删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

盐胁迫下海水稻抗逆生理响应分析

本站小编 Free考研考试/2022-01-01

王旭明,
赵夏夏,
陈景阳,
许江环,
周柏霖,
王盼盼,
莫素,
莫俊杰,
谢平,,
周鸿凯,
广东海洋大学农学院 湛江 524088
基金项目: 国家自然科学基金项目41073059
广东省高等教育高校创新强校工程项目GDOU2017052604
广东省高等教育高校创新强校工程项目2017KZDXM044
广东省农业科技创新及推广项目2018LM2173
湛江市科技计划项目2015A03015

详细信息
作者简介:王旭明, 主要从事作物抗逆生理研究, E-mail:m18793630087@163.com
通讯作者:谢平, 主要从事农业资源与环境方面的研究, E-mail:xiep168@163.com
周鸿凯, 主要从事作物学研究, E-mail:897961801@qq.com
中图分类号:S511.01

计量

文章访问数:649
HTML全文浏览量:8
PDF下载量:855
被引次数:0
出版历程

收稿日期:2018-07-10
录用日期:2019-01-10
刊出日期:2019-05-01

Physiological adversity resistance of sea rice to salinity stress

WANG Xuming,
ZHAO Xiaxia,
CHEN Jingyang,
XU Jianghuan,
ZHOU Bolin,
WANG Panpan,
MO Su,
MO Junjie,
XIE Ping,,
ZHOU Hongkai,
College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, China
Funds: This research was supported by the National Natural Science Foundation of China41073059
the Higher Education Colleges and Universities Innovation Strong School Project of GuangdongGDOU2017052604
the Higher Education Colleges and Universities Innovation Strong School Project of Guangdong2017KZDXM044
the Provincial Agricultural Science and Technology Innovation and Promotion Project of Guangdong Province2018LM2173
the Science and Technology Project of Zhanjiang City2015A03015



