删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

藜麦种子萌发阶段响应干旱和盐胁迫变化的综合评价

本站小编 Free考研考试/2022-01-01

王志恒1,,
徐中伟1,
周吴艳1,
杨秀柳1,
胡韩1,
李成虎2,
马维亮3,
魏玉清1,,
1.国家民族事务委员会生态系统模型及应用重点试验室/北方民族大学生物科学与工程学院 银川 750021
2.宁夏回族自治区海原县农业技术推广服务中心 中卫 755299
3.宁夏农林科学院 银川 750000
基金项目: 北方民族大学高层次人才项目2019BJLZ02
国家自然科学基金项目31960387

详细信息
作者简介:王志恒, 研究方向为植物生理生态学。E-mail:wangzhiheng08@qq.com
通讯作者:魏玉清, 主要从事植物逆境生理与生物质能源研究。E-mail:weiyuqing@126.com
中图分类号:S432.2+1

计量

文章访问数:293
HTML全文浏览量:2
PDF下载量:218
被引次数:0
出版历程

收稿日期:2020-01-06
录用日期:2020-03-18
刊出日期:2020-07-01

Comprehensive evaluation of quinoa seed responses to drought and salt stress during germination

WANG Zhiheng1,,
XU Zhongwei1,
ZHOU Wuyan1,
YANG Xiuliu1,
HU Han1,
LI Chenghu2,
MA Weiliang3,
WEI Yuqing1,,
1. Key Laboratory of Ecosystem Modelling and Application of State Nationalities Affairs Commission/College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
2. Agricultural Technology Extension Service Centre of Haiyuan County, Ningxia, Zhongwei 755299, China
3. Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750000, China
Funds: the High-Level Talents Program of North Minzu University2019BJLZ02
the National Natural Science Foundation of China31960387

