张玉铭1,,,
张丽娟2,
胡春胜1,
董文旭1,
李晓欣1,
王玉英1,
刘秀萍1,
邢力1, 2,
韩建1, 2
1.中国科学院遗传与发育生物学研究所农业资源研究中心/河北省土壤生态学重点实验室/中国科学院农业水资源重点 实验室 石家庄 050022
2.河北农业大学资源与环境科学学院 保定 071000
基金项目: 国家重点研发计划项目2016YFD0300808
国家重点研发计划项目2016YFD0200307
河北省重点研发计划项目19226438D
国家自然科学基金项目41571291
详细信息
作者简介:孙雪, 主要从事农田生态系统养分循环研究。E-mail: sunxue1901@163.com
通讯作者:张玉铭, 主要研究方向为农田生态系统养分循环与平衡及其环境效应。E-mail: ymzhang@sjziam.ac.cn
中图分类号:S153;S154.36计量
文章访问数:126
HTML全文浏览量:25
PDF下载量:58
被引次数:0
出版历程
收稿日期:2020-09-10
录用日期:2020-12-20
刊出日期:2021-08-01
Effects of long-term exogenous organic material addition on the organic carbon composition of soil aggregates in farmlands of North China
SUN Xue1, 2,,ZHANG Yuming1,,,
ZHANG Lijuan2,
HU Chunsheng1,
DONG Wenxu1,
LI Xiaoxin1,
WANG Yuying1,
LIU Xiuping1,
XING Li1, 2,
HAN Jian1, 2
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Hebei Key Laboratory of Soil Ecology/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang 050022, China
2. College of Resources and Environmental Sciences, Agricultural University of Hebei, Baoding 071000, China
Funds: the National Key R & D Program of China2016YFD0300808
the National Key R & D Program of China2016YFD0200307
the Key R & D Program of Hebei Province19226438D
the National Natural Science Foundation of China41571291
More Information
Corresponding author:ZHANG Yuming, E-mail: ymzhang@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:土壤有机碳和团聚体对土壤肥力、作物产量、农业和环境发挥着重要作用,是土壤肥力的核心和可持续农业的基础。本研究依托中国科学院栾城农业生态系统试验站18年野外长期有机质物料和矿质肥料配施试验,开展不同施肥模式对土壤团聚体组成以及各组分有机碳在团聚体中分布影响的研究,为阐明不同农业管理措施下土壤有机碳的物理保护机制提供依据。试验共设6个处理:对照(CK)、单施秸秆(S)、单施有机粪肥(M)、单施化肥(NPK)、化肥配施秸秆(SNPK)和化肥配施有机粪肥(MNPK)。利用干筛法将全土筛分为大团聚体(> 2 mm)、小团聚体(0.25~2 mm)和微团聚体(< 0.25 mm)3种粒径团聚体,分别测定不同处理下全土及3种粒级团聚体中总有机碳(TOC)、可溶性有机碳(DOC)、酸解活性有机碳(AC)、惰性有机碳(ROC)和易氧化有机碳(LOC)含量。结果表明:施肥对土壤团聚体分布及稳定性有显著影响,SNPK显著提高了粒径> 0.25 mm团聚体含量和团聚体稳定性;DOC和ROC含量与粒径> 2 mm团聚体含量显著正相关,其对促进大团聚体形成至关重要。不同施肥处理下土壤团聚体各有机碳组分含量存在差异,与传统的单独施用化肥处理(NPK)相比,SNPK和MNPK均显著提高了全土和团聚体各组分有机碳含量,SNPK对土壤有机碳的提升效果优于MNPK。各有机碳组分在团聚体中的含量均为小团聚体>大团聚体>微团聚体,其中,70%以上的各组分有机碳来自于粒径> 0.25 mm的团聚体。在施用化肥基础上增施有机肥(MNPK)和实施秸秆还田(SNPK)提高了LOC在TOC中的占比,使LOC/TOC由CK的11.94%分别增加到14.95%和15.70%。MNPK利于LOC保存在大团聚体中,提高了土壤供肥能力;而SNPK促进了LOC向较小粒径团聚体迁移,增强了其在团聚体中的稳定性,提高了土壤的保肥能力。由此可见,长期实施有机无机肥料配合可以提高土壤碳储量和稳定性,这为全面实施秸秆还田的基础上推行有机粪肥部分替代化肥的养分管理策略提供了理论依据。
关键词:长期施肥/
土壤团聚体/
有机碳组分/
化肥/
秸秆/
有机粪肥
Abstract:Soil organic carbon and aggregates play an important role in soil fertility, crop yield, and the farmland environment, all of which are key components for sustainable agriculture. A wild long-term organic material and mineral fertilizer field experiment was initiated in 2003 at the Luancheng Agroecosystem Experimental Station of the Chinese Academy of Sciences. The experiment sought to investigate how different fertilization patterns affect the soil aggregate composition and the levels of organic carbon in the aggregates to better understand how different agricultural management practices serve as physical protection mechanisms. There were six treatments: no fertilization (i.e., conventional, CK), straw application alone (S), organic manure application alone (M), mineral fertilizer application (NPK), NPK plus straw (SNPK), and NPK plus organic manure (MNPK). The contents of total organic carbon (TOC), soluble organic carbon (DOC), acidolytic