摘要
HTML全文
(4)(2)
参考文献(52)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:以海水稻品种‘FL478’‘JX99’‘Pokkali’和盐敏感品种‘IR29’为材料,设置6个土壤含盐量(0 g·kg-1、1 g·kg-1、2 g·kg-1、3 g·kg-1、4 g·kg-1、5 g·kg-1),在防雨大棚下进行盆栽试验,孕穗期测定水稻叶片的丙二醛含量、细胞膜透性、可溶性糖含量、脯氨酸含量,以及Δ1-吡咯啉-5-羧酸合成酶(P5CS)、鸟氨酸-δ-氨基转移酶(δ-OAT)和超氧化物歧化酶(SOD)活性,旨在探讨盐胁迫下海水稻渗透调节物质、抗逆酶与海水稻耐盐性的关系,为海水稻耐盐基因的发掘和耐盐品种的选育提供理论依据。结果表明:1)盐胁迫抑制了海水稻叶绿素的合成与积累,表现为水稻叶片的叶绿素含量随盐胁迫梯度的增加而减少,但其叶绿素含量显著高于盐敏感水稻品种。2)海水稻和盐敏感水稻的可溶性糖对盐胁迫的响应差异显著,其中土壤含盐量0~3 g·kg-1胁迫下,盐敏感水稻叶片的可溶性糖含量的增加显著高于海水稻,但是在土壤含盐量4~5 g·kg-1下,海水稻叶片的可溶性糖积累量显著高于盐敏感水稻品种。3)随盐胁迫加剧海水稻和盐敏感水稻叶片的丙二醛积累,造成细胞膜透性逐渐增大,但是海水稻品种丙二醛的积累量显著低于盐敏感对照,这表明海水稻叶片细胞膜损伤较小。4)盐胁迫下,4个水稻叶片的脯氨酸含量和P5CS、δ-OAT、SOD活性随盐胁迫浓度增加均表现出先升高后降的趋势,海水稻和盐敏感水稻分别在3 g·kg-1、2 g·kg-1盐浓度达到峰值,而海水稻植株的游离脯氨酸积累量、P5CS、δ-OAT和SOD活性显著高于盐敏感水稻。5)盐胁迫下海水稻可溶性糖、脯氨酸和P5CS之间呈极显著正的简单相关和偏相关性。因此,海水稻的抗盐性为生理性耐盐:在盐胁迫下,植株脯氨酸合成酶P5CS和δ-OAT均被激活,脯氨酸合成的两个途径(谷氨酸→脯氨酸和鸟氨酸→脯氨酸)同时增强,促使植株游离脯氨酸的快速积累。同时,由于植株游离脯氨酸快速积累,也助于植株SOD活性的激活,有效降低活性氧的积累,并通过合成可溶性糖与脯氨酸协同缓解渗透胁迫,而表现为较强的耐盐性。
关键词:海水稻/
盐胁迫/
抗逆生理/
渗透调节/
抗逆酶活性
Abstract:The sea rice varieties 'FL478' 'JX99' 'Pokkali' and salt-sensitive variety 'IR29' were used to determine malondialdehyde content, cell membrane permeability, soluble sugar and proline in rice leaf. We also investigated the activities of Δ1-pyrroline-5-carboxylic acid synthetase (P5CS), ornithine-δ-aminotransferase (δ-OAT) and superoxide dismutase (SOD) under 0 g·kg-1, 1 g·kg-1, 2 g·kg-1, 3 g·kg-1, 4 g·kg-1 and 5 g·kg-1 of soil salt treatments at booting stage of potted rice under rainproof greenhouse conditions. This aim of the study was to investigate the relationship between osmotic regulators, stress resistance enzymes and salt tolerance of sea rice under salinity stress. The study also provided theoretical basis for the exploration of salt tolerance genes and breeding sea rice varieties with salt tolerance. The results were as follows:1) salinity stress inhibited the synthesis and accumulation of chlorophyll in rice. Then chlorophyll content in rice leaf decreased with increasing salt stress concentration, and was significantly higher than that of salt-sensitive rice. 2) The response of soluble sugars of sea rice and salt-sensitive rice to salinity stress had significantly differences. The rise in soluble sugars of sea rice was less than that of salt-sensitive rice under 0-3 g·kg-1 soil salt content, but the content of soluble sugars of sea rice was significantly higher than that of salt-sensitive rice under 4-5 g·kg-1 soil salt content. 3) Malondialdehyde contents of sea rice and salt-sensitive varieties increased with increasing salt stress, resulting in increased cell membrane permeability. However, malondialdehyde content of sea rice was significantly lower than that of salt-sensitive rice. This implied that leaf membrane damage of sea rice was significantly less than that of salt-sensitive rice. 4) Proline content and P5CS, δ-OAT and SOD activities of rice leaf increased initially and then decreased with increasing salt stress. Proline content and P5CS, δ-OAT and SOD activities of sea rice and salt-sensitive rice were maximum under 3 g·kg-1 and 2 g·kg-1 salt content, respectively. However, proline content and P5CS, δ-OAT and SOD activities of sea rice were significantly higher than those of salt-sensitive rice. 5) Simple and partial correlations of soluble sugar, proline and P5CS were significantly positive under salinity stress. Salt tolerance characteristics of sea rice were considered as physiological salt tolerance. Proline synthetase P5CS and δ-OAT of sea rice were both activated by salinity stress. The activity of two pathways of proline synthesis (ornithine synthase and glutamate synthase pathways) were simultaneously increased, which promoted rapid and high accumulation of free proline in sea rice. Rapid accumulation of free proline also activated SOD activity, which effectively destroyed the accumulation of intracellular reactive oxygen species. Soluble sugar and proline synergistically alleviated osmotic stress and sea rice showed a strong salt tolerance.
Key words:Sea rice/
Salt stress/
Anti-stress physiology/
Osmotic regulation/
Resistance enzyme activity

HTML全文


图1盐胁迫对海水稻叶绿素、可溶性糖含量的影响
‘FL478’ ‘JX99’和‘Pokkali’为耐盐水稻品种; ‘IR29’是盐敏感型水稻品种, 作为对照。处理CK、T1、T2、T3、T4和T5分别在土壤中添加0 g·kg-1、1 g·kg-1、2 g·kg-1、3 g·kg-1、4 g·kg-1和5 g·kg-1的NaCl。不同大写字母表示同一水稻品种不同盐浓度之间差异显著(Duncan法, P < 0.05);不同小写字母表示同一盐浓度不同水稻品种间差异显著(Duncan法, P < 0.05)。
Figure1.Contents of chlorophyll and soluble sugar of sea-rice under different salt stresses
‘FL478' ‘JX99' and ‘Pokkali' are sea-rice cultivars, ‘IR29' is salt-sensitive rice cultivar. In treatments CK, T1, T2, T3, T4, and T5, 0 g·kg-1, 1 g·kg-1, 2 g·kg-1, 3 g·kg-1, 4 g·kg-1 and 5 g·kg-1 NaCl are added to base soil, respectively. Different capital letters indicate significant differences among different salt contents for the same rice cultivar (Duncan method, P < 0.05). Different lowercase letters indicate significant differences among rice cultivars at the same salt content (Duncan method, P < 0.05).


