删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

微生物菌肥对太子参连作障碍和药理作用的改良效应

本站小编 Free考研考试/2022-01-01

吴红淼1, 2,,
张晟恺2,
焦艳阳2,
林煜2,
吴蕙明2,
秦贤金2,
刘亚洲2,
陈军2,
林文雄2,,
1.安徽农业大学资源与环境学院 合肥 230031
2.福建农林大学农业生态研究所/福建省农业生态过程与安全监控重点实验室 福州 350002
基金项目: 国家自然科学基金项目U1205021
国家自然科学基金项目82003884
国家自然科学基金项目81573530
中国博士后科学基金项目2019M650150

详细信息
作者简介:吴红淼, 主要研究方向为根际生态学过程与调控。E-mail: wuhongmiao@ahau.edu.cn
通讯作者:林文雄, 主要研究方向为植物生理与分子生态学、农业生态学。E-mail: lwx@fafu.edu.cn
中图分类号:S181

计量

文章访问数:108
HTML全文浏览量:26
PDF下载量:30
被引次数:0
出版历程

收稿日期:2020-12-06
录用日期:2021-02-17
刊出日期:2021-08-01

Effects of microbial fertilizer application on the quality and pharmacological activities of radix pseudostellariae under continuous monoculture regimes

WU Hongmiao1, 2,,
ZHANG Shengkai2,
JIAO Yanyang2,
LIN Yu2,
WU Huiming2,
QIN Xianjin2,
LIU Yazhou2,
CHEN Jun2,
LIN Wenxiong2,,
1. College of Resources and Environment, Anhui Agricultural University, Hefei 230031, China
2. Institute of Agroecology, Fujian Agriculture and Forestry University/Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fuzhou 350002, China
Funds: the National Natural Science Foundation of ChinaU1205021
the National Natural Science Foundation of China82003884
the National Natural Science Foundation of China81573530
the China Postdoctoral Science Foundation2019M650150

