赵欢蕊1,
刘永华1,
王镜惠2
1.榆林学院生命科学学院 榆林 719000
2.榆林学院化学与化工学院 榆林 719000
基金项目: 国家自然科学基金项目31760209
陕西省教育厅专项科学研究计划项目17JK0898
榆林学院博士科研启动基金16GK08
详细信息
作者简介:刘娟, 主要从事植物生理方面的研究。E-mail:c253781777@126.com
中图分类号:Q945.78计量
文章访问数:719
HTML全文浏览量:5
PDF下载量:496
被引次数:0
出版历程
收稿日期:2018-10-15
录用日期:2018-12-24
刊出日期:2019-05-01
Effect of exogenous ethylene on physiological metabolism of Zea mays seedlings under cadmium stress
LIU Juan1,,ZHAO Huanrui1,
LIU Yonghua1,
WANG Jinghui2
1. College of Life Science, College of Yulin, Yulin 719000, China
2. College of Chemistry and Chemical Engineering, College of Yulin, Yulin 719000, China
Funds: This study was supported by the National Natural Science Foundation of China31760209
the Special Research Program in Science of Education Department of Shaanxi Province17JK0898
the Start Research Grant for PhD of College of Yulin16GK08
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为探讨外源乙烯缓解玉米(Zea mays)幼苗镉(Cd)毒害的生理机制,通过水培试验研究了Cd处理下,外源乙烯对玉米幼苗相关生理指标与Cd的亚细胞分布的影响,以不做任何处理为空白对照,以Cd处理和(NH4)2SO4处理为试验对照。结果显示,相对Cd处理,乙烯和(NH4)2SO4处理可显著降低Cd胁迫下玉米幼苗H2O2和丙二醛(MDA)含量,使净光合速率分别提升1.23倍和1.22倍;显著降低抗氧化物酶[超氧化物歧化酶(SOD)、过氧化氢酶(CAT)]活性,抗氧化物质[抗坏血酸(AsA)、谷胱甘肽(GSH)]含量则显著上升。另外,相对于Cd处理,乙烯+Cd处理可使玉米幼苗ATP硫酸化酶活性、谷胱甘肽还原酶(GR)活性、半胱氨酸和还原型谷胱甘肽(GSH)含量分别上升54.43%、27.93%、50.77%和49.85%,而对非蛋白硫醇(NPT)和植物螯合素(PCs)含量无显著性影响。在乙烯+Cd处理的基础上添加GSH合成抑制剂BSO(buthionine sulfoximine)可导致玉米叶片GSH含量显著降低,H2O2含量上升,光合速率下降。外源乙烯可显著降低Cd胁迫下玉米叶片Cd含量,而显著提升根部细胞壁和液泡中Cd含量。因此,外源乙烯一方面通过提升玉米叶片GSH和AsA含量,增强叶片非酶促抗氧化能力,而非通过抗氧化酶促反应和NPT、PCs的螯合作用;另一方面则通过根细胞壁的固定作用和液泡区室化作用,减少Cd向玉米叶片中的转移,从而缓解Cd毒害。研究结果可为乙烯作为潜在的作物重金属拮抗剂提供理论依据。
关键词:镉/
乙烯/
玉米/
生理机制/
硫/
幼苗
Abstract:There has been increasing heavy metals[especially cadmium (Cd)] pollution in farmlands in China. Studies have identified the crucial role of exogenous ethylene in the reversal of Cd stress in plants such as Arabidopsis thaliana mustard. However, few studies have been done on maize (Zea mays), which is the second largest staple crop in China. To investigate the potential process by which exogenous ethylene alleviates Cd stress in maize, hydroponic experiments were conducted. The experiments included a treatment that served as a blank control and others that were Cd and (NH4)2SO4 treatments. Changes in physiological indexes of maize seedling leaf along with subcellular distribution of Cd in leaves and roots of the plant were determined under Cd treatment, exogenous ethylene treatment and exogenous sulphur treatment. The results suggested that H2O2 and malondialdehyde (MDA) contents of maize seedling leaf decreased under exogenous ethylene and exogenous (NH4)2SO4 treatments, comparing with Cd treatment alone. Also, the rate of net photosynthesis was promoted by 1.23 times and 1.22 times respectively under exogenous ethylene and exogenous (NH4)2SO4 treatments. The activity of antioxidant enzymes[superoxide diamutase (SOD), catalase (CAT)] significantly decreased, while the contents of