active organic carbon (AC), resistant organic carbon (ROC), and labile organic carbon (LOC) were examined within the aggregate fractions, including the total soil, large aggregates (>2 mm), small aggregates (0.25-2 mm), and microaggregates (< 0.25 mm). The results showed that fertilization had a significant effect on the distribution and stability of soil aggregates. SNPK significantly increased the amount of >0.25 mm aggregates. The contents of DOC and ROC were positively correlated with the amount of large aggregates and promoted the formation of large aggregates. Compared with NPK, SNPK and MNPK significantly increased the contents of SOC components in the aggregate fractions, and SNPK addition improved the SOC content compared to MNPK. In the aggregate fractions, the content of each organic carbon component was in the order of small aggregates > large aggregates > microaggregates, and more than 70% of the organic carbon came from the >0.25 mm aggregates. The LOC/TOC ratio in the MNPK and SNPK treatments increased to 14.95% and 15.70%, respectively, which was 11.94% under CK treatment. MNPK was conducive to LOC storage in large aggregates, which improved the soil fertilizer supply capacity; while SNPK promoted LOC migration to the small-sized aggregates, enhanced its stability in the aggregates, and improved the soil fertilizer retention capacity. In conclusion, long-term organic and inorganic fertilizer combined application improved soil carbon storage and stability. The study provides a theoretical basis for a nutrient management strategy with partial substitution of chemical fertilizer by organic manure and straw.
Key words:Long-term fertilization/
Soil aggregates/
Organic carbon fractions/
Chemical fertilizers/
Straw/
Organic manure
HTML全文
图1长期不同施肥处理下土壤非水稳性团聚体总有机碳(TOC)含量
CK: 不施肥无有机物料还田; M: 单施有机粪肥; NPK: 单施化肥; MNPK: 化肥配施有机粪肥; SNPK: 化肥配施秸秆; SCK: 单施秸秆。数据为3次重复的平均值加减标准误。不同小写字母表示同一粒径不同处理间P < 0.05水平差异显著。
Figure1.Total organic carbon contents of soil non-water-stable aggregates with different sizes under different long-term fertilization treatments
CK: no fertilizer without organic materials; M: single application of organic manure; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and organic manure; SNPK: combined application of chemical fertilizers and straw; SCK: single application of straws. Values are means±S.E. (n=3). Different lowercase letters indicate significant differences among different treatments for the same aggregate size at P < 0.05.
下载: 全尺寸图片幻灯片
图2长期不同施肥处理下土壤非水稳性团聚体可溶性有机碳(DOC)含量
CK: 不施肥无有机物料还田; M: 单施有机粪肥; NPK: 单施化肥; MNPK: 化肥配施有机粪肥; SNPK: 化肥配施秸秆; SCK: 单施秸秆。数据为3次重复的平均值加减标准误。不同小写字母表示同一粒径不同处理间P < 0.05水平差异显著。
Figure2.Dissolved organic carbon contents of soil non-water- stable aggregates with different sizes under different long- term fertilization treatments
CK: no fertilizer without organic materials; M: single application of organic manure; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and organic manure; SNPK: combined application of chemical fertilizers and straw; SCK: single application of straws. Values are means±S.E. (n=3). Different lowercase letters indicate significant differences among different treatments for the same aggregate size at P < 0.05.
