. Journal of Maize Sciences, 2018, 26(4): 118-125 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201804020.htm |
[15] | 刘晓林, 马晓君, 豆攀, 等. 种植密度对川中丘陵夏玉米茎秆性状及产量的影响[J]. 中国生态农业学报, 2017, 25(3): 356-364 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201703006.htm LIU X L, MA X J, DOU P, et al. Effect of planting density on stem characteristics and yield of summer maize in the Hilly Central Sichuan Basin, China[J]. Chinese Journal of Eco-Agriculture, 2017, 25(3): 356-364 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201703006.htm |
[16] | 徐田军, 吕天放, 陈传永, 等. 种植密度和植物生长调节剂对玉米茎秆性状的影响及调控[J]. 中国农业科学, 2019, 52(4): 629-638 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201904005.htm XU T J, LYU T F, CHEN C Y, et al. Effects of plant density and plant growth regulator on stalk traits of maize and their regulation[J]. Scientia Agricultura Sinica, 2019, 52(4): 629-638 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201904005.htm |
[17] | 王荣焕, 徐田军, 赵久然, 等. 播期和密度对玉米子粒机收主要性状的影响[J]. 玉米科学, 2017, 25(3): 94-98 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201703018.htm WANG R H, XU T J, ZHAO J R, et al. Effects of sowing date and planting density on maize grain mechanical harvesting related traits[J]. Journal of Maize Sciences, 2017, 25(3): 94-98 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201703018.htm |
[18] | 郭书磊, 陈娜娜, 齐建双, 等. 不同密度下玉米倒伏相关性状与产量的研究[J]. 玉米科学, 2018, 26(5): 71-77 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201805012.htm GUO S L, CHEN N N, QI J S, et al. Study on the relationship between yield and lodging traits of maize under different planting densities[J]. Journal of Maize Sciences, 2018, 26(5): 71-77 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201805012.htm |
[19] | 曹冰, 朱紫薇, 单娟, 等. 氮肥与密度对夏玉米生理特性、产量及氮肥偏生产力和抗倒性的影响[J]. 山东农业科学, 2019, 51(6): 97-101 https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201906020.htm CAO B, ZHU Z W, SHAN J, et al. Effects of nitrogen fertilizer and planting density on physiological characteristics, yield, nitrogen partial factor productivity and lodging resistance of summer maize[J]. Shandong Agricultural Sciences, 2019, 51(6): 97-101 https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201906020.htm |
[20] | 刘青松, 肖宇, 徐玉鹏, 等. 玉米生理成熟后田间生长性状随站秆时间变化的研究[J]. 内蒙古农业大学学报: 自然科学版, 2019, 40(2): 19-25 https://www.cnki.com.cn/Article/CJFDTOTAL-NMGM201902004.htm LIU Q S, XIAO Y, XU Y P, et al. Study on traits of spring maize with standing time in field after physiological ripening[J]. Journal of Inner Mongolia Agricultural University: Natural Science Edition, 2019, 40(2): 19-25 https://www.cnki.com.cn/Article/CJFDTOTAL-NMGM201902004.htm |
[21] | THOMISON P R, MULLEN R W, LIPPS P E, et al. Corn response to harvest date as affected by plant population and hybrid[J]. Agronomy Journal, 2011, 103(6): 1765-1772 doi: 10.2134/agronj2011.0147 |
[22] | 高尚, 明博, 李璐璐, 等. 黄淮海夏玉米籽粒脱水与气象因子的关系[J]. 作物学报, 2018, 44(12): 1755-1763 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201812004.htm GAO S, MING B, LI L L, et al. Relationship between grain dehydration and meteorological factors in the Yellow-Huai-Hai Rivers summer maize[J]. Acta Agronomica Sinica, 2018, 44(12): 1755-1763 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201812004.htm |
[23] | 李少昆, 王克如, 王延波, 等. 辽宁中部地区玉米机械粒收质量及其限制因素研究[J]. 作物杂志, 2018, (3): 162-167 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ201803026.htm LI S K, WANG K R, WANG Y B, et al. The quality of mechanical harvesting maize grain and its influencing factors in central Liaoning Province[J]. Crops, 2018, (3): 162-167 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ201803026.htm |