More Information
Corresponding author:LIN Wenxiong, E-mail: lwx@fafu.edu.cn


摘要
HTML全文
(6)(3)
参考文献(37)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:连作障碍的发生与发展对药用植物的产量和品质构成了严重威胁,探寻有效的连作障碍消减策略尤为重要。本研究经连续4年的田间定位试验,分析了微生物菌肥在减缓太子参连作障碍中的作用;并采用qRT-PCR和HPLC-MS技术分析菌肥改良对太子参根际关键微生物和太子参主效成分的影响;结合药理试验评估了不同处理太子参的功效差异。结果表明,田间菌肥改良重茬太子参效果连续4年均较为显著,重茬地经菌肥改良后较不改良重茬产量分别增长68.28%、111.58%、257.54%和133.23%。菌肥改良能显著增加重茬太子参根际土壤中有益假单胞菌属丰度、减少致病尖孢镰刀菌丰度,也增加太子参中总多糖和环肽B含量;菌肥改良后太子参中氨基酸种类和含量与重茬1年和标准品组无显著差异,且8种氨基酸含量与正茬无显著差异。药理试验结果表明,太子参可以缓解环磷酰胺对小鼠造成的伤害,菌肥改良太子参对小鼠脾脏指数、肝脏重量、附睾脂肪重量、全血白细胞和红细胞含量的影响与正茬太子参无显著差异,且在血小板恢复上与标准品太子参一致。此外,菌肥改良太子参组总抗氧化能力(T-AOC)最强,超氧化物歧化酶(SOD)活性也显著高于正茬和标准品太子参;且与正茬太子参相比,菌肥处理组能显著提高小鼠肝脏组织中免疫因子IL-2和IFN-r mRNA表达水平;而在免疫因子TNF-α表达水平上,菌肥处理组与正茬无显著差异。总体而言,功能微生物菌肥能有效减缓太子参连作障碍问题,改善重茬太子参质量和药理作用。
关键词:太子参/
连作障碍/
菌肥/
根际调控/
药理作用
Abstract:The continuous monoculture problem commonly causes huge economic losses in modern agricultural production. The occurrence and development of continuous cropping obstacles pose a serious threat to the yield and quality of Chinese medicinal plants; therefore, it is important to explore effective strategies to alleviate the continuous cropping obstacles. In this study, we evaluated the effects of microbial fertilizer application on the continuous cropping obstacles and pharmacological activities of radix pseudostellariae (Pseudostellaria heterophylla). The effects of microbial fertilizer application on the yields of continuous monocultured radix pseudostellariae for 4 years under field localization experiments were investigated. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and high-performance liquid chromatography-mass spectrometry (HPLC-MS) were used to analyze the effects on the rhizosphere soil microorganisms and the main effective components of radix pseudostellariae. We also used pharmacological tests to analyze the efficiency of radix pseudostellariae under different treatments. Our results showed that microbial fertilizer significantly improved the growth of continuous monocultured radix pseudostellariae, and the yield increased by 68.28%, 111.58%, 257.54%, and 133.23% in 4 years, respectively. Microbial fertilizer application significantly increased the abundance of beneficial Pseudomonas spp., decreased pathogenic Fusarium oxysporum in the rhizosphere soil, and increased the contents of total polysaccharides and heterophyllin B in radix pseudostellariae as compared with those of the consecutive monoculture treatments. The types and contents of amino acids in radix pseudostellariae under microbial fertilizer application were similar to those in the 1-year monoculture and standard radix pseudostellariae. Eight types of amino acids in the microbial fertilizer amendment and the newly planted radix pseudostellariae were not significantly different. Pharmacological tests showed that radix pseudostellariae alleviated the damage caused by cyclophosphamide in mice. There were no significant differences in the spleen index, liver weight, epididymal fat weight, and white or red blood cell content of mice treated with plants of the microbial fertilizer amended and newly planted radix pseudostellariae. The effect of radix pseudostellariae on platelet recovery of mice under microbial fertilizer amendment was consistent with that of standard radix pseudostellariae. Moreover, the total antioxidant capacity of radix pseudostellariae under microbial fertilizer amendment was stronger, and the superoxide dismutase content was significantly higher than that of newly planted and standard radix pseudostellariae. Compared with newly planted radix pseudostellariae, the microbial fertilizer amendment significantly increased the expression of immune factors IL-2 and IFN-r in the liver tissue of mice. There was no significant difference in the expression of TNF-α between the microbial fertilizer amendment and newly planted radix pseudostellariae. In conclusion, microbial fertilizer amendment effectively alleviated the continuous cropping obstacle and improved the quality and pharmacological activities of radix pseudostellariae. Our results provide guidance for studying alleviation strategies in other Chinese medicinal plants under consecutive monoculture regimes and for evaluating the quality and pharmacological activities of modified medicinal plants.
Key words:Radix pseudostellariae/
Continuous cropping obstacle/
Microbial fertilizer/
Rhizosphere management/
Pharmacological activities

HTML全文


图1菌肥改良后太子参产量变化
不同小写字母表示同一年份不同处理间差异显著(P < 0.05)。
Figure1.Effects of microbial fertilizer on the yields of radix pseudostellariae
Different lowercase letters mean significant differences among treatments in the same year at P < 0.05 level.


下载: 全尺寸图片幻灯片


图2菌肥改良后太子参根际微生物丰度变化
FY: 正茬; SY: 重茬1年; TY: 重茬2年; BIO: 重茬+菌肥改良。不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure2.Effects of microbial fertilizer on populations of microorganisms in radix pseudostellariae rhizosphere soil
FY, SY and TY indicate treatments of newly planted soil, one-year monocultured soil and two-year monocultured soil, respectively. BIO indicates the treatment of application of microbial fertilizer on three-year monocultured soil. Different lowercase letters mean significant differences among treatments at P < 0.05 level.