More Information
Corresponding author:WEI Yuqing, E-mail: weiyuqing@126.com


摘要
HTML全文
(4)(4)
参考文献(32)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:随着我国藜麦产业不断发展和利用边际性土地种植规模的扩大,藜麦种子萌发阶段对干旱和盐胁迫的响应研究越来越受到重视。本文采用室内PEG-6000模拟干旱胁迫和NaCl模拟盐胁迫,通过测定发芽率、发芽势、长度和鲜重等8个指标,对5个藜麦品种(系)(‘南非2号’‘陇藜1号’‘陇藜4号’、HTH-y605、HTH-01)种子萌发期对干旱和盐胁迫的响应进行综合评价研究,并利用主成分分析方法评价藜麦的抗旱性和耐盐性,指出抗旱性和耐盐性的主要评价指标。结果表明:在藜麦萌发阶段抗旱性综合评价中,主成分分析将8个指标归类为2个成分因子,各成分分别以相对长度和相对发芽率载荷量最大,可作为藜麦萌发期抗旱性主要鉴定指标。抗旱性强弱顺序为:‘南非2号’ > HTH-01 > ‘陇藜4号’ > ‘陇藜1号’ > HTH-y605。在其耐盐性综合评价中,通过主成分分析将8个指标归类为3个成分因子,相对长度、相对发芽率和相对发芽指数分别为各成分因子上最大的载荷,可以作为藜麦萌发期耐盐性的主要鉴定指标,耐盐性强弱顺序为:HTH-01 > HTH-y605 > ‘陇藜4号’ > ‘陇藜1号’ > ‘南非2号’。相关性分析结果显示,不同藜麦品种萌发阶段抗旱性与耐盐性之间无明显相关性。研究发现藜麦不同品种在抗旱性和耐盐性具有遗传多样性,其机制有待进一步研究。研究结论对藜麦抗逆机理研究和品种选育有一定的参考价值,为当前中低产田开发利用提供了理论和数据支持。
关键词:藜麦/
萌发阶段/
干旱胁迫/
盐胁迫/
抗旱性/
抗盐性
Abstract:With the development of quinoa industry, the responses of quinoa seeds to drought and salt stress at the germination stage have been gaining attention. In this paper, the drought resistance and salt tolerance of five quinoa cultivars (lines) (including 'South Africa No. 2' 'Longli No. 1' 'Longli No. 4', HTH-y605 and HTH-01) during germination were studied using indoor PEG-6000 simulated drought stress and NaCl simulated salt stress treatments. Germination rate and potential, seedlings length and fresh weight were determined. Principal component analysis was used to evaluate the drought resistance and salt resistance of quinoa, and the main evaluation indices for drought resistance and salt tolerance were identified. Results showed that different stresses had little effect on germination rate, germination potential, and germination index, but that they significantly inhibited seedling vigor index. The eight measured indices were classified into two component factors by principal component analysis, and the largest components related to seedling relative length and relative germination rate load, which could be used as main identification indices for quinoa drought resistance during the germination stage. The order of drought resistance of the tested cultivars (lines) was as follows: 'South Africa No. 2' > HTH-01 > 'Longli No. 4' > 'Longli No. 1' > HTH-y605. In terms of salt resistance, principal component analysis separated the eight indicators into three composition factors relating to the seedling relative length, relative germination rate, and relative germination index, respectively. The largest component factors can be used to identify quinoa cultivars (lines) with high salt resistance during germination. The order of salt resistance of the tested cultivars (lines) was as follows: HTH-01 > HTH-y605 > 'Longli No. 4' > 'Longli No. 1' > 'South Africa No. 2'. The drought resistance and salt tolerances of quinoa cultivars (lines) were sorted by the score function of the comprehensive factor of principal component analysis, and the results showed that 'Longli No. 4' had the strongest drought resistance, but the worst salt resistance. HTH-y605 had the strongest drought resistance as well as the strongest salt resistance. Correlation analysis showed that there was no significant correlation between drought resistance and salt tolerances of different quinoa cultivars (lines) at the germination stage. It was found that different quinoa cultivars (lines) were genetically diverse in terms of drought resistance and salt tolerance. The conclusion of this study provides a reference for research on the stress mechanisms of quinoa and for selective breeding of varieties, and provides theoretical and data to support the development of current low and medium yield fields.
Key words:Quinoa/
Germination stage/
Drought stress/
Salt stress/
Drought resistance/
Salt resistance

HTML全文


图1干旱和盐胁迫对不同藜麦品种(系)萌发进程的影响
Figure1.Effects of drought and salt stresses on germination of different quinoa varieties (lines)


下载: 全尺寸图片幻灯片


图2干旱和盐胁迫对不同藜麦品种(系)萌发指标的影响
不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure2.Effects of drought and salt stresses on germination indices of different quinoa varieties (lines)
Different lowercase letters show significant differences among different treatments (P < 0.05).


下载: 全尺寸图片幻灯片


图3干旱和盐胁迫对不同藜麦品种(系)早期幼苗生长指标的影响
不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure3.Effects of drought and salt stresses on growth indices of early seedlings of different quinoa varieties (lines)
Different lowercase letters showed significant differences among different treatments (P < 0.05).


下载: 全尺寸图片幻灯片


图4干旱和盐胁迫对不同藜麦品种(系)早期幼苗生长的影响
Figure4.Effects of drought and salt stresses on growth of early seedlings of different quinoa varieties (lines)


下载: 全尺寸图片幻灯片

表1供试藜麦品种(系)及来源
Table1.Tested quinoa varieties (lines) and their source
品种
Variety (line)
粒色
Grain color
千粒重
1000-grain weight (g)
来源
Source
陇藜4号
Longli No. 4
白色
White
3.60 甘肃省
Gansu Province
HTH-y605 黑色
Black
2.44 山西省
Shanxi Province
南非2号
South Africa No. 2
白色
White
3.60 甘肃省
Gansu Province
HTH-01 白色
White
2.88 山西省
Shanxi Province
陇藜1号
Longli No. 1
白色
White
2.32 甘肃省
Gansu Province