下载: 全尺寸图片幻灯片
图3长期不同施肥处理下土壤非水稳性团聚体酸水解活性有机碳(AC)含量
CK: 不施肥无有机物料还田; M: 单施有机粪肥; NPK: 单施化肥; MNPK: 化肥配施有机粪肥; SNPK: 化肥配施秸秆; SCK: 单施秸秆。数据为3次重复的平均值加减标准误。不同小写字母表示同一粒径不同处理间P < 0.05水平差异显著。
Figure3.Active organic carbon contents of soil non-water- stable aggregates with different sizes under different long-term fertilization treatments
CK: no fertilizer without organic materials; M: single application of organic manure; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and organic manure; SNPK: combined application of chemical fertilizers and straw; SCK: single application of straws. Values are means±S.E. (n=3). Different lowercase letters indicate significant differences among different treatments for the same aggregate size at P < 0.05.
下载: 全尺寸图片幻灯片
图4不同长期施肥处理下土壤非水稳性团聚体惰性有机炭(ROC)含量
CK: 不施肥无有机物料还田; M: 单施有机粪肥; NPK: 单施化肥; MNPK: 化肥配施有机粪肥; SNPK: 化肥配施秸秆; SCK: 单施秸秆。数据为3次重复的平均值加减标准误。不同小写字母表示同一粒径不同处理间P < 0.05水平差异显著。
Figure4.Resistant organic carbon contents of soil non-water- stable aggregates with different sizes under different long- term fertilization treatments
CK: no fertilizer without organic materials; M: single application of organic manure; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and organic manure; SNPK: combined application of chemical fertilizers and straw; SCK: single application of straws. Values are means±S.E. (n=3). Different lowercase letters indicate significant differences among different treatments for the same aggregate size at P < 0.05.
下载: 全尺寸图片幻灯片
图5不同长期施肥处理下土壤非水稳性团聚体易氧化有机炭(LOC)含量
CK: 不施肥无有机物料还田; M: 单施有机粪肥; NPK: 单施化肥; MNPK: 化肥配施有机粪肥; SNPK: 化肥配施秸秆; SCK: 单施秸秆。数据为3次重复的平均值加减标准误。不同小写字母表示同一粒径不同处理间P < 0.05水平差异显著。
Figure5.Labile organic carbon contents of soil non-water- stable aggregates with different sizes under different long- term fertilization treatments
CK: no fertilizer without organic materials; M: single application of organic manure; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and organic manure; SNPK: combined application of chemical fertilizers and straw; SCK: single application of straws. Values are means±S.E. (n=3). Different lowercase letters indicate significant differences among different treatments for the same aggregate size at P < 0.05.
下载: 全尺寸图片幻灯片
图6不同长期施肥处理下土壤非水稳性团聚体总有机碳(A)、可溶性有机碳(B)、酸水解有机碳(C)、惰性有机碳(D)和易氧化有机碳(E)富集系数
CK: 不施肥无有机物料还田; M: 单施有机粪肥; NPK: 单施化肥; MNPK: 化肥配施有机粪肥; SNPK: 化肥配施秸秆; SCK: 单施秸秆。数据为3次重复的平均值加减标准误。不同小写字母表示同一粒径不同处理间P < 0.05水平差异显著。
Figure6.Enrichment coefficients of total organic carbon (A), dissolved organic carbon (B), active organic carbon (C), resistant organic carbon (D) and labile organic carbon (E) in soil non-water-stable aggregates with different sizes under different long-term fertilization treatments
CK: no fertilizer without organic materials; M: single application of organic manure; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and organic manure; SNPK: combined application of chemical fertilizers and straw; SCK: single application of straws. Values are means±S.E. (n=3). Different lowercase letters indicate significant differences among different treatments for the same aggregate size at P < 0.05.
下载: 全尺寸图片幻灯片
图7不同长期施肥处理下不同粒径土壤非水稳性团聚体总有机碳(A)、可溶性有机碳(B)、酸水解有机碳(C)、惰性有机碳(D)和易氧化有机碳(E)的贡献率
CK: 不施肥无有机物料还田; M: 单施有机粪肥; NPK: 单施化肥; MNPK: 化肥配施有机粪肥; SNPK: 化肥配施秸秆; SCK: 单施秸秆。数据为3次重复的平均值加减标准误。不同小写字母表示同一粒径不同处理间P < 0.05水平差异显著。
Figure7.Contributions of total organic carbon (A), dissolved organic carbon (B), active organic carbon (C), resistant organic carbon (D) and labile organic carbon (E) in soil non-water-stable aggregates with different sizes under different long-term fertilization treatments
CK: no fertilizer without organic materials; M: single application of organic manure; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and organic manure; SNPK: combined application of chemical fertilizers and straw; SCK: single application of straws. Values are means±S.E. (n=3). Different lowercase letters indicate significant differences among different treatments for the same aggregate size at P < 0.05.