下载: 全尺寸图片幻灯片


图2盐胁迫对海水稻脯氨酸含量、脯氨酸代谢关键酶活性的影响
‘FL478’ ‘JX99’和‘Pokkali’为耐盐水稻品种; ‘IR29’是盐敏感型水稻品种, 作为对照。处理CK、T1、T2、T3、T4和T5分别在土壤中添加0 g·kg-1、1 g·kg-1、2 g·kg-1、3 g·kg-1、4 g·kg-1和5 g·kg-1的NaCl。不同大写字母表示同一水稻品种不同盐浓度之间差异显著(Duncan法, P < 0.05);不同小写字母表示同一盐浓度不同水稻品种间差异显著(Duncan法, P < 0.05)。
Figure2.Content of proline and activities of key enzymes (delta-1-pyrroline-5-carboxylate synthase, P5CS; ornithine -δ-aminotransferase, δ-OAT) involved in proline metabolism of sea-rice under different salt stresses
‘FL478' ‘JX99' and ‘Pokkali' are sea-rice cultivars, ‘IR29' is salt-sensitive rice cultivar. In treatments CK, T1, T2, T3, T4, and T5, 0 g·kg-1, 1 g·kg-1, 2 g·kg-1, 3 g·kg-1, 4 g·kg-1 and 5 g·kg-1 NaCl are added to base soil, respectively. Different capital letters indicate significant differences among different salt contents for the same rice cultivar (Duncan method, P < 0.05). Different lowercase letters indicate significant differences among rice cultivars at the same salt content (Duncan method, P < 0.05).


下载: 全尺寸图片幻灯片


图3盐胁迫对海水稻丙二醛含量、膜透性的影响
‘FL478’ ‘JX99’和‘Pokkali’为耐盐水稻品种; ‘IR29’是盐敏感型水稻品种, 作为对照。处理CK、T1、T2、T3、T4和T5分别在土壤中添加0 g·kg-1、1 g·kg-1、2 g·kg-1、3 g·kg-1、4 g·kg-1和5 g·kg-1的NaCl。不同大写字母表示同一水稻品种不同盐浓度之间差异显著(Duncan法, P < 0.05);不同小写字母表示同一盐浓度不同水稻品种间差异显著(Duncan法, P < 0.05)。
Figure3.Content of malondialdehyde (MDA) and cell membrane permeability of sea-rice under different salt stresses
‘FL478' ‘JX99' and ‘Pokkali' are sea-rice cultivars, ‘IR29' is salt-sensitive rice cultivar. In treatments CK, T1, T2, T3, T4, and T5, 0 g·kg-1, 1 g·kg-1, 2 g·kg-1, 3 g·kg-1, 4 g·kg-1 and 5 g·kg-1 NaCl are added to base soil, respectively. Different capital letters indicate significant differences among different salt contents for the same rice cultivar (Duncan method, P < 0.05). Different lowercase letters indicate significant differences among rice cultivars at the same salt content (Duncan method, P < 0.05).


下载: 全尺寸图片幻灯片


图4盐胁迫对海水稻超氧化物歧化酶活性的影响
‘FL478’ ‘JX99’和‘Pokkali’为耐盐水稻品种; ‘IR29’是盐敏感型水稻品种, 作为对照。处理CK、T1、T2、T3、T4和T5分别在土壤中添加0 g·kg-1、1 g·kg-1、2 g·kg-1、3 g·kg-1、4 g·kg-1和5 g·kg-1的NaCl。不同大写字母表示同一水稻品种不同盐浓度之间差异显著(Duncan法, P < 0.05);不同小写字母表示同一盐浓度不同水稻品种间差异显著(Duncan法, P < 0.05)。
Figure4.Effect of salt stress on superoxide dismutase (SOD) activity of sea-rice
‘FL478' ‘JX99' and ‘Pokkali' are sea-rice cultivars, ‘IR29' is salt-sensitive rice cultivar. In treatments CK, T1, T2, T3, T4, and T5, 0 g·kg-1, 1 g·kg-1, 2 g·kg-1, 3 g·kg-1, 4 g·kg-1 and 5 g·kg-1 NaCl are added to base soil, respectively. Different capital letters indicate significant differences among different salt contents for the same rice cultivar (Duncan method, P < 0.05). Different lowercase letters indicate significant differences among rice cultivars at the same salt content (Duncan method, P < 0.05).