下载: 全尺寸图片幻灯片


图3菌肥改良后太子参中总多糖和环肽B含量变化
FY: 正茬; SY: 重茬1年; BIO: 重茬+菌肥改良; ST: 太子参标准品。不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure3.Effects of microbial fertilizer on contents of total polysaccharide and heterophyllin B in radix pseudostellariae
FY and SY indicate the treatments of newly planted soil and one-year monocultured soil, respectively. BIO indicates the treatment of application of microbial fertilizer on three-year monocultured soil. ST indicates the standard radix pseudostellariae. Different lowercase letters mean significant differences among treatments at P < 0.05 level.


下载: 全尺寸图片幻灯片


图4菌肥改良的太子参对小鼠体重的动态影响
CK: 未灌胃太子参和注射生理盐水; CTX: 未灌胃太子参和注射环磷酰胺; CTX+FY: 灌胃正茬太子参和注射环磷酰胺; CTX+SY: 灌胃重茬太子参和注射环磷酰胺; CTX+BIO: 灌胃菌肥改良太子参和注射环磷酰胺; CTX+ST: 灌胃标准品太子参和注射环磷酰胺。
Figure4.Effect of radix pseudostellariae under different treatments of application of microbial fertilizer on weight of mice
CK: no-radix pseudostellariae treatment and physiological saline injection; CTX: no-radix pseudostellariae treatment and cyclophosphamide injection; CTX+FY: newly planted radix pseudostellariae treatment and cyclophosphamide injection; CTX+SY: one-year monoculture radix pseudostellariae treatment and cyclophosphamide injection; CTX+BIO: microbial fertilizer amendment radix pseudostellariae treatment and cyclophosphamide injection; CTX+ST: standard radix pseudostellariae treatment and cyclophosphamide injection.


下载: 全尺寸图片幻灯片


图5菌肥改良的太子参对小鼠生理生化指标的影响
CK: 未灌胃太子参和注射生理盐水; CTX: 未灌胃太子参和注射环磷酰胺; CTX+FY: 灌胃正茬太子参和注射环磷酰胺; CTX+SY: 灌胃重茬太子参和注射环磷酰胺; CTX+BIO: 灌胃菌肥改良太子参和注射环磷酰胺; CTX+ST: 灌胃标准品太子参和注射环磷酰胺。不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure5.Effect of radix pseudostellariae under different treatments of application of microbial fertilizer on physiological and biochemical indexes of mice
CK: no-radix pseudostellariae treatment and physiological saline injection; CTX: no-radix pseudostellariae treatment and cyclophosphamide injection; CTX+FY: newly planted radix pseudostellariae treatment and cyclophosphamide injection; CTX+SY: one-year monoculture radix pseudostellariae treatment and cyclophosphamide injection; CTX+BIO: microbial fertilizer amendment radix pseudostellariae treatment and cyclophosphamide injection; CTX+ST: standard radix pseudostellariae treatment and cyclophosphamide injection. Different lowercase letters mean significant differences among treatments at P < 0.05 level.


下载: 全尺寸图片幻灯片


图6菌肥改良的太子参对小鼠肝脏免疫因子表达量的影响
CTX: 未灌胃太子参和注射环磷酰胺; CTX+FY: 灌胃正茬太子参和注射环磷酰胺; CTX+SY: 灌胃重茬太子参和注射环磷酰胺; CTX+BIO: 灌胃菌肥改良太子参和注射环磷酰胺; CTX+ST: 灌胃标准品太子参和注射环磷酰胺。不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure6.Effect of radix pseudostellariae under different treatments of application of microbial fertilizer on the expression of liver immune factors in mice
CTX: no-radix pseudostellariae treatment and cyclophosphamide injection; CTX+FY: newly planted radix pseudostellariae treatment and cyclophosphamide injection; CTX+SY: one-year monoculture radix pseudostellariae treatment and cyclophosphamide injection; CTX+BIO: microbial fertilizer amendment radix pseudostellariae treatment and cyclophosphamide injection; CTX+ST: standard radix pseudostellariae treatment and cyclophosphamide injection. Different lowercase letters mean significant differences among treatments at P < 0.05 level.