下载: 全尺寸图片幻灯片
表1长期不同施肥处理下各粒级土壤非水稳性团聚体百分含量
Table1.Percentage contents of soil non-water-stable aggregates with different sizes under different long-termfertilization treatments ?
处理 Treatment | > 2 mm | 0.25~2 mm | < 0.25 mm |
CK | 34.50±0.34e | 38.88±0.70a | 26.62±0.42a |
S | 40.27±0.72b | 36.45±0.42c | 23.27±0.92c |
M | 42.64±0.36a | 34.50±0.17d | 22.86±0.24c |
NPK | 38.63±0.06c | 37.61±0.53b | 23.76±0.59bc |
SNPK | 40.55±0.28b | 38.77±0.84a | 20.68±0.57d |
MNPK | 36.87±0.84d | 38.27±0.22ab | 24.86±0.80b |
CK: 不施肥无秸秆还田; M: 单施有机粪肥; NPK: 单施化肥; MNPK: 化肥配施有机粪肥; SNPK: 化肥配施秸秆; SCK: 单施秸秆。数据为3次重复的平均值加减标准误。同列不同小写字母表示P < 0.05水平差异显著。CK: no fertilizer without organic materials; M: single application of organic manure; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and organic manure; SNPK: combined application of chemical fertilizers and straw; SCK: single application of straws. Values are means±S.E. (n=3). Different lowercase letters within a column indicate significant differences at P < 0.05. |
下载: 导出CSV
表2不同长期施肥处理下土壤非水稳性团聚体的稳定性
Table2.Stability of soil non-water-stable aggregates under different long-term fertilization treatments
处理 Treatment | 平均重量直径(MWD) Mean weight diameter (mm) | 几何平均直径(GMD) Geometric mean diameter (mm) | > 0.25 mm粒级团聚体含量(R0.25) Content of aggregates > 0.25 mm(%) | 分形维数(D) Fraction dimension | |||
CK | 1.19±0.003e | 0.92±0.005e | 73.38±0.421d | 2.52±0.006a | |||
S | 1.27±0.014b | 1.00±0.018bc | 76.73±0.920b | 2.47±0.014c | |||
M | 1.30±0.005a | 1.02±0.006bc | 77.14±0.243b | 2.47±0.004c | |||
NPK | 1.26±0.006c | 0.98±0.009c | 76.24±0.593bc | 2.48±0.009bc | |||
SNPK | 1.30±0.003a | 1.04±0.007a | 79.32±0.568a | 2.43±0.010d | |||
MNPK | 1.23±0.014d | 0.96±0.016d | 75.14±0.797c | 2.50±0.012b | |||
CK: 不施肥无有机物料还田; M: 单施有机粪肥; NPK: 单施化肥; MNPK: 化肥配施有机粪肥; SNPK: 化肥配施秸秆; SCK: 单施秸秆。数据为3次重复的平均值加减标准误。同列不同小写字母表示P < 0.05水平差异显著。CK: no fertilizer without organic materials; M: single application of organic manure; NPK: application of chemical fertilizers; MNPK: combined application of chemical fertilizers and organic manure; SNPK: combined application of chemical fertilizers and straw; SCK: single application of straws. Values are means±S.E. (n=3). Different lowercase letters within a column indicate significant differences at P < 0.05. |
下载: 导出CSV
表3土壤非水稳性团聚体组成(y)与各有机碳组分含量(X)的关系
Table3.Relationship between soil organic carbon content (y) and contents of non-water-stable aggregates with different sizes (X)
团聚体粒径 Aggregate size (mm) | 相关系数Correlation coefficient | 回归方程Equation of regression | R2 | ||||
DOC/A | AC/B | ROC/C | LOC/D | ||||
> 2 | 0.546* | –0.002 | 0.589* | –0.082 | y=40.897XA+2.920XB+10.869XC+10.723XD | 0.762 | |
0.25~2 | 0.195 | 0.263 | 0.107 | 0.372 | y=32.958XA+4.138XB+13.533XC+22.191XD | –0.035 | |
< 0.25 | –0.503* | –0.596** | –0.500* | –0.493* | y=41.112XA+3.980XB+13.590XC+19.147XD | 0.400 | |
*: P < 0.05; **: P < 0.01. DOC: 土壤可溶性有机碳; AC: 酸水解有机碳; ROC: 惰性有机碳; LOC: 易氧化有机碳。DOC: dissolved organic carbon; AC: active organic carbon; ROC: resistant organic carbon; LOC: labile organic carbon. |
下载: 导出CSV
参考文献
[1] | 张维理, KOLBE H, 张认连. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 2020, 53(2): 317-331 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK202002007.htm ZHANG W L, KOLBE H, ZHANG R L. Research progress of SOC functions and transformation mechanisms[J]. Scientia Agricultura Sinica, 2020, 53(2): 317-331 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK202002007.htm |
