删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

甘蓝型油菜苗期耐旱性综合评价与耐旱性鉴定指标筛选

本站小编 Free考研考试/2022-01-01

李阳阳1, 2,,
李驰1, 2,
任俊洋1, 2,
李志1, 2,
张晋峰1, 2,
吕蓉蓉1, 2,
张恒1, 2,
吴丹1, 2,
王芹1, 2,
周清元1,
殷家明1,
李加纳1, 2,
刘列钊1, 2,,,
唐章林1, 2,,
1.西南大学农学与生物科技学院 重庆 400715
2.西南大学农业科学研究院 重庆 400715
基金项目: 国家重点研发计划项目2018YFD0100500
重庆市社会事业与民生保障科技创新主题专项cstc2016shms-ztzx80010

详细信息
作者简介:李阳阳, 主要研究方向为油菜耐旱性机理研究。E-mail: liyangyangswu@163.com
通讯作者:刘列钊, 主要研究方向为油菜耐旱性机理研究, E-mail: liezhao2003@126.com
唐章林, 主要研究方向为油菜耐旱性品种选育, E-mail: tangzhlin@swu.edu.cn
中图分类号:S326;S565.4

计量

文章访问数:128
HTML全文浏览量:35
PDF下载量:35
被引次数:0
出版历程

收稿日期:2020-10-29
录用日期:2021-02-10
刊出日期:2021-08-01

Comprehensive evaluation and identification trait selection of drought resistance at the seedling stage of Brassica napus L.

LI Yangyang1, 2,,
LI Chi1, 2,
REN Junyang1, 2,
LI Zhi1, 2,
ZHANG Jinfeng1, 2,
LYU Rongrong1, 2,
ZHANG Heng1, 2,
WU Dan1, 2,
WANG Qin1, 2,
ZHOU Qingyuan1,
YIN Jiaming1,
LI Jiana1, 2,
LIU Liezhao1, 2,,,
TANG Zhanglin1, 2,,
1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
2. Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
Funds: the National Key R&D Program of China2018YFD0100500
the Science & Technology Innovation Project of Chongqing Social Undertakings & Livelihood Securitycstc2016shms-ztzx80010

More Information
Corresponding author:LIU Liezhao, E-mail: liezhao2003@126.com;TANG Zhanglin, E-mail: tangzhlin@swu.edu.cn


摘要
HTML全文
(2)(7)
参考文献(38)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:我国油菜生产经常遭受干旱胁迫而影响产量和品质,综合评价油菜种质资源的耐旱性,筛选耐旱种质,确定耐旱性鉴定指标,是耐旱新品种培育和耐旱机理研究的基础性工作。本研究利用229份甘蓝型油菜种质资源,在苗期设置干旱胁迫组和正常灌溉(对照)组,测定地上和地下部鲜重和干重及叶片过氧化物酶活性、丙二醛含量、脯氨酸含量、可溶性蛋白含量、可溶性糖含量和相对含水量10个性状,采用耐旱系数、聚类分析、隶属函数、主成分分析和灰色关联度分析等方法对其耐旱性进行综合评价。结果显示,苗期干旱胁迫使甘蓝型油菜幼苗地上和地下部干重和鲜重及叶片相对含水量和可溶性蛋白含量显著降低,使叶片过氧化物酶活性、丙二醛含量、可溶性糖含量和脯氨酸含量显著升高,而地下部干重在正常灌溉组与干旱胁迫组之间差异不显著。229份种质资源划分为8个类群,各类群表现出不同的耐旱特性。RR002、9801C、炎81-2、07037、浙油758和09-P64-1为耐旱材料,11-P30、CY16PXW-35、08-P35、09-P36、甲972和A148为干旱敏感材料。地上部鲜重、叶片脯氨酸含量和可溶性糖含量可作为甘蓝型油菜苗期综合耐旱性快速、简便、准确的鉴定指标。
关键词:甘蓝型油菜/
耐旱性/
种质筛选/
鉴定指标/
苗期
Abstract:The yield and quality of Brassica napus L. are often affected by drought stress in China. To identify drought-tolerant and drought-sensitive germplasms, screen for indices of drought tolerance to reduce cost and improve efficiency, provide a basis for breeding drought-tolerant varieties, and investigate the mechanisms of drought tolerance, 229 B. napus accessions were subjected to two water treatments (drought stress and well watering) at the seedling stage. The shoot fresh weight, shoot dry weight, root fresh weight, root dry weight, leaf peroxidase activity, malonaldehyde content, proline content, soluble protein content, soluble sugar content, and leaf relative water content were measured. The drought resistance index, clustering analysis, subordinative function, principal component analysis, and gray correlation analysis were used to comprehensively evaluate drought tolerance. The correlation coefficients between the drought resistance index of each trait and the average value of the subordinative function, composite value of the principal component factors, and comprehensive relation degree and those among the drought resistance indexes of the ten traits were calculated to determine the drought tolerance index. The results showed significant differences between the drought-stressed and well-watered plants at the seedling stage. During drought stress, the leaves of drought-stressed plants gradually wilted and curled to different degrees, and the leaves were born slowly and became smaller, while the old leaves turned yellow. After 30 days of stress, the drought-stressed plants were shorter, weaker, and had lower biomass than the well-watered plants. The shoot fresh weight, shoot dry weight, root fresh weight, leaf relative water content and soluble protein content were lower, and the leaf peroxidase activity, malonaldehyde content, proline content, and soluble sugar content increased under drought stress. The root dry weight did not differ between drought stress and well watering. The 229 B. napus accessions were divided into eight groups, and the accessions of each group showed different drought tolerance characteristics. The significant correlation between the average value of the subordinative function, composite value of the principal component factors, and the comprehensive relation degree indicated that the comprehensive evaluation was reliable. Therefore, by means of the subordinative function, principal component analysis, and gray correlation analysis, accessions RR002, 9801C, Yan81-2, 07037, Zheyou758, and 09-P64-1 were identified as drought tolerant. Accessions 11-P30, CY16PXW-35, 08-P35, 09-P36, Jia972, and A148 were drought sensitive. The correlations of shoot fresh weight, shoot dry weight, root fresh weight, root dry weight, leaf proline content, soluble sugar content with the average value of the subordinative function, composite value of the principal component factors, and the comprehensive relation degree were significant with high correlation coefficients, as did those among shoot fresh weight, shoot dry weight, root fresh weight, and root dry weight. The shoot fresh weight, leaf proline content and soluble sugar content can serve as rapid, simple, and accurate traits to identify comprehensive drought tolerance at the seedling stage in B. napus.
Key words:Brassica napus L./
Drought tolerance/
Germplasm screening/
Identification index/
Seedling stage