下载: 全尺寸图片幻灯片

表1土壤特异微生物菌群和小鼠肝脏免疫因子qRT-PCR分析引物序列及退火温度
Table1.Taxon-specific and liver immune factors primer sets and their annealing temperatures for quantitative PCR
微生物类群/基因名称
Target group/Gene name
引物名称
Primer name
序列(5’-3’)
Sequence (5’-3’)
退火温度
Annealing temperature (℃)
假单胞菌属
Pseudomonas spp.
Ps-for [14] TTAGCTCCACCTCGCGGC 64.0
Ps-rev GGTCTGAGAGGATGATCAGT
尖孢镰刀菌
Fusarium oxysporum
ITS1F [15] CTTGGTCATTTAGAGGA AGTAA 60.4
AFP308R CGAATTAACGCGAGTCCCAA
ACTB ACTB F [16-17] GAAGATCAAGATCATTGCTCCT 60.8
ACTB R TACTCCTGCTTGCTGATCCA
IL-2 IL-2 F [16-17] CTGCGGCATGTTCTGGATTTG 60.5
IL-2 R TTGAGGGCTTGTTGAGATGATGC
IFN-γ IFN-γ F [16-17] AATGMCGCTACACACTGCA 58.3
IFN-γ R TGAAGAAGGTAGTMTCAGG
TNF-α TNF-α F [16-17] ATGAGCACAGAAAGCATGATCCGC 63.0
TNF-α R AAAGTAGACCTGCCCGGACTC


下载: 导出CSV
表2太子参环肽B检测液相洗脱条件
Table2.Elution conditions of the HPLC used to detect the heterophyllin B of radix pseudostellariae
时间
Time (min)
A相
Mobile phase A (%)
B相
Mobile phase B (%)
流速
Rate (μL·min–1)
0 95 5 300
2 70 30 300
12 60 40 300
15 55 45 300
16 50 50 300
20 40 60 300
22 30 70 300
22.1 95 5 300
26 95 5 300
流动相A: 水; 流动相B: 乙腈。Mobile phase A: water; mobile phase B: acetonitrile.


下载: 导出CSV
表3菌肥改良后太子参中氨基酸各组分含量变化
Table3.Effects of microbial fertilizer on contents of amino acids in radix pseudostellariae
氨基酸Amino acid FY SY BIO ST
谷氨酸Glutamic acid 13.27±2.36aA 10.42±2.13aB 12.61±3.75aA 10.30±3.17aA
丝氨酸Serine 3.93±1.75aDE 2.28±0.44aD 2.91±1.31aBC 2.25±0.91aC
组氨酸Histidine 5.99±0.83aC 4.31±0.89aC 5.57±1.45aB 4.67±1.13aB
甘氨酸Glycine 0.29±0.08aG 0.17±0.05aF 0.23±0.09aC 0.17±0.06aC
精氨酸Arginine 11.44±2.52aB 12.35±2.02aA 13.58±4.16aA 11.61±2.67aA
苏氨酸Threonine 3.70±1.32aDE 2.00±0.53aDE 2.32±0.75aC 2.03±0.50aC
酪氨酸Tyrosine 2.20±0.63aF 0.90±0.28bDEF 1.30±0.35bC 1.15±0.30bC
缬氨酸Valine 2.00±1.18aF 0.24±0.20bF 0.69±0.46bC 0.41±0.25bC
蛋氨酸Methionine 0.58±0.17aG 0.47±0.16aEF 0.64±0.14aC 0.56±0.13aC
异亮氨酸Isoleucine 2.27±1.32aF 0.47±0.18bEF 0.81±0.32bC 0.62±0.23bC
亮氨酸Leucine 3.95±1.09aDE 1.64±0.45bDEF 2.39±0.71bC 2.00±0.53bC
苯丙氨酸Phenylalanine 3.07±0.94aEF 1.28±0.35bDEF 2.06±0.59abC 1.73±0.39bC
赖氨酸Lysine 4.47±0.77aD 1.86±0.56bDE 2.89±0.93bBC 2.23±0.63bC
FY: 正茬; SY: 重茬1年; BIO: 重茬+菌肥改良; ST: 太子参标准品。同行不同小写字母表示不同处理间差异显著(P < 0.05), 同列不同大写字母表示同一处理不同组分间差异显著(P < 0.01)。FY and SY indicate the treatments of newly planted soil and one-year monocultured soil, respectively. BIO indicates the treatments of application of microbial fertilizer on three-year monocultured soil. ST indicates the standard radix pseudostellariae. Different lowercase letters in the same line mean significant differences among treatments at P < 0.05 level. Different capital letters in the same column mean significant differences among amino acids at P < 0.01 level.