[2] | 殷丹, 李欢, 徐江兵, 等. 长期配施秸秆与猪粪的红壤旱地有机碳库组成特征[J]. 土壤学报, 2020, 57(5): 1259-1269 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB202005020.htm YIN D, LI H, XU J B, et al. Composition characteristics of organic carbon pool in upland red soil under long-term application of straw and pig manure[J]. Acta Pedologica Sinica, 2020, 57(5): 1259-1269 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB202005020.htm |
[3] | 徐国鑫, 王子芳, 高明, 等. 秸秆与生物炭还田对土壤团聚体及固碳特征的影响[J]. 环境科学, 2018, 39(1): 355-362 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201801048.htm XU G X, WANG Z F, GAO M, et al. Effects of straw and biochar return in soil on soil aggregate and carbon sequestration[J]. Environmental Science, 2018, 39(1): 355-362 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201801048.htm |
[4] | SIMONETTI G, FRANCIOSO O, NARDI S, et al. Characterization of humic carbon in soil aggregates in a long-term experiment with manure and mineral fertilization[J]. Soil Science Society of America Journal, 2012, 76(3): 880-890 doi: 10.2136/sssaj2011.0243 |
[5] | 李江涛, 钟晓兰, 赵其国. 畜禽粪便施用对稻麦轮作土壤质量的影响[J]. 生态学报, 2011, 31(10): 2837-2845 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201110021.htm LI J T, ZHONG X L, ZHAO Q G. Enhancement of soil quality in a rice-wheat rotation after long-term application of poultry litter and livestock manure[J]. Acta Ecologica Sinica, 2011, 31(10): 2837-2845 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201110021.htm |
[6] | 白怡婧, 刘彦伶, 李渝, 等. 长期不同轮作模式对黄壤团聚体组成及有机碳的影响[J]. 土壤, 2021, 53(1): 161-167 BAI Y J, LIU Y L, LI Y, et al. Effects of different long-term rotation patterns on aggregate composition and organic carbon in yellow soil[J]. Soils, 2021, 53(1): 161-167 |
[7] | 王碧胜, 于维水, 武雪萍, 等. 不同耕作措施下添加秸秆对土壤有机碳及其相关因素的影响[J]. 中国农业科学, 2021, 54(6): 1176-1187 WANG B S, YU W S, WU X P, et al. Effects of straw addition on soil organic carbon and related factors under different tillage practices[J]. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187 |
[8] | 林欣欣, 刘思佳, 关松, 等. 不同秸秆利用方式对黑土团聚体及其腐殖物质的影响[J/OL]. 吉林农业大学学报, 2021, doi: 10.13327/j.jjlau.2020.55784 LIN X X, LIU S J, GUAN S, et al. Effects of different utilization methods of straw on aggregates and humic substance in black soil[J]. Journal of Jilin Agricultural University, 2021, doi: 10.13327/j.jjlau.2020.55784 |
[9] | 马凡凡. 有机肥替代对稻-麦产量、土壤肥力及农田氮磷流失的影响[D]. 合肥: 安徽农业大学, 2019 MA F F. Effects of organic fertilizer replacement on rice-wheat yield, soil fertility and nitrogen and phosphorus loss from farmland[D]. Hefei: Anhui Agricultural University, 2019 |
[10] | 田慎重, 王瑜, 张玉凤, 等. 旋耕转深松和秸秆还田增加农田土壤团聚体碳库[J]. 农业工程学报, 2017, 33(24): 133-140 doi: 10.11975/j.issn.1002-6819.2017.24.018 TIAN S Z, WANG Y, ZHANG Y F, et al. Residue returning with subsoiling replacing rotary tillage improving aggregate and associated carbon[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(24): 133-140 doi: 10.11975/j.issn.1002-6819.2017.24.018 |
[11] | SIX J, ELLIOTT E T, PAUSTIAN K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998, 62(5): 1367-1377 doi: 10.2136/sssaj1998.03615995006200050032x |