antioxidants[ascorbic acid (AsA) and glutathione (GSH)] significantly increased under exogenous ethylene or exogenous (NH4)2SO4 treatments with Cd stress. The results suggested that exogenous ethylene reduced Cd-induced oxidative stress and the degree of lipid peroxidation by enhancing non-enzymatic antioxidant reaction. However, it did not affect enzymatic antioxidant reaction, but then promoted photosynthetic processes. Compared with Cd treatment alone, the activities of ATP sulfurylase and glutathione reductase (GR), and the contents of cysteine and GSH in maize seedlings increased respectively by 54.43%, 27.93%, 50.77%, and 49.85% with exogenous ethylene treatment. However, there was no significant change in non-protein thio (NPT) and phytochelatins (PCs) contents. The results showed that ethylene potentiated GSH biosynthesis to resist Cd conditions. To show this that was the case, a GSH biosynthetic inhibitor-buthionine sulfoximine (BSO) - was applied on maize seedlings under Cd and exogenous ethylene conditions. Compared with Cd plus exogenous ethylene treatment, BSO significantly decreased GSH content, increased H2O2 content and reduced net photosynthesis rate. Furthermore, Cd content in roots significantly increased while it decreased in leaves after treatment with exogenous ethylene under Cd stress. Further analysis showed that Cd content in cell wall and vacuole of roots was enhanced with exogenous ethylene treatment. Totally, exogenous ethylene reversal of the effect of Cd stress on maize was a complex process involving the promotion of GSH and AsA contents and Cd distribution in roots. On the one hand, exogenous ethylene treatment enhanced non-enzymatic antioxidant capacity by increasing the contents of GSH and AsA, and not by improving the activities of antioxidant enzymes nor chelating NPT and PC in maize leaf. On the other hand, translocation of Cd from maize root to leaf was reduced by enhancing Cd sequestration in cell walls and vacuoles of maize root. The results provided the fundamental information for the application of ethylene in the reversal of heavy metal stress.
Key words:Cadmium/
Ethylene/
Zea mays/
Physiological mechanism/
Sulphur/
Seedling
HTML全文
表1试验设计
Table1.Experimental design
代码 Code | 处理 Treatment |
CK | 1/2 Hoagland+800 mg?L-1 NH4Cl |
T1 | 1/2 Hoagland +100 mg?L-1 CdCl2?2.5H2O+800 mg?L-1 NH4Cl |
T2 | T1+200 μL?L-1乙烯利T1+ 200 μL?L-1 ethephon |
T3 | T1+400 mg?L-1 (NH4)2SO4 |
T4 | T2+400 mg?L-1 (NH4)2SO4 |
T5 | T4+100 μmol?L-1二环庚二烯T4+100 μmol?L-1 norbornadiene |
下载: 导出CSV
表2外源乙烯和(NH4)2SO4对Cd胁迫下玉米幼苗氧化胁迫和光合作用的影响
Table2.Effect of ethylene or/and (NH4)2SO4 on oxidative stress and photosynthesis in maize seedlings under Cd stress
指标?Parameter | CK | T1 | T2 | T3 | T4 | T5 |
丙二醛含量 Malonaldehyde content [μmol?g-1(FW)] | 10.64±0.22c | 23.86±0.87a | 15.38±0.65b | 15.29±0.66b | 11.17±0.35c | 14.97±0.48b |