下载: 全尺寸图片幻灯片

表1盆栽试验中不同处理的水稻耕作层(0~20 cm)土壤含盐量
Table1.Salt contents of topsoil (0-20 cm) of rice cultivation in pot experiment under different treatments
处理?Treatment CK T1 T2 T3 T4 T5
Na+含量?Na+ content (%) 0.027±0.003 0.107±0.003 0.162±0.026 0.251±0.022 0.360±0.017 0.427±0.024
电导率?Electrical conductance (μS·cm-1) 566±82 2 483±249 3 798±171 4 883±351 7 474±49 9 283±603
??处理CK、T1、T2、T3、T4和T5分别在土壤中添加0 g·kg-1、1 g·kg-1、2 g·kg-1、3 g·kg-1、4 g·kg-1和5 g·kg-1的NaCl。In treatments CK, T1, T2, T3, T4, and T5, 0 g·kg-1, 1 g·kg-1, 2 g·kg-1, 3 g·kg-1, 4 g·kg-1 and 5 g·kg-1 NaCl are added to base soil, respectively.


下载: 导出CSV
表2盐胁迫下海水稻抗逆生理指标间的相关性系数矩阵
Table2.Correlation matrix among physiology indexes of stress resistance of sea-rice under salt stress
Chl Pro SS MDA CMP P5CS δ-OAT SOD
Chl 1.000 -0.010 -0.199 -0.408* -0.313 0.084 -0.039 -0.193
Pro -0.870** 1.000 0.626** 0.294* 0.415* 0.888** 0.109 -0.373**
SS -0.478** 0.547** 1.000 0.125 0.176 0.054 -0.173 -0.191
MDA -0.793** -0.178 0.529** 1.000 0.385** -0.239 -0.409** 0.388**
CMP -0.732** -0.109 0.350** 0.697** 1.000 0.271 0.173 -0.115
P5CS 0.009 0.815** 0.162 -0.061 -0.103 1.000 0.009 0.479**
δ-OAT 0.155 -0.205 -0.495** -0.308* -0.098 0.353** 1.000 0.561**
SOD -0.321* 0.065 -0.179 0.257 0.280* 0.415** 0.625** 1.000
??Chl:叶绿素含量; Pro:脯氨酸含量; SS:可溶性糖含量; MDA:丙二醛含量; CMP:细胞膜透性; P5CS: Δ1-吡咯啉-5-羧酸合成酶活; δ-OAT:鸟氨酸-δ-氨基转移酶活; SOD:超氧化物歧化酶活性。***分别表示在0.01和0.05水平(双侧检验)上显著相关。左下区域为简单相关性分析, 右上区域为偏相关性分析。Chl: chlorophyll content; Pro: proline content; SS: soluble sugar content; MDA: malondialdehyde content; CMP: cell membrane permeability; P5CS: delta-1-pyrroline-5-carboxylate synthase activity; δ-OAT: ornithine-δ-aminotransferase activity; SOD: superoxide dismutase activity. ** and * indicate significant correlations at P < 0.01 and P < 0.05 (Two-sided test), respectively. The lower left area is a simple correlation analysis. The upper right area is a partial correlation analysis.