下载: 导出CSV

参考文献(37)
[1]宋叶, 林东, 梅全喜, 等. 太子参化学成分及药理作用研究进展[J]. 中国药师, 2019, 22(8): 1506-1510 doi: 10.3969/j.issn.1008-049X.2019.08.034
SONG Y, LIN D, MEI Q X, et al. Study advances in chemical constituents and pharmacological activities of Radix pseudostellariae[J]. China Pharmacist, 2019, 22(8): 1506-1510 doi: 10.3969/j.issn.1008-049X.2019.08.034
[2]WU H M, WU L K, ZHU Q, et al. The role of organic acids on microbial deterioration in the Radix pseudostellariae rhizosphere under continuous monoculture regimes[J]. Scientific Reports, 2017, 7: 3497 doi: 10.1038/s41598-017-03793-8
[3]WU H M, WU L K, WANG J Y, et al. Mixed phenolic acids mediated proliferation of pathogens Talaromyces helicus and Kosakonia sacchari in continuously monocultured Radix pseudostellariae rhizosphere soil[J]. Frontiers in Microbiology, 2016, 7: 335
[4]ZHANG B, WESTON P A, GU L, et al. Identification of phytotoxic metabolites released from Rehmannia glutinosa suggest their importance in the formation of its replant problem[J]. Plant and Soil, 2019, 441(1/2): 439-454
[5]WU H M, QIN X J, WANG J Y, et al. Rhizosphere responses to environmental conditions in Radix pseudostellariae under continuous monoculture regimes[J]. Agriculture, Ecosystems & Environment, 2019, 270/271: 19-31 http://www.sciencedirect.com/science/article/pii/S0167880918304377
[6]LI X G, DING C F, HUA K, et al. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy[J]. Soil Biology and Biochemistry, 2014, 78: 149-159 doi: 10.1016/j.soilbio.2014.07.019
[7]LI X G, DING C F, ZHANG T L, et al. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing[J]. Soil Biology and Biochemistry, 2014, 72: 11-18 doi: 10.1016/j.soilbio.2014.01.019
[8]WU H M, XU J J, WANG J Y, et al. Insights into the mechanism of proliferation on the special microbes mediated by phenolic acids in the Radix pseudostellariae rhizosphere under continuous monoculture regimes[J]. Frontiers in Plant Science, 2017, 8: 659 doi: 10.3389/fpls.2017.00659
[9]WU L K, WANG J Y, HUANG W M, et al. Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture[J]. Scientific Reports, 2015, 5: 15871 doi: 10.1038/srep15871
[10]吴红淼, 林文雄. 药用植物连作障碍研究评述和发展透视[J]. 中国生态农业学报(中英文), 2020, 28(6): 775-793 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202006001.htm
WU H M, LIN W X. A commentary and development perspective on the consecutive monoculture problems of medicinal plants[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 775-793 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202006001.htm
[11]刘波, 陈倩倩, 王阶平, 等. 整合微生物组菌剂的提出、研发与应用[J]. 中国农业科学, 2019, 52(14): 2450-2467, 95 doi: 10.3864/j.issn.0578-1752.2019.14.006