[24] | 王永宏, 赵如浪, 李红燕, 等. 宁夏引/扬黄灌区玉米密植高产低水分粒收技术模式探索[J]. 玉米科学, 2019, 27(3): 122-126 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201903019.htm WANG Y H, ZHAO R L, LI H Y, et al. Exploration on technology mode of grain mechanical harvest under the condition of low grain moisture and dense planting in Ningxia Yellow River irrigation area[J]. Journal of Maize Sciences, 2019, 27(3): 122-126 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201903019.htm |
[25] | 张万旭, 明博, 王克如, 等. 基于品种熟期和籽粒脱水特性的机收粒玉米适宜播期与收获期分析[J]. 中国农业科学, 2018, 51(10): 1890-1898 doi: 10.3864/j.issn.0578-1752.2018.10.008 ZHANG W X, MING B, WANG K R, et al. Analysis of sowing and harvesting allocation of maize based on cultivar maturity and grain dehydration characteristics[J]. Scientia Agricultura Sinica, 2018, 51(10): 1890-1898 doi: 10.3864/j.issn.0578-1752.2018.10.008 |
[26] | 高巍, 陈志, 黄玉祥, 等. 吉林省农户采用玉米机械化收获的影响因素分析[J]. 农业机械学报, 2012, 43(S1): 175-179 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX2012S1035.htm GAO W, CHEN Z, HUANG Y X, et al. Analysis of influencing factors on farmers' adoption of maize mechanized harvesting in Jilin Province[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(S1): 175-179 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX2012S1035.htm |
[27] | NOVACEK M J, MASON S C, GALUSHA T D, et al. Twin rows minimally impact irrigated maize yield, morphology, and lodging[J]. Agronomy Journal, 2013, 105(1): 268-276 doi: 10.2134/agronj2012.0301 |
[28] | XUE J, GOU L, ZHAO Y S, et al. Effects of light intensity within the canopy on maize lodging[J]. Field Crops Research, 2016, 188: 133-141 doi: 10.1016/j.fcr.2016.01.003 |
[29] | 勾玲, 黄建军, 张宾, 等. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688-1695 doi: 10.3321/j.issn:0496-3490.2007.10.019 GOU L, HUANG J J, ZHANG B, et al. Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize[J]. Acta Agronomica Sinica, 2007, 33(10): 1688-1695 doi: 10.3321/j.issn:0496-3490.2007.10.019 |
[30] | 高增贵, 陈捷, 邹庆道, 等. 玉米穗、茎腐病病原学相互关系及发病条件的研究[J]. 沈阳农业大学学报, 1999, 30(3): 215-218 https://www.cnki.com.cn/Article/CJFDTOTAL-SYNY199903008.htm GAO Z G, CHEN J, ZOU Q D, et al. Study on relationship of pathogen types with condition for disease occurrence maize ear rot and stalk rot[J]. Journal of Shenyang Agricultural University, 1999, 30(3): 215-218 https://www.cnki.com.cn/Article/CJFDTOTAL-SYNY199903008.htm |
[31] | 刘鑫, 谢瑞芝, 牛兴奎, 等. 种植密度对东北地区不同年代玉米生产主推品种抗倒伏性能的影响[J]. 作物杂志, 2012, (5): 126-130 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ201205034.htm LIU X, XIE R Z, NIU X K, et al. Effects of planting density on lodging resistance performance of maize varieties of different eras in north-east China[J]. Crops, 2012, (5): 126-130 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ201205034.htm |
[32] | 许莹莹, 马青美, 宋希云, 等. 不同玉米品种倒伏抗性与产量相关性状的聚类和相关分析[J]. 玉米科学, 2019, 27(5): 15-21 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201905003.htm XU Y Y, MA Q M, SONG X Y, et al. Cluster and correlation analysis of lodging-resistance and yield related traits in different maize varieties[J]. Journal of Maize Sciences, 2019, 27(5): 15-21 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201905003.htm |
[33] | 王金涛, 董心亮, 肖宇, 等. 基于扩散理论的华北春玉米生理成熟后籽粒脱水过程分析[J]. 中国生态农业学报(中英文), 2020, 28(4): 545-557 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0408&flag=1 WANG J T, DONG X L, XIAO Y, et al. Analysis of kernel dry down process after physiological maturity of spring maize based on diffusion theory in the North China[J]. Chinese Journal of Eco-Agriculture, 2020, 28(4): 545-557 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0408&flag=1 |
[34] | 邓妍, 王创云, 赵丽, 等. 群体密度对玉米茎秆性状、土壤水分的影响及其与产量、倒伏率的关系[J]. 华北农学报, 2017, 32(5): 216-223 https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB201705039.htm DENG Y, WANG C Y, ZHAO L, et al. Effects of population density on the stem traits and soil moisture in maize and their correlation with yield and lodging rate[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(5): 216-232 https://www.cnki.com.cn/Article/CJFDTOTAL-HBNB201705039.htm |