下载: 导出CSV

参考文献(52)
[1]LIANG W J, MA X L, WAN P, et al. Plant salt-tolerance mechanism:A review[J]. Biochemical and Biophysical Research Communications, 2017, 495(1):286-291 http://d.old.wanfangdata.com.cn/Periodical/nygcxb2005z2002
[2]TESTER M, DAVENPORT R. Na+ tolerance and Na+ transport in higher plants[J]. Annals of Botany, 2003, 91(5):503-527 doi: 10.1093/aob/mcg058
[3]许芳芳, 袁立敏, 邵玉芳, 等.肠杆菌FYP1101对盐胁迫下小麦幼苗的促生效应[J].微生物学通报, 2018, 45(1):102-110 http://d.old.wanfangdata.com.cn/Periodical/wswxtb201801011
XU F F, YUAN L M, SHAO Y F, et al. Effect of Enterobacter sp. FYP1101 on wheat seedling growth under salt stress[J]. Microbiology China, 2018, 45(1):102-110 http://d.old.wanfangdata.com.cn/Periodical/wswxtb201801011
[4]WANG R J. Salt-tolerance evaluation of Brassica napus germplasm in the bud and seeding and establishment of the two-dimensional electrophoresis system[J]. Nanjing:Nanjing Agricultural University, 2010
[5]靳继凯.转多基因水稻耐盐株系鉴定与评价[D].银川: 宁夏大学, 2014 http://cdmd.cnki.com.cn/article/cdmd-10749-1014224949.htm
JIN J K. Identification and analysis of salt tolerance of multiple transgenic hybrid paddy rice[D]. Yinchuan: Ningxia University, 2014 http://cdmd.cnki.com.cn/article/cdmd-10749-1014224949.htm
[6]陈雨生, 王平, 王克响, 等.我国海水稻产业发展的战略选择[J].中国海洋大学学报:社会科学版, 2018, (1):50-54 http://d.old.wanfangdata.com.cn/Periodical/zghydxxb-shkx201801008
CHEN Y S, WANG P, WANG K X, et al. The strategic choice of sea rice industry development in China[J]. Journal of Ocean University of China:Social Sciences, 2018, (1):50-54 http://d.old.wanfangdata.com.cn/Periodical/zghydxxb-shkx201801008
[7]杨福, 梁正伟, 王志春.水稻耐盐碱鉴定标准评价及建议与展望[J].植物遗传资源学报, 2011, 12(4):625-628 http://d.old.wanfangdata.com.cn/Periodical/zwyczyxb201104023
YANG F, LIANG Z W, WANG Z C. Evaluation, suggestion and prospect on identification standards of saline-alkali tolerance in rice[J]. Journal of Plant Genetic Resources, 2011, 12(4):625-628 http://d.old.wanfangdata.com.cn/Periodical/zwyczyxb201104023
[8]EI-SHABRAWI H, KUMAR B, KAUL T, et al. Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in pokkali rice[J]. Protoplasma, 2010, 245(1/4):85-96 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1b869ad132ec647621f7c53f4920946f
[9]KABIR A H, ZAMAN R, BEGUM M C, et al. Upregulation of, OsNAS1, OsPCS1, and DREB1A transcripts along with anti- oxidative defense confers salt tolerance in rice (Oryza sativa L. cv Pokkali)[J]. Archives of Agronomy and Soil Science, 2016, 62(10):1381-1395 doi: 10.1080/03650340.2016.1149817
[10]SHOBBAR M S, AZHARI O, SHOBBAR Z S, et al. Comparative analysis of some physiological responses of rice seedlings to cold, salt, and drought stress[J]. Journal of Plant Nutrition, 2012, 35(7):1037-1052 doi: 10.1080/01904167.2012.671407
[11]ZHAO X Q, WANG W S, ZHANG F, et al. Comparative metabolite profiling of two rice genotypes with contrasting salt stress tolerance at the seedling stage[J]. PLoS One, 2014, 9(9):e108020 doi: 10.1371/journal.pone.0108020
[12]PRUSTY M R, KIM S R, VINARAO R, et al. Newly identified wild rice accessions conferring high salt tolerance might use a tissue tolerance mechanism in leaf[J]. Frontiers in Plant Science, 2018, 9:417 doi: 10.3389/fpls.2018.00417
[13]DOMINGO C, LALANNE E, CATALá M M, et al. Physiological basis and transcriptional profiling of three salt-tolerant mutant lines of rice[J]. Frontiers in Plant Science, 2016, 7:1462 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039197/
[14]CHEN R S, CHENG Y F, HAN SY, et al. Whole genome sequencing and comparative transcriptome analysis of a novel seawater adapted, salt-resistant rice cultivar-sea rice 86[J]. BMC Genomics, 2017, 18(1):655 doi: 10.1186/s12864-017-4037-3
[15]祝一文, 赵方贵, 成云峰, 等. '海稻86'耐盐碱胁迫生理机制的初步研究[J].青岛农业大学学报:自然科学版, 2018, 35(1):32-39 http://d.old.wanfangdata.com.cn/Periodical/lynxyxb201801006