[12] | MOORE T R, DE SOUZA W, KOPRIVNJAK J F. Controls on the sorption of dissolved organic carbon by soils[J]. Soil Science, 1992, 154(2): 120-129 doi: 10.1097/00010694-199208000-00005 |
[13] | 胡海清, 陆昕, 孙龙. 土壤活性有机碳分组及测定方法[J]. 森林工程, 2012, 28(5): 18-22 doi: 10.3969/j.issn.1001-005X.2012.05.005 HU H Q, LU X, SUN L. Research review on soil active organic carbon fractionation and analytical methods[J]. Forest Engineering, 2012, 28(5): 18-22 doi: 10.3969/j.issn.1001-005X.2012.05.005 |
[14] | 汪伟, 杨玉盛, 陈光水, 等. 罗浮栲天然林土壤可溶性有机碳的剖面分布及季节变化[J]. 生态学杂志, 2008, 27(6): 924-928 WANG W, YANG Y S, CHEN G S, et al. Profile distribution and seasonal variation of soil dissolved organic carbon in natural Castanopsis fabric forest in subtropical China[J]. Chinese Journal of Ecology, 2008, 27(6): 924-928 |
[15] | PARTON W J, SCHIMEL D S, COLE C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Science Society of America Journal, 1987, 51(5): 1173-1179 doi: 10.2136/sssaj1987.03615995005100050015x |
[16] | 余健, 房莉, 卞正富, 等. 土壤碳库构成研究进展[J]. 生态学报, 2014, 34(17): 4829-4838 YU J, FANG L, BIAN Z F, et al. A review of the composition of soil carbon pool[J]. Acta Ecologica Sinica, 2014, 34(17): 4829-4838 |
[17] | 张璐, 张文菊, 徐明岗, 等. 长期施肥对中国3种典型农田土壤活性有机碳库变化的影响[J]. 中国农业科学, 2009, 42(5): 1646-1655 doi: 10.3864/j.issn.0578-1752.2009.05.018 ZHANG L, ZHANG W J, XU M G, et al. Effects of long-term fertilization on change of labile organic carbon in three typical upland soils of China[J]. Scientia Agricultura Sinica, 2009, 42(5): 1646-1655 doi: 10.3864/j.issn.0578-1752.2009.05.018 |
[18] | LEFROY R D B, BLAIR G J, STRONG W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil, 1993, 155/156(1): 399-402 doi: 10.1007/BF00025067 |
[19] | BIEDERBECK V O, JANZEN H H, CAMPBELL C A, et al. Labile soil organic matter as influenced by cropping practices in an arid environment[J]. Soil Biology and Biochemistry, 1994, 26(12): 1647-1656 doi: 10.1016/0038-0717(94)90317-4 |
[20] | 徐明岗, 于荣, 王伯仁. 长期不同施肥下红壤活性有机质与碳库管理指数变化[J]. 土壤学报, 2006, 43(5): 723-729 doi: 10.3321/j.issn:0564-3929.2006.05.003 XU M G, YU R, WANG B R. Labile organic matter and carbon management index in red soil under long-term fertilization[J]. Acta Pedologica Sinica, 2006, 43(5): 723-729 doi: 10.3321/j.issn:0564-3929.2006.05.003 |
[21] | BLAIR G J, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459 doi: 10.1071/AR9951459 |
[22] | 杨少红. 土地利用变化对土壤有机碳和土壤呼吸的影响[D]. 福州: 福建农林大学, 2006 YANG S H. The effects of land use change on the soil organic carbon and the soil respiration[D]. Fuzhou: Fujian Agriculture and Forestry University, 2006 |
[23] | 徐香茹, 骆坤, 周宝库, 等. 长期施肥条件下黑土有机碳、氮组分的分配与富集特征[J]. 应用生态学报, 2015, 26(7): 1961-1968 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201507007.htm XU X R, LUO K, ZHOU B K, et al. Distribution and enrichment characteristics of organic carbon and total nitrogen in mollisols under long-term fertilization[J]. Chinese Journal of Applied Ecology, 2015, 26(7): 1961-1968 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201507007.htm |
[24] | 刘哲, 韩霁昌, 孙增慧, 等. 外源新碳对红壤团聚体及有机碳分布和稳定性的影响[J]. 环境科学学报, 2017, 37(6): 2351-2359 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201706041.htm LIU Z, HAN J C, SUN Z H, et al. Effects of fresh carbon on distribution and stability of aggregates and organic carbon in red soil[J]. Acta Scientiae Circumstantiae, 2017, 37(6): 2351-2359 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201706041.htm |