HTML全文


图1229份甘蓝型油菜的8个类群各性状耐旱系数值的热图和多重比较
对于同一性状, 不同大、小写字母分别表示类型间差异达P < 0.01和P < 0.05显著水平。SFW: 地上部鲜重; SDW: 地上部干重; RFW: 地下部鲜重; RDW: 地下部干重; POD: 叶片过氧化物酶活性; MDA: 叶片丙二醛含量; PROTEIN: 叶片可溶性蛋白含量; PRO: 叶片脯氨酸含量; RWC: 叶片相对含水量; SUG: 叶片可溶性糖含量。
Figure1.Heatmap and multiple comparisons for drought resistance index values of traits in 8 groups of 229 Brassic napus accessions
For one trait, different capital and lowercase letters mean significant differences among groups at P < 0.01 and P < 0.05 levels, respectively. SFW: shoot fresh weight; SDW: shoot dry weight; RFW: root fresh weight; RDW: root dry weight; POD: leaf peroxidase activity; MDA: leaf malonaldehyde content; PROTEIN: leaf soluble protein content; PRO: leaf proline content; RWC: leaf relative water content; SUG: leaf soluble sugar content.


下载: 全尺寸图片幻灯片


图2甘蓝型油菜耐旱材料和干旱敏感材料各性状耐旱系数值热图
红线以上为耐旱材料, 红线以下为干旱敏感材料。SFW: 地上部鲜重; SDW: 地上部干重; RFW: 地下部鲜重; RDW: 地下部干重; POD: 叶片过氧化物酶活性; MDA: 叶片丙二醛含量; PROTEIN: 叶片可溶性蛋白含量; PRO: 叶片脯氨酸含量; RWC: 叶片相对含水量; SUG: 叶片可溶性糖含量。
Figure2.Heatmap of drought resistance index values of traits of drought resistant and sensitive accessions of Brassic napus
Accessions above the red line are drought-resistant and those below the red line are drought-sensitive. SFW: shoot fresh weight; SDW: shoot dry weight; RFW: root fresh weight; RDW: root dry weight; POD: leaf peroxidase activity; MDA: leaf malonaldehyde content; PROTEIN: leaf soluble protein content; PRO: leaf proline content; RWC: leaf relative water content; SUG: leaf soluble sugar content.