ZHU Y W, ZHAO F G, CHENG Y F, et al. The preliminary study on alkali-salt tolerance of 'Sea Rice 86' and physiological mechanisms[J]. Journal of Qingdao Agricultural University:Natural Science, 2018, 35(1):32-39 http://d.old.wanfangdata.com.cn/Periodical/lynxyxb201801006
[16]王素平, 郭世荣, 胡晓辉, 等.盐胁迫对黄瓜幼苗叶片光合色素含量的影响[J].江西农业大学学报, 2006, 28(1):32-38 doi: 10.3969/j.issn.1000-2286.2006.01.007
WANG S P, GUO S R, HU X H, et al. Effects of NaCl stress on the content of photosynthetic pigments in the leaves of cucumber (Cucumis sativus L.) seedlings[J]. Acta Agriculturae Universitatis Jiangxiensis, 2006, 28(1):32-38 doi: 10.3969/j.issn.1000-2286.2006.01.007
[17]施海涛.植物逆境生理学实验指导[M].北京:科学出版社, 2016
SHI H T. Experimental Instruction of Plant Stress Physiology[M]. Beijing:Science Press, 2016
[18]黄顶, 王堃.典型草原常见牧草春季萌动期可溶性糖及内源激素动态研究[J].应用生态学报, 2006, 17(2):210-214 doi: 10.3321/j.issn:1001-9332.2006.02.010
HUANG D, WANG K. Dynamics of soluble sugar and endogenous hormone contents in several steppe grass species during their germination period in spring[J]. Chinese Journal of Applied Ecology, 2006, 17(2):210-214 doi: 10.3321/j.issn:1001-9332.2006.02.010
[19]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000:167-169, 258-261
LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing:Higher Education Press, 2000:167-169, 258-261
[20]YANG C Y, LING H E. Neuroprotective effects of sinapine on PC12 cells apoptosis induced by sodium dithionite[J]. Chinese Journal of Natural Medicines, 2008, 6(3):205-209 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgtryw200803011
[21]HAYZER D J, LEISINGER T. The gene-enzyme relationships of proline biosynthesis in Escherichia coli[J]. Journal of General Microbiology, 1980, 118(2):287-293 http://cn.bing.com/academic/profile?id=dd79a2083de2c0f2ec3b9c09458800b1&encoded=0&v=paper_preview&mkt=zh-cn
[22]韩晓玲.小冠花抗L-羟基脯氨酸(Hyp)变异系离体筛选及其耐盐性研究[D].西安: 西北大学, 2006 http://cdmd.cnki.com.cn/article/cdmd-10697-2006090170.htm
HAN X L. In vitro selection of L-hydroxyproline resistant variants of Coronilla varia L. and studies on their salt tolerance[D]. Xi'an: Northwest University, 2006 http://cdmd.cnki.com.cn/article/cdmd-10697-2006090170.htm
[23]HU C A, DELAUNEY A J, VERMA D P. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(19):9354-9358 doi: 10.1073/pnas.89.19.9354
[24]KIM H R, RHO H W, PARK J W, et al. Assay of ornithine aminotransferase with ninhydrin[J]. Analytical Biochemistry, 1994, 223(2):205-207 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3453300
[25]叶红卫, 朱蓝辉.应用SPSS进行双因子方差分析[J].河北北方学院学报:自然科学版, 2008, 24(2):63-65 http://d.old.wanfangdata.com.cn/Periodical/hbbfxyxb-z200802019
YE H W, ZHU L H. Using SPSS to make double factor variance analysis[J]. Journal of Hebei North University:Natural Science Edition, 2008, 24(2):63-65 http://d.old.wanfangdata.com.cn/Periodical/hbbfxyxb-z200802019
[26]宋小园, 朱仲元, 刘艳伟, 等.通径分析在SPSS逐步线性回归中的实现[J].干旱区研究, 2016, 33(1):108-113 http://d.old.wanfangdata.com.cn/Periodical/ghqyj201601013
SONG X Y, ZHU Z Y, LIU Y W, et al. Application of path analysis in stepwise linear regression SPSS[J]. Arid Zone Research, 2016, 33(1):108-113 http://d.old.wanfangdata.com.cn/Periodical/ghqyj201601013
[27]王旭明, 赵夏夏, 陈景阳, 等.低盐胁迫对5个海水稻种质若干生理生化指标的影响[J].热带农业科学, 2018, 38(8):24-29 http://d.old.wanfangdata.com.cn/Periodical/rdnykx201808005
WANG X M, ZHAO X X, CHEN J Y, et al. Effect of low salt stress on several physiological and biochemical indicators of five accessions of sea rice[J]. Chinese Journal of Tropical Agriculture, 2018, 38(8):24-29 http://d.old.wanfangdata.com.cn/Periodical/rdnykx201808005
[28]赵勇, 马雅琴, 翁跃进.盐胁迫下小麦甜菜碱和脯氨酸含量变化[J].植物生理与分子生物学学报, 2005, 31(1):103-106 http://d.old.wanfangdata.com.cn/Periodical/zwslxb200501015