H2O2含量 H2O2 content [nmol?g-1(FW)] | 53.43±1.52e | 126.41±4.28a | 76.27±4.27b | 75.86±3.62b | 59.44±2.41d | 67.25±2.36c |
净光合速率 Net photosynthesis rate [μmol(CO2)?m?2?s?1] | 21.57±0.88a | 5.36±0.52e | 11.93±0.68d | 11.87±0.73d | 18.76±0.56b | 15.52±0.45c |
气孔导度 Stomatal conductance [mmol(CO2)?m?2?s?1] | 135.47±4.81a | 64.37±3.41d | 85.31±3.45c | 83.54±3.54c | 116.28±3.21b | 87.52±1.75c |
胞间CO2浓度 Intercellular CO2 concentration [μmol(CO2)?m?2?s?1] | 82.16±1.01d | 185.60±5.23a | 147.12±4.34c | 141.35±6.25c | 169.76±5.24b | 135.77±4.37c |
Rubisco酶活性 Rubisco activity [μmol(CO2)?mg?1(protein)?min?1] | 45.98±1.31a | 19.65±0.91e | 26.48±0.72d | 27.31±0.84d | 40.84±1.05b | 36.42±0.88c |
??同行不同小写字母表示各处理间差异显著(P < 0.05)。Different lowercase letters in the same row indicate significant differences among treatments at 0.05 level. |
下载: 导出CSV
表3外源乙烯和(NH4)2SO4对Cd处理下玉米幼苗抗氧化酶活性和抗氧化物质含量的影响
Table3.Effect of ethylene and/or (NH4)2SO4 on activities of antioxidant enzymes and contents of antioxidants in maize seedlings
指标?Parameter | CK | T1 | T2 | T3 | T4 | T5 |
超氧化物歧化酶活性 Superoxide dismutase activity [U?g-1(FW)] | 139.95±4.53b | 181.63±3.76a | 148.42±3.41b | 143.08±2.88b | 138.37±2.92b | 137.84±2.65b |
过氧化氢酶活性 Catalase activity [U?g-1(FW)] | 37.57±1.53c | 106.36±4.76a | 68.26±3.36b | 64.94±2.87b | 38.43±1.44c | 63.58±3.05b |
谷胱甘肽还原酶活性 Glutathione reductase activity [U?g-1(FW)] | 152.51±4.37d | 275.37±5.14c | 352.26±6.18b | 346.14±5.93b | 408.07±4.85a | 355.43±5.37b |
抗坏血酸含量 Aascorbic acid content [mg·100 g-1(FW)] | 5.92±0.27c | 6.28±0.25c | 9.17±0.26b | 8.86±0.17b | 12.35±0.29a | 9.20±0.28b |
谷胱甘肽含量 Gglutathione content [nmol·g-1(FW)] | 101.28±5.12d | 230.35±7.48c | 345.17±9.11b | 337.59±10.07b | 487.31±8.65a | 340.03±7.99b |
??同行不同小写字母表示各处理间差异显著(P < 0.05)。Different lowercase letters in the same row indicate significant differences among treatments at 0.05 level. |
下载: 导出CSV
表4外源乙烯和(NH4)2SO4处理对玉米幼苗硫代谢的影响
Table4.Effect of ethylene and/or (NH4)2SO4 on sulphur metabolism in maize seedlings
指标?Parameter | CK | T1 | T2 | T3 | T4 | T5 |
ATP硫酸化酶活性 ATP-sulfurylase activity [U?g-1(FW)] | 1 609.18±26.14d | 2 235.63±37.84c | 3 452.41±49.23b | 3 446.26±30.72b | 3 824.37±78.53a | 3 455.45±42.86b |
半胱氨酸含量 Cysteine content [nmol·g-1(FW)] | 12.47±0.82d | 25.31±1.15c | 38.16±1.13b | 36.98±1.27b | 54.25±1.65a | 35.55±1.39b |
非蛋白硫醇含量 Nonprotein mercaptan content [μmol·g-1(FW)] | 1.28±0.05a | 1.35±0.06a | 1.42±0.08a | 1.43±0.07a | 1.56±0.1a | 1.37±0.08a |
植物螯合素含量 Phytochelatin content [μmol·g-1(FW)] | 1.08±0.04a | 1.14±0.05a | 1.24±0.03a | 1.17±0.06a | 1.29±0.05a | 1.18±0.05a |
??同行不同小写字母表示各处理间差异显著(P < 0.05)。Different lowercase letters in the same row indicate significant differences among treatments Sat 0.05 level. |
下载: 导出CSV
表5谷胱甘肽合成抑制剂丁硫氨酸-亚砜亚胺(BSO)对玉米幼苗谷胱甘肽、H2O2含量和光合作用的影响
Table5.Effect of synthetic inhibitor of glutathione, buthionine sulphoximine (BSO) on contents of glutathione, H2O2 and photosynthesis parameters in maize seedlings under Cd stress