下载: 全尺寸图片幻灯片

表1干旱处理和正常灌溉处理下229份甘蓝型油菜各性状的变化
Table1.Trait changes of 229 Brassic napus accessions under drought stress and well watering conditions
性状
Trait
处理
Treatment
平均值
Average
标准差
Standard error
最小值
Min
最大值
Max
变异系数
Coefficient of variation
地上部鲜重
Shoot fresh weight (g·plant–1)
正常灌溉Well watering45.109**(A)11.40721.24781.8000.253
干旱处理Drought stress8.656**(B)2.4834.32717.9900.287
地上部干重
Shoot dry weight (g·plant–1)
正常灌溉Well watering3.063**(A)0.7761.1706.2370.253
干旱处理Drought stress1.354**(B)0.3920.5053.2880.289
地下部鲜重
Root fresh weight (g·plant–1)
正常灌溉Well watering1.241**(A)0.5150.1733.0940.414
干旱处理Drought stress0.790**(B)0.2720.2271.6210.344
地下部干重
Root dry weight (g·plant–1)
正常灌溉Well watering0.333**(A)0.0930.0890.6910.279
干旱处理Drought stress0.348**(A)0.0770.1720.6280.221
叶片过氧化物酶活性
Leaf peroxidase activity (U·g–1)
正常灌溉Well watering5.987**(B)0.9943.6819.7230.166
干旱处理Drought stress6.907**(A)1.2842.68210.4340.186
叶片丙二醛含量
Leaf malonaldehyde content (μmol·g–1)
正常灌溉Well watering0.030**(B)0.0110.0110.0730.371
干旱处理Drought stress0.057**(A)0.0250.0220.1820.447
叶片可溶性蛋白含量
Leaf soluble protein content (mg·g–1)
正常灌溉Well watering7.380**(A)2.5072.79916.1950.340
干旱处理Drought stress1.987**(B)0.6970.7084.6710.351
叶片脯氨酸含量
Leaf proline content (mg·g–1)
正常灌溉Well watering1.786**(B)1.5170.12513.2370.849
干旱处理Drought stress3.546**(A)2.0170.25413.2710.569
叶片相对含水量
Leaf relative water content (%)
正常灌溉Well watering94.117**(A)4.07970.08699.9650.043
干旱处理Drought stress72.259**(B)7.50954.92696.2820.104
叶片可溶性糖含量
Leaf soluble sugar content (mg·g–1)
正常灌溉Well watering16.355**(B)4.7746.19937.7450.292
干旱处理Drought stress31.153**(A)5.97116.40150.0940.192
“**”表示不同材料间差异达P < 0.01显著水平; 不同大写字母表示各性状在干旱处理和正常灌溉间差异达P < 0.01显著水平。“**” shows significant difference at P < 0.01 probability level among accessions. Different capital letters show significant differences at P < 0.01 probability level between drought stress and well watering.


下载: 导出CSV
表2229份甘蓝型油菜聚类为不同类群数时各性状耐旱系数值差异的F
Table2.F-values of differences of trait drought resistance indexes when 229 Brassic napus accessions clusting-analyzed into different cluster group numbers
性状
Trait
类群数Group number
2345678
叶片过氧化物酶活性Leaf peroxidase activity0.4890.71512.104**9.059**7.548**6.453**12.331**
地上部鲜重Shoot fresh weight26.750**33.086**58.725**44.722**36.595**30.552**40.273**
地上部干重Shoot dry weight46.248**65.830**63.557**48.365**38.818**32.323**29.134**
地下部干重Root dry weight38.043**67.687**59.565**44.475**36.575**42.757**40.889**
地下部鲜重Root fresh weight11.921**24.513**19.320**14.526**11.577**19.368**17.046**
叶片丙二醛含量Leaf malonaldehyde content50.342**82.932**56.235**60.838**48.967**40.951**35.821**
叶片可溶性蛋白含量Leaf soluble protein content0.0060.1859.628**7.340**49.138**42.310**36.506**
叶片脯氨酸含量Leaf proline content17.476**17.839**14.067**117.741**94.409**78.327**67.303**
叶片相对含水量Leaf relative water content0.2280.2480.7811.1171.0171.0463.697**
叶片可溶性糖含量Leaf soluble sugar content0.3710.1893.303*2.797*4.261**18.019**15.594**
“**”和“*”分别表示各类群间性状差异达P < 0.01和P < 0.05显著水平。“**” and “*” show significant difference in traits among groups at P < 0.01 and P < 0.05 probability levels, respectively.