[25] | 尚应妮, 胡斐南, 赵世伟, 等. 不同胶结物质对黄绵土团聚体形成的影响[J]. 水土保持学报, 2017, 31(2): 204-208, 239 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201702034.htm SHANG Y N, HU F N, ZHAO S W, et al. Effects of cementing materials on the formation of loessial soil aggregates[J]. Journal of Soil and Water Conservation, 2017, 31(2): 204-208, 239 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201702034.htm |
[26] | SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2099-2103 doi: 10.1016/S0038-0717(00)00179-6 |
[27] | ZHANG X F, XIN X L, ZHU A N, et al. Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements[J]. Soil and Tillage Research, 2018, 178: 99-107 doi: 10.1016/j.still.2017.12.020 |
[28] | 曾鹏宇. 长期施用猪粪对稻麦轮作土壤团聚体及有机碳组分的影响[D]. 雅安: 四川农业大学, 2017 ZENG P Y. The effect of long-term application with pig manure on soil aggregate and organic carbon components in rice-wheat rotation[D]. Ya'an: Sichuan Agricultural University, 2017 |
[29] | JAN H. The capacity of soils to preserve organic C and N by their association with clay and silt particles[J]. Plant and Soil, 1997, 191: 77-87 doi: 10.1023/A:1004213929699 |
[30] | CARTER M, ANGERS D, GREGORICH E. Characterizing organic matter retention for surface soils in eastern Canada using density and particle size fraction[J]. Canadian Journal of Soil Science, 2003, 83(1): 11-23 doi: 10.4141/S01-087 |
[31] | 李新华, 郭洪海, 朱振林, 等. 不同秸秆还田模式对土壤有机碳及其活性组分的影响[J]. 农业工程学报, 2016, 32(9): 130-135 LI X H, GUO H H, ZHU Z L, et al. Effects of different straw return modes on contents of soil organic carbon and fractions of soil active carbon[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9): 130-135 |
[32] | CAMPBELL C A, ZENTNER R P, BOWREN K E, et al. Effect of crop rotations and fertilization on soil organic matter and some biochemical properties of a thick Black Chernozem[J]. Canadian Journal of Soil Science, 1991, 71(3): 377-387 doi: 10.4141/cjss91-036 |
[33] | GULDE S, CHUNG H, AMELUNG W, et al. Soil carbon saturation controls labile and stable carbon pool dynamics[J]. Soil Science Society of America Journal, 2008, 72(3): 605-612 doi: 10.2136/sssaj2007.0251 |
[34] | SOLBERG E, NYBORG M, IZAIRRALDE R, et al. Carbon storage in soils under continuous cereal grain cropping: N fertilizer and straw[J]. Management of Carbon Sequestration in Soil, 1998, 16: 235-254 http://www.cabdirect.org/abstracts/19981902546.html |
[35] | STEWART C E, PAUSTIAN K, CONANT R T, et al. Soil carbon saturation: Evaluation and corroboration by long-term incubations[J]. Soil Biology and Biochemistry, 2008, 40(7): 1741-1750 doi: 10.1016/j.soilbio.2008.02.014 |
[36] | SARKER J R, SINGH B P, COWIE A L, et al. Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils[J]. Soil and Tillage Research, 2018, 178: 209-223 doi: 10.1016/j.still.2017.12.019 |
[37] | 王碧胜, 于维水, 武雪萍, 等. 添加玉米秸秆对旱作土壤团聚体及其有机碳含量的影响[J]. 中国农业科学, 2019, 52(9): 1553-1563 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201909007.htm WANG B S, YU W S, WU X P, et al. Effect of straw addition on the formation of aggregates and accumulation of organic carbon in dryland soil[J]. Scientia Agricultura Sinica, 2019, 52(9): 1553-1563 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201909007.htm |