ZHAO Y, MA Y Q, WENG Y J. Variation of betaine and proline contents in wheat seedlings under salt stress[J]. Journal of Plant Physiology and Molecular Biology, 2005, 31(1):103-106 http://d.old.wanfangdata.com.cn/Periodical/zwslxb200501015
[29]徐宇, 肖化云, 郑能建, 等.植物组织中游离氨基酸在盐胁迫下响应的研究进展[J].环境科学与技术, 2016, 39(7):40-47 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201607008
XU Y, XIAO H Y, ZHENG N J, et al. Progress on responding of free amino acid in plants to salt stress[J]. Environmental Science and Technology, 2016, 39(7):40-47 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxyjs201607008
[30]ZHOU H, QIAN J, ZHAO M D, et al. Cloning and sequence analysis of the Δ1-pyrroline-5-carboxylate synthase gene (MP5CS) from mulberry (Morus alba) and patterns of MP5CS gene expression under abiotic stress conditions[J]. Journal of Horticultural Science and Biotechnology, 2016, 91(1):100-108 doi: 10.1080/14620316.2015.1110999
[31]YOU J, HU H H, XIONG L Z. An ornithine δ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice[J]. Plant Science, 2012, 197:59-69 doi: 10.1016/j.plantsci.2012.09.002
[32]MIRZAEE M, MOIENI A, GHANATI F. Effects of drought stress on the lipid peroxidation and antioxidant enzyme activities in two canola (Brassica napus L.) cultivars[J]. Journal of Agricultural Science and Technology, 2013, 15(3):593-602 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00380768.2018.1436407
[33]LOS D A, MURATA N. Membrane fluidity and its roles in the perception of environmental signals[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2004, 1666(1/2):142-157 http://cn.bing.com/academic/profile?id=bd32384a00fb327ab2aaa76376e5b4df&encoded=0&v=paper_preview&mkt=zh-cn
[34]王鑫月.盐胁迫和铝胁迫对水稻膜脂组分和含量的影响[D].西安: 中国科学院研究生院(教育部水土保持与生态环境研究中心), 2016 http://cdmd.cnki.com.cn/Article/CDMD-80129-1016758117.htm
WANG X Y. Effect of salt stress and aluminum stress on the composition and content of membrane lipids in rice[D]. Xi'an: Graduate School of Chinese Academy of Sciences (Research Center for Soil and Water Conservation and Ecological Environment, Ministry of Education), 2016 http://cdmd.cnki.com.cn/Article/CDMD-80129-1016758117.htm
[35]冯坤, 郑青松, 俞佳虹, 等.超氧化物歧化酶的遗传特征及其在植物抗逆性中的研究进展[J].分子植物育种, 2017, 15(11):4498-4505 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201711024
FENG K, ZHENG Q S, YU J H, et al. The characteristics of superoxide dismutase (SOD) in evolutions and its research in plant resistance[J]. Molecular Plant Breeding, 2017, 15(11):4498-4505 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201711024
[36]KRISHNAMURTHY P, RANATHUNGE K, FRANKE R, et al. The role of root apoplastic transport barriersin salt tolerance of rice (Oryza sativa L.)[J]. Planta, 2009, 230(1):119-134 http://cn.bing.com/academic/profile?id=6bcb105702dd903af97cb261ee24b401&encoded=0&v=paper_preview&mkt=zh-cn
[37]高继平.水稻耐盐数量性状基因SKC1的作用机理及OsHKT基因的表达模式分析[D].上海: 中国科学院研究生院(上海生命科学研究院), 2007 http://cdmd.cnki.com.cn/Article/CDMD-80100-2007110151.htm
GAO J P. Mechanism of SKC1, a rice quantitative trait locus for salt tolerance, and analysis of expression pattern of OsHKT genes[D]. Shanghai: Graduate School of Chinese Academy of Sciences (Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences), 2007 http://cdmd.cnki.com.cn/Article/CDMD-80100-2007110151.htm
[38]罗秋香, 管清杰, 金淑梅, 等.植物耐盐性分子生物学研究进展[J].分子植物育种, 2006, 4(S2):57-64 http://d.old.wanfangdata.com.cn/Periodical/swxzz200004004
LUO Q X, GUAN Q J, JIN S M, et al. Advances on application of molecular biology on plant salt tolerance research[J]. Molecular Plant Breeding, 2006, 4(S2):57-64 http://d.old.wanfangdata.com.cn/Periodical/swxzz200004004
[39]王旭明, 赵夏夏, 黄露莎, 等.盐胁迫下4个不同耐盐基因型水稻Na+、K+积累效应[J].热带作物学报, 2018, 39(11):2140-2146 doi: 10.3969/j.issn.1000-2561.2018.11.005