下载: 导出CSV
表3229份甘蓝型油菜的部分极端材料的平均隶属函数值、主成分因子综合值、综合关联度和类群
Table3.Average values of subordinative function, composite values of principal component factors and comprehensive relation degrees of some extreme materials in 229 Brassic napus accessions and their groups
材料名称
Accession name
来源地
Source
平均隶属函数值
Average value of subordinative function
主成分因子综合值
Composite value of principal component factors
综合关联度
Comprehensive relation degree
类群
Group

Value
排序
Rank

Value
排序
Rank

Value
排序
Rank
科里纳Kelina重庆Chongqing0.10332270.78112170.8772222
炎81-2 Yan81-2重庆Chongqing0.314881.390380.89836
SWU40重庆Chongqing0.2961101.2003320.893723
SWU44重庆Chongqing0.338141.2326250.896213
SWU59重庆Chongqing0.2400371.3770110.894815
CY12PXW-6四川Sichuan0.350021.2908210.896312
CY16PXW-35四川Sichuan0.12232220.72632230.8770225
wx10213湖南Hunan0.14342030.71962240.8789216
10-804湖南Hunan0.14112080.67312270.8768226
631湖南Hunan0.2492311.664530.91193
1360湖南Hunan0.2083701.760420.92422
07037湖北Hubei0.315471.3807100.896810
RR002湖北Hubei0.374411.599340.90484
宁油1号Ningyou 1湖北Hubei0.333151.3065180.89689
11-9-700湖北Hubei0.303991.3080170.895614
09-P64-1湖北Hubei0.347332.295510.95711
11-P74-8父本
Male parent of 11-P74-8
湖北Hubei0.13662140.76442190.8780219
甲972 Jia 972湖北Hubei0.08402290.61122290.8737229
甲预05棚Jiayu 05 Peng湖北Hubei0.11872240.81472120.8795215
浙油758 Zheyou 758浙江Zhejiang0.2878111.412470.89728
垦C1 Ken C1陕西Shaanxi0.12502200.77212180.8778221
GY284陕西Shaanxi0.12582180.73842220.8771224
A82江西Jiangxi0.15011960.75522200.8801210
A148瑞典Sweden0.11442260.67612260.8767227
08-P35湖北Hubei0.12042230.70552250.8772223
09-P36湖北Hubei0.09522280.66812280.8759228
10-P29湖北Hubei0.12332210.83052060.8797214
11-P30湖北Hubei0.12582190.75262210.8780220
12-P01湖北Hubei0.11682250.82352090.8788217
9801C甘肃Gansu0.331561.417860.89827
SWU41重庆Chongqing0.2584231.586750.90145
SWU69重庆Chongqing0.2381401.387390.896411
229份材料详情可扫本文首页OSID码查看。Scan the OSID code in the first page of this article to view the details of 229 accessions.


下载: 导出CSV
表4229份甘蓝型油菜各主成分因子的特征值、贡献率和特征向量值
Table4.Eigen values of all indexes and their contributions and loading matrix of principal component factors of 229 Brassic napus accessions
因子
Factor
特征值
Eigen value
累计贡献率
Cumulative contribution (%)
特征向量值Eigen vector
叶片过氧化物酶活性
Leaf peroxidase activity
地上部鲜重
Shoot fresh weight
地上部干重
Shoot dry weight
地下部干重
Root dry weight
地下部鲜重
Root fresh weight
叶片丙二醛含量
Leaf malonaldehyde content
叶片可溶性蛋白含量
Leaf soluble protein content
叶片脯氨酸含量
Leaf proline content
叶片相对含水量
Leaf relative water content
叶片可溶性糖含量
Leaf soluble sugar content
12.63026.3020.0260.5110.4940.5440.431–0.0040.0690.0350.075–0.031
21.47641.059–0.350–0.178–0.1960.1450.2780.391–0.053–0.4260.4290.434
31.15152.564–0.0240.1630.096–0.160–0.2660.4120.6980.3630.2300.158
41.01262.6800.668–0.075–0.0540.0520.055–0.3240.314–0.286–0.0220.503
50.91371.8070.262–0.133–0.0030.0680.1580.379–0.4230.568–0.2360.428
60.87880.5910.3570.077–0.088–0.013–0.118–0.109–0.3100.2050.813–0.183
70.82088.7920.479–0.040–0.1110.0110.1410.6090.057–0.314–0.128–0.498
80.59694.749–0.058–0.242–0.4850.1230.582–0.2110.3400.3700.040–0.224
90.29897.7300.018–0.7290.644–0.0180.097–0.0260.0930.0350.140–0.120
100.227100.0000.0160.2450.189–0.7960.507–0.025–0.062–0.0480.0490.059


下载: 导出CSV
表5229份甘蓝型油菜的平均隶属函数值、主成分因子综合值和综合关联度的相关性
Table5.Correlations among average value of subordinative function, composite value of principal component factors and comprehensive relation degree of 229 Brassic napus accessions
性状
Trait
平均隶属函数值
Average value of subordinative function
主成分因子综合值
Composite value of principal component factors
主成分因子综合值
Composite value of principal component factors
0.78**
综合关联度
Comprehensive relation degree
0.74**0.94**
“**”表示相关性达P < 0.01显著水平。“**” shows significant correlation at P < 0.01 probability level.