下载: 导出CSV
表2藜麦萌发期抗旱性、耐盐性主成分分析的特征根及贡献率
Table2.Characteristic roots and contribution rates of principal components analysis of drought tolerance and salt tolerance in germination of quinoa
胁迫
Stress
主成分
Principal component
特征值
Eigen value
贡献率
Contribution (%)
累计贡献率
Cumulative contribution (%)
干旱胁迫
Drought stress
6.10 76.17 76.17
0.98 12.30 88.47
盐胁迫
Salinity stress
3.62 45.23 45.23
1.91 23.92 69.15
1.28 16.05 85.21


下载: 导出CSV
表3藜麦萌发期抗旱性、耐盐性主成分分析的各因子载荷矩阵
Table3.Factor loading matrix of principal component analysis of drought tolerance and salt tolerance of quinoa during germination
胁迫
Stress
主成分
Principal component
X1 X2 X3 X4 X5 X6 X7 X8
干旱胁迫
Drought stress
0.258 0.353 0.600 0.327 0.924 0.906 0.873 0.870
0.922 0.892 0.767 0.667 0.280 0.368 0.389 0.430
盐胁迫
Salinity stress
0.020 0.420 -0.001 0.018 0.896 0.881 0.826 0.203
0.866 0.822 0.017 0.181 0.272 0.396 -0.040 0.872
0.219 0.216 0.954 0.879 -0.144 -0.122 0.253 -0.101
X1:相对发芽率; X2:相对发芽势; X3:相对发芽指数; X4:相对活力指数; X5:相对长度; X6:相对鲜重; X7:相对干重; X8:相对含水量。X1: relative germination rate; X2: relative germination potential; X3: relative germination index; X4: relative vigor index; X5: relative length; X6: relative fresh weight; X7: relative dry weight; X8: relative water content.


下载: 导出CSV
表4藜麦各品种(系)综合因子得分(Y值)及抗逆性的排序
Table4.Ranking of comprehensive factor score (Y value) and stress resistance of quinoa varieties (lines)
品种(系)
Variety (line)
抗旱性
Drought resistance
耐盐性
Salinity resistance
Y 排序
Order
Y 排序Order
陇藜4号Longli No. 4 38.08 3 83.45 3
HTH-y605 30.98 5 88.28 2
南非2号South Africa No. 2 51.73 1 76.35 5
HTH-01 50.57 2 98.53 1
陇藜1号Longli No. 1 36.02 4 77.41 4