LIU B, CHEN Q Q, WANG J P, et al. Proposition, development and application of the integrated microbiome agent[J]. Scientia Agricultura Sinica, 2019, 52(14): 2450-2467, 95 doi: 10.3864/j.issn.0578-1752.2019.14.006
[12]WU L K, YANG B, LI M L, et al. Modification of rhizosphere bacterial community structure and functional potentials to control Pseudostellaria heterophylla replant disease[J]. Plant Disease, 2020, 104(1): 25-34 doi: 10.1094/PDIS-04-19-0833-RE
[13]WU L K, CHEN J, WU H M, et al. Insights into the regulation of rhizosphere bacterial communities by application of bio-organic fertilizer in Pseudostellaria heterophylla monoculture regime[J]. Frontiers in Microbiology, 2016, 7: 1788
[14]FIERER N, JACKSON J A, VILGALYS R, et al. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays[J]. Applied and Environmental Microbiology, 2005, 71(7): 4117-4120 doi: 10.1128/AEM.71.7.4117-4120.2005
[15]LIEVENS B, BROUWER M, VANACHTER A C R C, et al. Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray[J]. Environmental Microbiology, 2005, 7(11): 1698-1710 doi: 10.1111/j.1462-2920.2005.00816.x
[16]付越. 紫薯花色苷对小鼠脾淋巴细胞免疫调节活性的研究[D]. 锦州: 锦州医科大学, 2017
FU Y. Study on the immunomodulatory activity of purple sweet potato anthocyanins to mice spleen lymphocytes[D]. Jinzhou: Jinzhou Medical University, 2017
[17]郝璐. 银杏叶提取物对小鼠体内外免疫调节活性的研究[D]. 锦州: 锦州医科大学, 2017
HAO L. Study on the immunoregulatory activity of Ginkgo biloba extract in mice vivo and vitro[D]. Jinzhou: Jinzhou Medical University, 2017
[18]吴红淼, 王晓鹏, 王磊, 等. 鱼腥草多糖的抑菌作用[J]. 中国野生植物资源, 2012, 31(5): 24-26 doi: 10.3969/j.issn.1006-9690.2012.05.0006
WU H M, WANG X P, WANG L, et al. The antibiotic activity of polysaccharide from Houttuynia cordata thunb[J]. Chinese Wild Plant Resources, 2012, 31(5): 24-26 doi: 10.3969/j.issn.1006-9690.2012.05.0006
[19]王媚, 宋建平, 韩乐, 等. 太子参环肽B含量分析及其动态研究[J]. 中药材, 2010, 33(8): 1225-1227 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYCA201008009.htm
WANG M, SONG J P, HAN L, et al. Content analysis and dynamic research of heterophyllin B in the R. pseudostellariae[J]. Journal of Chinese Medicinal Materials, 2010, 33(8): 1225-1227 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYCA201008009.htm
[20]杨昌贵, 江维克, 周涛, 等. 不同种源太子参中多糖和氨基酸含量的比较研究[J]. 中国现代中药, 2014, 16(1): 32-37 https://www.cnki.com.cn/Article/CJFDTOTAL-YJXX201401013.htm
YANG C G, JIANG W K, ZHOU T, et al. Comparative analysis of polysaccharide and amino acid content in different provenances of Pesudostellaria heterophylla from Guizhou Province[J]. Modern Chinese Medicine, 2014, 16(1): 32-37 https://www.cnki.com.cn/Article/CJFDTOTAL-YJXX201401013.htm