下载: 导出CSV
表6甘蓝型油菜各性状耐旱系数值与平均隶属函数值、主成分因子综合值和综合关联度的相关性
Table6.Correlations between drought resistance index value of each trait and average value of subordinative function, composite value of principal component factors and comprehensive relation degree
性状
Trait
叶片过氧化物酶活性
Leaf peroxidase activity
地上部鲜重
Shoot fresh weight
地上部干重
Shoot dry weight
地下部干重
Root dry weight
地下部鲜重
Root fresh weight
叶片丙二醛含量
Leaf malonaldehyde content
叶片可溶性蛋白含量
Leaf soluble protein content
叶片脯氨酸含量
Leaf proline content
叶片相对含水量
Leaf relative water content
叶片可溶性糖含量
Leaf soluble sugar content
平均隶属函数值
Average value of subordinative function
0.21**0.69**0.66**0.69**0.56**0.27**0.42**0.22**0.25**0.22**
主成分因子综合值
Composite value of principal component factors
0.13*0.40**0.42**0.53**0.47**0.18**0.110.62**0.130.42**
综合关联度
Comprehensive relation degree
0.21**0.38**0.39**0.44**0.40**0.15*0.15*0.70**0.090.26**
“**”和“*”分别表示相关性达P < 0.01和P < 0.05显著水平。“**” and “*” show significant correlation at P < 0.01 and P < 0.05 levels, respectively.


下载: 导出CSV
表7229份甘蓝型油菜各性状耐旱系数的相关系数
Table7.Correlation coefficients of trait drought resistance index values in 229 Brassic napus accessions
性状
Trait
叶片过氧化物酶活性
Leaf peroxidase activity
地上部鲜重
Shoot fresh weight
地上部干重
Shoot dry weight
地下部干重
Root dry weight
地下部鲜重
Root fresh weight
叶片丙二醛含量
Leaf malonaldehyde content
叶片可溶性蛋白含量
Leaf soluble protein content
叶片脯氨酸含量
Leaf proline content
叶片相对含水量
Leaf relative water content
地上部鲜重
Shoot fresh weight
0.053
地上部干重
Shoot dry weight
0.0440.676**
地下部干重
Root dry weight
0.0110.592**0.571**
地下部鲜重
Root fresh weight
–0.0310.343**0.314**0.691**
叶片丙二醛含量
Leaf malonaldehyde content
–0.130*–0.046–0.0490.0040.071
叶片可溶性蛋白含量
Leaf soluble protein content
0.0380.170*0.102–0.011–0.0480.065
叶片脯氨酸含量
Leaf proline content
0.0830.140*0.133*–0.057–0.114–0.0060.028
叶片相对含水量
Leaf relative water content
–0.0900.087–0.0330.1240.0800.1330.033–0.093
叶片可溶性糖含量
Leaf soluble sugar content
–0.034–0.151*–0.0740.0430.0710.1070.059–0.0890.119
“**”和“*”分别表示相关性达P < 0.01和P < 0.05显著水平。“**” and “*” show significant correlation at P < 0.01 and P < 0.05 levels, respectively.