WANG X M, ZHAO X X, HUANG L S, et al. The Na+ and K+ accumulative effect of four different salt tolerance genotypes in rice under salt stress[J]. Chinese Journal of Tropical Crops, 2018, 39(11):2140-2146 doi: 10.3969/j.issn.1000-2561.2018.11.005
[40]卢霖, 董志强, 董学瑞, 等.乙矮合剂对不同密度夏玉米花粒期不同部位叶片衰老特性的影响[J].作物学报, 2016, 42(4):561-573 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201604010
LU L, DONG Z Q, DONG X R, et al. Effects of ethylene-chlormequat-potassium on characteristics of leaf senescence at different plant positions after anthesis under different planting densities[J]. Acta Agronomica Sinica, 2016, 42(4):561-573 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201604010
[41]RAO G G, RAO G R. Pigment composition and chlorophyllase activity in pigeon pea (Cajanus indicus Spreng) and Gingelley (Sesamum indicum L.) under NaCl salinity[J]. Indian Journal of Experimental Biology, 1981, 19(8):768-770 https://www.researchgate.net/publication/284463246_Pigment_composition_and_chlorophyllase_activity_in_pigeon_pea_Cajanus_indicus_Spreng_and_Gingelley_Sesamum_indicum_L_under_NaCl_salinity
[42]GUO Y Y, YU H Y, YANG M M, et al. Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum Murr. seedling[J]. Russian Journal of Plant Physiology, 2018, 65(2):244-250 doi: 10.1134/S1021443718020127
[43]YILDIZTUGAY E, OZFIDAN-KONAKCI C, KUCUKODUK M, et al. Variations in osmotic adjustment and water relations of Sphaerophysa kotschyana:Glycine betaine, proline and choline accumulation in response to salinity[J]. Botanical Studies, 2014, 55:6 doi: 10.1186/1999-3110-55-6
[44]GHOULAM C, FOURSY A, FARES K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J]. Environmental and Experimental Botany, 2002, 47(1):39-50 doi: 10.1016/S0098-8472(01)00109-5
[45]LI Q, YANG A, ZHANG W H. Comparative studies on tolerance of rice genotypes differing in their tolerance to moderate salt stress[J]. BMC Plant Biology, 2017, 17(1):141 doi: 10.1186/s12870-017-1089-0
[46]BAGDI D L, SHAW B P, SAHU B B, et al. Real time PCR expression analysis of gene encoding p5cs enzyme and proline metabolism under NaCl salinity in rice[J]. Journal of Environmental Biology, 2015, 36(4):955-961 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=193a33559d8dd1ddc8106d77718238f0
[47]BASU S, GANGOPADHYAY G, MUKHERJEE B B. Salt tolerance in rice in vitro:Implication of accumulation of Na+, K+ and proline[J]. Plant Cell, Tissue and Organ Culture, 2002, 69(1):55-64 https://www.researchgate.net/publication/225764030_Salt_tolerance_in_rice_in_vitro_Implication_of_accumulation_of_Na_K_and_proline
[48]ZHANG H, LIU X L, ZHANG R X, et al. Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2017, 8:1580 doi: 10.3389/fpls.2017.01580
[49]赵曼利, 杜启兰, 焦健, 等.盐胁迫对不同品种油橄榄抗盐性生理指标的影响[J].福建农林大学学报:自然科学版, 2016, 45(1):19-25 http://d.old.wanfangdata.com.cn/Periodical/fjnydxxb201601004
ZHAO M L, DU Q L, JIAO J, et al. Physiological response and salt resistance evaluation of six varieties of Olea europaea under salt stress[J]. Journal of Fujian Agriculture and Forestry University:Natural Science Edition, 2016, 45(1):19-25 http://d.old.wanfangdata.com.cn/Periodical/fjnydxxb201601004
[50]李倩, 刘景辉, 武俊英, 等.盐胁迫对燕麦质膜透性及Na+、K+吸收的影响[J].华北农学报, 2009, 24(6):88-92 http://d.old.wanfangdata.com.cn/Periodical/hbnxb200906018
LI Q, LIU J H, WU J Y, et al. Effect of salt stress on membrane permeability and Na+、K+ absorption of oat[J]. Acta Agriculturae Boreali-Sinica, 2009, 24(6):88-92 http://d.old.wanfangdata.com.cn/Periodical/hbnxb200906018
[51]PARIDA A K, JHA B. Salt tolerance mechanisms in mangroves:A review[J]. Trees, 2010, 24(2):199-217 doi: 10.1007/s00468-010-0417-x
[52]MITTLER R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9):405-410 doi: 10.1016/S1360-1385(02)02312-9

相关话题/生理 土壤 植物 作物 图片