[21]李振方, 杨燕秋, 谢冬凤, 等. 连作条件下地黄药用品质及土壤微生态特性分析[J]. 中国生态农业学报, 2012, 20(2): 217-224 doi: 10.3724/SP.J.1011.2012.00217
LI Z F, YANG Y Q, XIE D F, et al. Effects of continuous cropping on the quality of Rehmannia glutinosa L. and soil micro-ecology[J]. Chinese Journal of Eco-Agriculture, 2012, 20(2): 217-224 doi: 10.3724/SP.J.1011.2012.00217
[22]CHEN J, WU L K, XIAO Z G, et al. Assessment of the diversity of Pseudomonas spp. and Fusarium spp. in Radix pseudostellariae rhizosphere under monoculture by combining DGGE and quantitative PCR[J]. Frontiers in Microbiology, 2017, 8: 1748 DOI: 10.3389/fmicb.2017.01748
[23]FU L, PENTON C R, RUAN Y Z, et al. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease[J]. Soil Biology and Biochemistry, 2017, 104: 39-48 doi: 10.1016/j.soilbio.2016.10.008
[24]XIONG W, GUO S, JOUSSET A, et al. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome[J]. Soil Biology and Biochemistry, 2017, 114: 238-247 doi: 10.1016/j.soilbio.2017.07.016
[25]侯娅. 基于植物代谢组学技术的太子参品质评价研究[D]. 南京: 南京中医药大学, 2016
HOU Y. Study on the quality evaluation of pseudostellariae radix by plant metabolomics[D]. Nanjing: Nanjing University of Chinese Medicine, 2016
[26]白少伟. 基于指纹图谱太子参成分的研究[D]. 福州: 福建中医药大学, 2014
BAI S W. Research of components in radix psuedostellariae based on fingerprint[D]. Fuzhou: Fujian University of Traditional Chinese Medicine, 2014
[27]吴锦忠, 陈体强, 秦路平. 太子参挥发油化学成分研究(Ⅰ)[J]. 天然产物研究与开发, 2008, 20(3): 458-460 doi: 10.3969/j.issn.1001-6880.2008.03.019
WU J Z, CHEN T Q, QIN L P. Chemical constituents of the essential oil from radix pseudostellariae(Ⅰ)[J]. Natural Product Research and Development, 2008, 20(3): 458-460 doi: 10.3969/j.issn.1001-6880.2008.03.019
[28]HU J, PANG W S, CHEN J L, et al. Hypoglycemic effect of polysaccharides with different molecular weight of Pseudostellaria heterophylla[J]. BMC Complementary and Alternative Medicine, 2013, 13: 267 doi: 10.1186/1472-6882-13-267
[29]MORITA H, KAYASHITA T, TAKEYA K, et al. Conformational analysis of a tyrosinase inhibitory cyclic pentapeptide, pseudostellarin A, from Pseudostellaria heterophylla[J]. Tetrahedron, 1994, 50(44): 12599-12608 doi: 10.1016/S0040-4020(01)89393-5
[30]李仕海, 刘训红. 江苏地产太子参中氨基酸及微量元素的分析[J]. 时珍国医国药, 2001, 12(3): 199-200 doi: 10.3969/j.issn.1008-0805.2001.03.005
LI S H, LIU X H. Analysis of amino acid and trace element in radix pseudostellariae grown in Jiangsu Province[J]. LiShiZhen Medicine and Materia Medica Research, 2001, 12(3): 199-200 doi: 10.3969/j.issn.1008-0805.2001.03.005
[31]张新慧, 张恩和, 王惠珍. 连作对当归药材挥发油含量的影响[J]. 天然产物研究与开发, 2009, 21(2): 274-277 doi: 10.3969/j.issn.1001-6880.2009.02.023