下载: 导出CSV

参考文献(38)
[1]ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324 doi: 10.1016/j.cell.2016.08.029
[2]BAC-MOLENAAR J A, GRANIER C, KEURENTJES J J, et al. Genome-wide association mapping of time-dependent growth responses to moderate drought stress in Arabidopsis[J]. Plant, Cell & Environment, 2016, 39(1): 88-102 http://www.ncbi.nlm.nih.gov/pubmed/26138664
[3]MARSHALL A, AALEN R B, AUDENAERT D, et al. Tackling drought stress: RECEPTOR-LIKE KINASES present new approaches[J]. The Plant Cell, 2012, 24(6): 2262-2278 doi: 10.1105/tpc.112.096677
[4]MITTLER R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405-410 doi: 10.1016/S1360-1385(02)02312-9
[5]LI L H, YI H L. Effect of sulfur dioxide on ROS production, gene expression and antioxidant enzyme activity in Arabidopsis plants[J]. Plant Physiology and Biochemistry, 2012, 58: 46-53 doi: 10.1016/j.plaphy.2012.06.009
[6]CAO Y, LUO Q X, TIAN Y, et al. Physiological and proteomic analyses of the drought stress response in Amygdalus Mira (Koehne) roots[J]. BMC Plant Biology, 2017, 17(1): 53 doi: 10.1186/s12870-017-1000-z
[7]HATAMI M, HADIAN J, GHORBANPOUR M. Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol[J]. Journal of Hazardous Materials, 2017, 324: 306-320 doi: 10.1016/j.jhazmat.2016.10.064
[8]HE F, SHENG M, TANG M. Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought stress[J]. Frontiers in Plant Science, 2017, 8: 183 http://pubmedcentralcanada.ca/pmcc/articles/PMC5311038/
[9]SHEIKH MOHAMMADI M H, ETEMADI N, ARAB M M, et al. Molecular and physiological responses of Iranian perennial ryegrass as affected by trinexapac ethyl, paclobutrazol and abscisic acid under drought stress[J]. Plant Physiology and Biochemistry, 2017, 111: 129-143 doi: 10.1016/j.plaphy.2016.11.014
[10]路之娟, 张永清, 张楚, 等. 不同基因型苦荞苗期抗旱性综合评价及指标筛选[J]. 中国农业科学, 2017, 50(17): 3311-3322 doi: 10.3864/j.issn.0578-1752.2017.17.006
LU Z J, ZHANG Y Q, ZHANG C, et al. Comprehensive evaluation and indicators of the drought resistance of different genotypes of Fagopyrum tataricum at seedling stage[J]. Scientia Agricultura Sinica, 2017, 50(17): 3311-3322 doi: 10.3864/j.issn.0578-1752.2017.17.006
[11]王璐璐, 杨斌, 肖华贵, 等. PEG-6000模拟干旱胁迫下油菜的根系特性与抗旱性[J]. 种子, 2017, 36(8): 93-95 doi: 10.3969/j.issn.1005-2690.2017.08.065
WANG L L, YANG B, XIAO H G, et al. Root system characteristics and drought resistance of rape under drought stress by PEG-6000[J]. Seed, 2017, 36(8): 93-95 doi: 10.3969/j.issn.1005-2690.2017.08.065
[12]胡承伟, 张学昆, 邹锡玲, 等. PEG模拟干旱胁迫下甘蓝型油菜的根系特性与抗旱性[J]. 中国油料作物学报, 2013, 35(1): 48-53 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201301009.htm
HU C W, ZHANG X K, ZOU X L, et al. Root structure and drought tolerance of rapeseed under PEG imposed drought[J]. Chinese Journal of Oil Crop Sciences, 2013, 35(1): 48-53 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201301009.htm
[13]庞红喜, 赵兰芝. 干旱胁迫下不同油菜新品种萌发期耐旱性的比较[J]. 安徽农业科学, 2016, 44(19): 38-41 doi: 10.3969/j.issn.0517-6611.2016.19.015
PANG H X, ZHAO L Z. Comparison in drought resistance of different rapeseed varieties in germination period under drought stress[J]. Journal of Anhui Agricultural Sciences, 2016, 44(19): 38-41 doi: 10.3969/j.issn.0517-6611.2016.19.015
[14]董小云, 米超, 刘自刚, 等. PEG模拟水分胁迫对白菜型冬油菜幼苗生长及生长特性的影响[J]. 河南农业大学学报, 2018, 52(3): 313-321 https://www.cnki.com.cn/Article/CJFDTOTAL-NNXB201803002.htm
DONG X Y, MI C, LIU Z G, et al. Response of winter rapessed seeding growth and physiological characteristics under PEG drought tolerance[J]. Journal of Henan Agricultural University, 2018, 52(3): 313-321 https://www.cnki.com.cn/Article/CJFDTOTAL-NNXB201803002.htm
[15]陈致富, 李勤菲, 张永晶, 等. 白菜型油菜品种萌发期的抗旱性鉴定与筛选[J]. 植物遗传资源学报, 2015, 16(1): 15-22 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYC201501004.htm
CHEN Z F, LI Q F, ZHANG Y J, et al. Identification and screening of resources with tolerance against drought stress in Brassica rapa during germination stage[J]. Journal of Plant Genetic Resources, 2015, 16(1): 15-22 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYC201501004.htm