下载: 导出CSV

参考文献(32)
[1]任永峰, 梅丽, 杨亚东, 等.播期对藜麦农艺性状及产量的影响[J].中国生态农业学报, 2018, 26(5):643-656 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201805002
REN Y F, MEI L, YANG Y D, et al. Effects of sowing time on agronomic characteristics and yield of quinoa[J]. Chinese Journal of Eco-Agriculture, 2018, 26(5):643-656 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201805002
[2]RIZZELLO C G, LORUSSO A, MONTEMURRO M, et al. Use of sourdough made with quinoa (Chenopodium quinoa) flour and autochthonous selected lactic acid bacteria for enhancing the nutritional, textural and sensory features of white bread[J]. Food Microbiology, 2016, 56:1-13 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=392ce7372ffdec8e52270311515f0908
[3]WANG S N, ZHU F. Formulation and quality attributes of quinoa food products[J]. Food and Bioprocess Technology, 2016, 9(1):49-68 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59cf1418bf6a8622687506ed153fdd31
[4]任贵兴, 杨修仕, 么杨.中国藜麦产业现状[J].作物杂志, 2015, (5):1-5 http://d.old.wanfangdata.com.cn/Periodical/zwzz201505001
REN G X, YANG X S, YAO Y. Current situation of quinoa industry in China[J]. Crops, 2015, (5):1-5 http://d.old.wanfangdata.com.cn/Periodical/zwzz201505001
[5]RUIZ K B, BIONDI S, OSES R, et al. Quinoa biodiversity and sustainability for food security under climate change. A review[J]. Agronomy for Sustainable Development, 2014, 34(2):349-359 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1495ddab7affe0733fdb2bc17840c09b
[6]GARCIA M, RAES D, JACOBSEN S E, et al. Agroclimatic constraints for rainfed agriculture in the Bolivian Altiplano[J]. Journal of Arid Environments, 2007, 71(1):109-121 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b38251bf32fb3491a272f34349ef920
[7]VACHER J J. Responses of two main Andean crops, quinoa (Chenopodium quinoa Willd) and papa amarga (Solanum juzepczukii Buk.) to drought on the Bolivian Altiplano:Significance of local adaptation[J]. Agriculture, Ecosystems & Environment, 1998, 68(1/2):99-108 http://www.sciencedirect.com/science/article/pii/S0167880997001400
[8]JACOBSEN S E, LIU F L, JENSEN C R. Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.)[J]. Scientia Horticulturae, 2009, 122(2):281-287 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0493510d18134a07e8cabd2f1f09c072
[9]HARIADI Y, MARANDON K, TIAN Y, et al. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels[J]. Journal of Experimental Botany, 2011, 62(1):185-193 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2993909
[10]RUFFINO A M C, ROSA M, HILAL M, et al. The role of cotyledon metabolism in the establishment of quinoa (Chenopodium quinoa) seedlings growing under salinity[J]. Plant and Soil, 2010, 326(1/2):213-224 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b0735bb27ae1151522be343e87f7ce4d
[11]杨帆.甜高粱在萌发期和苗期抗盐性与抗旱性比较研究[D].济南: 山东师范大学, 2015: 36-42 http://cdmd.cnki.com.cn/Article/CDMD-10445-1015600233.htm
YANG F. Comparative studies on salt resistance and drought resistance of sweet sorghums at the stage of germination and seedlings[D]. Jinan: Shandong Normal University, 2015: 36-42 http://cdmd.cnki.com.cn/Article/CDMD-10445-1015600233.htm
[12]刘卓.不同苜蓿品种耐盐性、抗旱性比较的研究[D].长春: 吉林农业大学, 2008: 37-39 http://cdmd.cnki.com.cn/Article/CDMD-10193-2009163003.htm
LIU Z. Study and appraisal of salt tolerance drought resistance capacity of different alfalfa cultivars[D]. Changchun: Jilin Agricultural University, 2008: 37-39 http://cdmd.cnki.com.cn/Article/CDMD-10193-2009163003.htm
[13]蒋锦鹏.野生狼尾草萌发期和幼苗期抗旱性、耐盐性的综合分析[D].长沙: 湖南农业大学, 2014: 32-37 http://cdmd.cnki.com.cn/Article/CDMD-10537-1015604592.htm