ZHANG X H, ZHANG E H, WANG H Z. Effect of continuous cropping on the essential oils of Angelica sinensis (Oliv. ) Diels[J]. Natural Product Research and Development, 2009, 21(2): 274-277 doi: 10.3969/j.issn.1001-6880.2009.02.023
[32]刘春发, 胡建新, 屈新辉. 中药制剂对免疫功能促进作用的研究进展[J]. 中国医药导报, 2013, 10(28): 27-33 doi: 10.3969/j.issn.1673-7210.2013.28.009
LIU C F, HU J X, QU X H. Research progress of Chinese medicine for promoting immune function[J]. China Medical Herald, 2013, 10(28): 27-33 doi: 10.3969/j.issn.1673-7210.2013.28.009
[33]程志斌, 葛长荣, 韩剑众. 中草药有效成分对动物免疫功能的影响及其应用[J]. 动物科学与动物医学, 2002, 19(1): 65-67 https://www.cnki.com.cn/Article/CJFDTOTAL-TJXM200201032.htm
CHENG Z B, GE C R, HAN J Z. Effects of active components of Chinese herbal medicine on animal immune function and its application[J]. Animal Science and Veterinary Medicine, 2002, 19(1): 65-67 https://www.cnki.com.cn/Article/CJFDTOTAL-TJXM200201032.htm
[34]魏庄, 梁爱民, 纪文静. 复方太子参颗粒联合西医常规治疗用于儿童反复呼吸道感染的疗效及对患儿免疫功能的影响[J]. 中国医院用药评价与分析, 2020, 20(2): 169-170, 175 https://www.cnki.com.cn/Article/CJFDTOTAL-YYPF202002010.htm
WEI Z, LIANG A M, JI W J. Efficacy of compound Taizishen granule combined with conventional western medicine in treatment of recurrent respiratory tract infection in children and its effect on immune function[J]. Evaluation and Analysis of Drug-Use in Hospitals of China, 2020, 20(2): 169-170, 175 https://www.cnki.com.cn/Article/CJFDTOTAL-YYPF202002010.htm
[35]严胜泽, 马玉芳, 廖吕燕, 等. 太子参多糖对环磷酰胺所致肠道黏膜损伤小鼠SlgA、IL-2、IL-6含量的影响[J]. 中国畜牧兽医, 2015, 42(5): 1187-1192 https://www.cnki.com.cn/Article/CJFDTOTAL-GWXK201505023.htm
YAN S Z, MA Y F, LIAO L Y, et al. Effect of Pseudostellaria polysaccharides on SlgA, IL-2 and IL-6 contents of intestinal mucosal injured mice caused by cyclophosphamide[J]. China Animal Husbandry & Veterinary Medicine, 2015, 42(5): 1187-1192 https://www.cnki.com.cn/Article/CJFDTOTAL-GWXK201505023.htm
[36]龚祝南, 戴岳, 马辉, 等. 8个不同产地太子参对脾虚及免疫功能的影响[J]. 中药材, 2001, 24(4): 281-282 doi: 10.3321/j.issn:1001-4454.2001.04.025
GONG Z N, DAI Y, MA H, et al. The effect of radix pseudostellariae from 8 habitats on spleen-deficiency and immunologic function[J]. Journal of Chinese Medicinal Materials, 2001, 24(4): 281-282 doi: 10.3321/j.issn:1001-4454.2001.04.025
[37]蔡旭滨, 陈凌锋, 檀新珠, 等. 太子参茎叶多糖对断奶仔猪生长性能和血清抗氧化指标、免疫指标及生化指标的影响[J]. 动物营养学报, 2016, 28(12): 3867-3874 https://www.cnki.com.cn/Article/CJFDTOTAL-DWYX201612019.htm
CAI X B, CHEN L F, TAN X Z, et al. Effects of radix pseudostellariae stem and leaf polysaccharide on growth performance, antioxidant indexes, immune indexes and biochemical indexes in serum of weaned piglets[J]. Chinese Journal of Animal Nutrition, 2016, 28(12): 3867-3874 https://www.cnki.com.cn/Article/CJFDTOTAL-DWYX201612019.htm

相关话题/免疫 微生物 太子参 图片 指标