[16]许媛君, 张生萍, 马晓岗, 等. 白菜型油菜种质资源抗旱鉴定[J]. 青海大学学报: 自然科学版, 2016, 34(1): 1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-QHXZ201601001.htm
XU Y J, ZHANG S P, MA X G, et al. The drought resistance identification of Brassica rape germplasm[J]. Journal of Qinghai University: Natural Science Edition, 2016, 34(1): 1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-QHXZ201601001.htm
[17]原小燕, 符明联, 李根泽, 等. 甘蓝型与芥菜型油菜种间杂交后代DH系抗旱性评价[J]. 中国油料作物学报, 2015, 37(1): 62-71 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201501010.htm
YUAN X Y, FU M L, LI G Z, et al. Evaluation of drought resistance of DH lines from hybrid of B. napus and B. juncea[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(1): 62-71 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201501010.htm
[18]朱宗河, 郑文寅, 张学昆. 甘蓝型油菜耐旱相关性状的主成分分析及综合评价[J]. 中国农业科学, 2011, 44(9): 1775-1787 doi: 10.3864/j.issn.0578-1752.2011.09.003
ZHU Z H, ZHENG W Y, ZHANG X K. Principal component analysis and comprehensive evaluation on morphological and agronomic traits of drought tolerance in rapeseed (Brassica napus L. )[J]. Scientia Agricultura Sinica, 2011, 44(9): 1775-1787 doi: 10.3864/j.issn.0578-1752.2011.09.003
[19]涂玉琴, 汤洁, 涂伟凤, 等. 与蔊菜属间杂交产生的甘蓝型油菜新材料的抗旱性综合评价[J]. 西南农业学报, 2016, 29(7): 1506-1513 https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201607003.htm
TU Y Q, TANG J, TU W F, et al. Comprehensive evaluation of drought resistance of novel Brassica napus germplasm derived from intergeneric hybridizations with Rorippa indica[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(7): 1506-1513 https://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201607003.htm
[20]谢小玉, 张霞, 张兵. 油菜苗期抗旱性评价及抗旱相关指标变化分析[J]. 中国农业科学, 2013, 46(3): 476-485 doi: 10.3864/j.issn.0578-1752.2013.03.004
XIE X Y, ZHANG X, ZHANG B. Evaluation of drought resistance and analysis of variation of relevant parameters at seedling stage of rapeseed (Brassica napus L. )[J]. Scientia Agricultura Sinica, 2013, 46(3): 476-485 doi: 10.3864/j.issn.0578-1752.2013.03.004
[21]桂月晶. 油菜抗旱指标筛选及抗旱相关基因的表达分析[D]. 开封: 河南大学, 2011: 23-59
GUI Y J. Screening of drought resistance indexes and expression of drought-resistant related genes in Brassica napus L. [D]. Kaifeng: Henan University, 2011: 23-59
[22]洪双, 李浩, 许鲲, 等. 甘蓝型油菜微核心种质耐旱鉴定与评价指标筛选[J]. 中国油料作物学报, 2018, 40(2): 209-217 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201802006.htm
HONG S, LI H, XU K, et al. Identification of a mini-core collection of Brassica napus accessions for drought tolerance and selection of evaluation indices[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(2): 209-217 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201802006.htm
[23]牛远, 李玲芬, 杨修艳, 等. 氯化胆碱和海藻糖对油菜蕾薹期干旱胁迫的缓解效应研究和耐旱指标筛选[J]. 核农学报, 2020, 34(4): 860-869 https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB202004023.htm
NIU Y, LI L F, YANG X Y, et al. Drought tolerance effects of choline chloride and trehalose on rapeseed (Brassica napus L. ) at bud stage under drought stress and selection of related indices[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(4): 860-869 https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB202004023.htm
[24]侯林涛. 甘蓝型油菜种子老化处理后发芽指数QTL定位及生理分析[D]. 重庆: 西南大学, 2017: 18-20
HOU L T. Germination index QTL mapping and physiological analysis for Brassica napus L. seed after artificial aging treatment[D]. Chongqing: Southwest University, 2017: 18-20
[25]王丹丹. 甘蓝型油菜遗传图谱构建及苗期耐旱相关性状的QTL定位[D]. 重庆: 西南大学, 2014: 20-21
WANG D D. Mapping and QTL analysis of genes to drought tolerance in Brassica napus L. [D]. Chongqing: Southwest University, 2014: 20-21
[26]唐启义. DPS数据处理系统: 实验设计、统计分析及数据挖掘[M]. 2版. 北京: 科学出版社, 2010
TANG Q Y. DPS Data Processing System: Experimental Design, Statistical Analysis and Data Mining (Second Edition)[M]. Beijing: Science Press, 2010
[27]郭雪松. 油菜种质资源耐旱性的鉴定[D]. 重庆: 西南大学, 2009: 9-13
GUO X S. Evaluation on drought tolerance ability of rapeseed resources[D]. Chongqing: Southwest University, 2009: 9-13