JIANG J P. The comprehensive analysis of drought and salt tolerance of wild Pennisetum at germination and seedling stage[D]. Changsha: Hunan Agricultural University, 2014: 32-37 http://cdmd.cnki.com.cn/Article/CDMD-10537-1015604592.htm
[14]SCHABES F I, SIGSTAD E E. Calorimetric studies of quinoa (Chenopodium quinoa Willd.) seed germination under saline stress conditions[J]. Thermochimica Acta, 2005, 428(1/2):71-75 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=efe2418728fbc5becd9520f89b75e3fa
[15]刘晓青. NaCl胁迫对藜麦种子萌发和幼苗生理生化特性的影响[D].合肥: 安徽农业大学, 2016: 21-25 http://cdmd.cnki.com.cn/Article/CDMD-10364-1016260114.htm
LIU X Q. Effects of NaCl stress on seed germination and physiological and biochemical of seedling in Chenopodim quinoa[D]. Hefei: Anhui Agricultural University, 2016: 21-25 http://cdmd.cnki.com.cn/Article/CDMD-10364-1016260114.htm
[16]温日宇, 刘建霞, 张珍华, 等.干旱胁迫对不同藜麦种子萌发及生理特性的影响[J].作物杂志, 2019, (1):121-126 http://d.old.wanfangdata.com.cn/Periodical/zwzz201901020
WEN R Y, LIU J X, ZHANG Z H, et al. Effects of drought stress on germination and physiological characteristics of different Quinoa seeds[J]. Crops, 2019, (1):121-126 http://d.old.wanfangdata.com.cn/Periodical/zwzz201901020
[17]宿婧, 史晓晶, 梁彬, 等.干旱胁迫对藜麦种子萌发及生理特性的影响[J].云南农业大学学报:自然科学, 2019, 34(6):928-932 http://d.old.wanfangdata.com.cn/Periodical/ynnydxxb201906004
SU J, SHI X J, LIANG B, et al. The effect of drought stress on the seed germination and physiological characteristics of Quinoa[J]. Journal of Yunnan Agricultural University:Natural Science, 2019, 34(6):928-932 http://d.old.wanfangdata.com.cn/Periodical/ynnydxxb201906004
[18]MICHEL B E, KAUFMANN M R. The osmotic potential of polyethylene glycol 6000[J]. Plant Physiology, 1973, 51(5):914-916 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_366375
[19]吴奇, 周宇飞, 高悦, 等.不同高粱品种萌发期抗旱性筛选与鉴定[J].作物学报, 2016, 42(8):1233-1246 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201608015
WU Q, ZHOU Y F, GAO Y, et al. Screening and identification for drought resistance during germination in sorghum cultivars[J]. Acta Agronomica Sinica, 2016, 42(8):1233-1246 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201608015
[20]林海明, 张文霖.主成分分析与因子分析的异同和SPSS软件——兼与刘玉玫、卢纹岱等同志商榷[J].统计研究, 2005, 22(3):65-69 http://d.old.wanfangdata.com.cn/Periodical/tongjyj200503015
LIN H M, ZHANG W L. The relationship between principal component analysis and factor analysis and SPSS software-to discuss with comrade Liu Yumei, Lu Wendai etc[J]. Statistical Research, 2005, 22(3):65-69 http://d.old.wanfangdata.com.cn/Periodical/tongjyj200503015
[21]陈锋, 孟永杰, 帅海威, 等.植物化感物质对种子萌发的影响及其生态学意义[J].中国生态农业学报, 2017, 25(1):36-46 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201701006
CHEN F, MENG Y J, SHUAI H W, et al. Effect of plant allelochemicals on seed germination and its ecological significance[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1):36-46 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201701006
[22]邓小红, 姬拉拉, 王锐洁, 等.红豆和白扁豆种子萌发和生长对盐胁迫的响应及其生理机制[J].中国生态农业学报(中英文), 2019:27(8):1218-1225 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0808&flag=1
DENG X H, JI L L, WANG R J, et al. Response of seed germination and physiological mechanism of Vigna angularis and Dolichos lablab to salt stress[J]. Chinese Journal of Eco-Agriculture, 2019, 27(8):1218-1225 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0808&flag=1
[23]王志恒, 魏玉清, 邹芳, 等. PEG-6000和盐碱胁迫对甜高粱种子萌发影响研究[J].种子, 2019, 38(5):39-43 http://d.old.wanfangdata.com.cn/Periodical/zhongz201905010
WANG Z H, WEI Y Q, ZOU F, et al. Study on effects of PEG-6000 and saline-alkali stress on seed germination of sweet sorghum[J]. Seed, 2019, 38(5):39-43 http://d.old.wanfangdata.com.cn/Periodical/zhongz201905010
[24]姚海梅, 李永生, 张同祯, 等.旱-盐复合胁迫对玉米种子萌发和生理特性的影响[J].应用生态学报, 2016, 27(7):2301-2307 http://d.old.wanfangdata.com.cn/Periodical/yystxb201607031
YAO H M, LI Y S, ZHANG T Z, et al. Effects of combined drought and salinity stress on germination and physiological characteristics of maize (Zea mays)[J]. Chinese Journal of Applied Ecology, 2016, 27(7):2301-2307 http://d.old.wanfangdata.com.cn/Periodical/yystxb201607031
[25]孙璐, 周宇飞, 汪澈, 等.高粱品种萌发期耐盐性筛选与鉴定[J].中国农业科学, 2012, 45(9):1714-1722 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201209006
SUN L, ZHOU Y F, WANG C, et al. Screening and identification of sorghum cultivars for salinity tolerance during germination[J]. Scientia Agricultura Sinica, 2012, 45(9):1714-1722 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201209006
[26]裴帅帅, 尹美强, 温银元, 等.不同品种谷子种子萌发期对干旱胁迫的生理响应及其抗旱性评价[J].核农学报, 2014, 28(10):1897-1904 http://d.old.wanfangdata.com.cn/Periodical/hnxb201410024
PEI S S, YIN M Q, WEN Y Y, et al. Physiological response of foxtail millet to drought stress during seed germination and drought resistance evaluation[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(10):1897-1904 http://d.old.wanfangdata.com.cn/Periodical/hnxb201410024
[27]陈新, 宋高原, 张宗文, 等. PEG-6000胁迫下裸燕麦萌发期抗旱性鉴定与评价[J].植物遗传资源学报, 2014, 15(6):1188-1195 http://d.old.wanfangdata.com.cn/Periodical/zwyczyxb201406004
CHEN X, SONG G Y, ZHANG Z W, et al. Identification and evaluation of drought resistance of naked oat (Avena nuda L.) under PEG-6000 stress at germination stage[J]. Journal of Plant Genetic Resources, 2014, 15(6):1188-1195 http://d.old.wanfangdata.com.cn/Periodical/zwyczyxb201406004
[28]陶金, 侯龙鱼, 杨杰, 等.燕麦萌发耐盐性及指标筛选[J].草业科学, 2018, 35(10):2414-2421 http://d.old.wanfangdata.com.cn/Periodical/caoyekx201810013
TAO J, HOU L Y, YANG J, et al. Comparative studies on seed germination characteristics and indicators of oat varieties under salt stress[J]. Pratacultural Science, 2018, 35(10):2414-2421 http://d.old.wanfangdata.com.cn/Periodical/caoyekx201810013
[29]王敏姿.马里兰百日草扎哈拉系列植物抗旱性与耐盐性研究[D].长沙: 中南林业科技大学, 2010: 10-14 http://cdmd.cnki.com.cn/Article/CDMD-10538-1011063309.htm
WANG M Z. Study on response of Z. marylandica Zahara series to drought and salt stress[D]. Changsha: Central South University of Forestry & Technology, 2010: 10-14 http://cdmd.cnki.com.cn/Article/CDMD-10538-1011063309.htm
[30]樊海燕.披碱草与野大麦杂种BC1F3代抗旱耐盐性研究[D].呼和浩特: 内蒙古农业大学, 2012: 40-41 http://cdmd.cnki.com.cn/Article/CDMD-10129-1013154194.htm
FAN H Y. Study on the drought resistance and salt tolerance of the hybrid BC1F3 between Elymus dahuricus and Hordeum brevisubulatum[D]. Hohhot: Inner Mongolia Agricultural University, 2012: 40-41 http://cdmd.cnki.com.cn/Article/CDMD-10129-1013154194.htm
[31]吴晓凤, 倪沛, 杨涛, 等. 10种菊科植物的抗旱性与抗盐性评价[J].生态学杂志, 2018, 37(7):1959-1968 http://d.old.wanfangdata.com.cn/Periodical/stxzz201807006
WU X F, NI P, YANG T, et al. Evaluation of drought and salt resistance of 10 species from Asteraceae[J]. Chinese Journal of Ecology, 2018, 37(7):1959-1968 http://d.old.wanfangdata.com.cn/Periodical/stxzz201807006
[32]董梅.柴达木地区主要树种抗旱耐盐生理研究[D].北京: 北京林业大学, 2013: 115-118 http://cdmd.cnki.com.cn/Article/CDMD-10022-1013214030.htm
DONG M. Drought and salinity resistant physiology and of main tree species in Qaidam of China[D]. Beijing: Beijing Forestry University, 2013: 115-118 http://cdmd.cnki.com.cn/Article/CDMD-10022-1013214030.htm

相关话题/指标 生理 种子 植物 鉴定