[28]李莉, 杨雷, 杨莉, 等. 应用灰色关联分析法综合评价草莓种质资源[J]. 河北农业科学, 2008, 12(4): 18-19, 21 https://www.cnki.com.cn/Article/CJFDTOTAL-HBKO200804007.htm
LI L, YANG L, YANG L, et al. A comprehensive assessment on strawberry germplasm resource by using the grey relevant analysis method[J]. Journal of Hebei Agricultural Sciences, 2008, 12(4): 18-19, 21 https://www.cnki.com.cn/Article/CJFDTOTAL-HBKO200804007.htm
[29]张朋飞, 武军艳, 孙万仓, 等. 干旱胁迫对白菜型冬油菜苗期生理特性的影响[J]. 西北农业学报, 2015, 24(2): 84-90 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201502016.htm
ZHANG P F, WU J Y, SUN W C, et al. Effect of drought stress on physiological character of winter rape (Brassica campestris L. ) at seedling stage[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2015, 24(2): 84-90 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201502016.htm
[30]王卫芳. 油菜苗期抗旱性评价及生理机制研究[D]. 武汉: 华中农业大学, 2018: 13-18
WANG W F. Evaluation and physiological mechanism of drought resistance in rape seedling stage[D]. Wuhan: Huazhong Agricultural University, 2018: 13-18
[31]孔宪旺, 孙明茂. 水稻不同种质苗期耐旱性综合评价[J]. 江西农业学报, 2019, 31(4): 1-7 doi: 10.3969/j.issn.1001-8581.2019.04.001
KONG X W, SUN M M. Comprehensive evaluation of drought tolerance of different rice germplasms at seedling stage[J]. Acta Agriculturae Jiangxi, 2019, 31(4): 1-7 doi: 10.3969/j.issn.1001-8581.2019.04.001
[32]蔡东芳, 张书芬, 何俊平, 等. 甘蓝型油菜抗旱性鉴定研究进展[J]. 中国农学通报, 2017, 33(28): 7-12 doi: 10.11924/j.issn.1000-6850.casb16090004
CAI D F, ZHANG S F, HE J P, et al. Drought resistance identification in Brassica napus[J]. Chinese Agricultural Science Bulletin, 2017, 33(28): 7-12 doi: 10.11924/j.issn.1000-6850.casb16090004
[33]田宏先, 李小玉, 施毅, 等. 晋北区地方油菜品种苗期抗旱性比较[J]. 山西农业科学, 2020, 48(9): 1411-1417 doi: 10.3969/j.issn.1002-2481.2020.09.11
TIAN H X, LI X Y, SHI Y, et al. Comparison of drought resistance of Brassica juncea varieties in northern Shanxi[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(9): 1411-1417 doi: 10.3969/j.issn.1002-2481.2020.09.11
[34]田宏先, 施毅, 王瑞霞. 春油菜光合作用及其相关生理特性对苗期干旱胁迫的响应[J]. 种业导刊, 2020, (4): 7-12 https://www.cnki.com.cn/Article/CJFDTOTAL-MLWZ202004003.htm
TIAN H X, SHI Y, WANG R X. Response of photosynthesis and related physiological characteristics of Brassica juncea to drought stress at seedling stage[J]. Journal of Seed Industry Guide, 2020, (4): 7-12 https://www.cnki.com.cn/Article/CJFDTOTAL-MLWZ202004003.htm
[35]田宏先, 王瑞霞, 施毅, 等. 油菜根系对苗期水分胁迫的形态及生理响应[J]. 农业科技通讯, 2020, (8): 148-153 https://www.cnki.com.cn/Article/CJFDTOTAL-KJTX202008051.htm
TIAN H X, WANG R X, SHI Y, et al. Morphological and physiological responses of roots to water stress at seedling stage in Brassica juncea[J]. Bulletin of Agricultural Science and Technology, 2020, (8): 148-153 https://www.cnki.com.cn/Article/CJFDTOTAL-KJTX202008051.htm
[36]原小燕, 铁朝良, 符明联, 等. 甘芥种间杂交后代DH系花期抗旱性评价[J]. 干旱地区农业研究, 2017, 35(2): 79-88 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201702015.htm
YUAN X Y, TIE C L, FU M L, et al. Drought resistance evaluation of DH lines from interspecific hybrid of B. napus and B. juncea in flowering stage[J]. Agricultural Research in the Arid Areas, 2017, 35(2): 79-88 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201702015.htm
[37]王瑞霞, 李小玉, 田宏先. 晋北区芥菜型油菜抗旱性鉴定及综合抗旱指标筛选[J]. 中国农业科技导报, 2020, 22(11): 42-51 https://www.cnki.com.cn/Article/CJFDTOTAL-NKDB202011006.htm
WANG R X, LI X Y, TIAN H X. Drought resistance identification and comprehensive drought resistance index screening of rapeseed (Brassica juncea L. )in north Shanxi[J]. Journal of Agricultural Science and Technology, 2020, 22(11): 42-51 https://www.cnki.com.cn/Article/CJFDTOTAL-NKDB202011006.htm
[38]陈娇, 谢小玉, 张小短, 等. 甘蓝型油菜苗期抗旱性鉴定及综合抗旱指标筛选[J]. 中国油料作物学报, 2019, 41(5): 713-722 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201905009.htm
CHEN J, XIE X Y, ZHANG X D, et al. Seedling drought resistance and parameter screening of rapeseed[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(5): 713-722 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201905009.htm

相关话题/综合 湖北 材料 重庆 鉴定