指标?Parameter | T1 | T1+0.5 mmol?L-1 BSO | T2+0.5 mmol?L-1 BSO | T4+0.5 mmol?L-1 BSO |
谷胱甘肽含量 Glutathione content [nmol?g-1(FW)] | 353.27±10.16a | 145.23±7.41d | 217.53±7.24c | 257.33±11.32b |
H2O2含量 H2O2 content [nmol?g-1(FW)] | 125.72±5.17d | 267.72±12.47a | 176.58±6.32b | 159.44±4.21c |
净光合速率 Net photosynthesis rate [μmol(CO2)?m?2?s?1] | 15.63±0.63a | 6.39±0.18d | 7.78±0.37c | 10.68±0.65b |
气孔导度 Stomatal conductance [mmol(CO2)?m?2?s?1] | 68.73±2.13a | 35.15±1.34d | 43.54±1.54c | 56.28±3.21b |
胞间二氧化碳浓度 Intercellular CO2 concentration [μmol(CO2)?m?2?s?1] | 178.06±4.32a | 97.41±1.43c | 115.43±2.65c | 156.69±4.52b |
Rubisco酶活性 Rubisco activity [μmol(CO2)?mg?1(protein)?min?1] | 21.59±1.01a | 12.64±0.67d | 15.17±0.86c | 18.40±0.75b |
??同行不同小写字母表示各处理间差异显著(P < 0.05)。Different lowercase letters in the same row indicate significant differences among treatments at 0.05 level. |
下载: 导出CSV
表6外源乙烯对Cd胁迫下玉米幼苗Cd分布的影响
Table6.Effect of ethylene on distribution of Cd in maize seedlings under Cd stress
器官 Organ | 处理 Treatment | Cd含量Cd content [mg·kg-1 (DW)] | |||
组织 Tissue | 细胞壁 Cell wall | 细胞器 Organelle | 可溶性组分 Soluble fraction | ||
叶片 Leaf | CK | 0c | 0b | 0c | 0c |
T1 | 87.53±8.75a | 11.83±0.54a | 10.28±0.37a | 62.54±1.42a | |
T2 | 43.28±5.62b | 12.68±0.74a | 3.21±0.23b | 16.36±0.75b | |
根 Root | CK | 0c | 0c | 0b | 0c |
T1 | 320.46±14.26b | 35.38±1.21b | 42.87±1.64a | 235.36±3.51b | |
T2 | 548.43±15.34a | 78.82±2.35a | 40.93±1.78a | 457.61±7.68a | |
??不同小写字母表示各处理间差异显著(P < 0.05)。Different lowercase letters indicate significant differences among different treatments at 0.05 level. |
下载: 导出CSV
参考文献
[1] | 李婧, 周艳文, 陈森, 等.我国土壤镉污染现状、危害及其治理方法综述[J].安徽农学通报, 2015, 21(24):104-107 doi: 10.3969/j.issn.1007-7731.2015.24.044 LI J, ZHOU Y W, CHEN S, et al. Actualities, damage and management of soil cadmium pollution in China[J]. Anhui Agricultural Science Bulletin, 2015, 21(24):104-107 doi: 10.3969/j.issn.1007-7731.2015.24.044 |
[2] | KOV ?IK J, BABULA P, KLEJDUS B, et al. Comparison of oxidative stress in four Tillandsia species exposed to cadmium[J]. Plant Physiology and Biochemistry, 2014, 80:33-40 doi: 10.1016/j.plaphy.2014.03.015 |
[3] | CHOPPALA G, SAIFULLAH, BOLAN N, et al. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity[J]. Critical Reviews in Plant Sciences, 2014, 33(5):374-391 doi: 10.1080/07352689.2014.903747 |
[4] | RIZWAN M, ALI S, ADREES M, et al. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables[J]. Chemosphere, 2017, 182:90-105 doi: 10.1016/j.chemosphere.2017.05.013 |
[5] | CHANEY R L. How does contamination of rice soils with Cd and Zn cause high incidence of human Cd disease in subsistence rice farmers[J]. Current Pollution Reports, 2015, 1(1):13-22 doi: 10.1007/s40726-015-0002-4 |
[6] | HUGUET S, BERT V, LABOUDIGUE A, et al. Cd speciation and localization in the hyperaccumulator Arabidopsis halleri[J]. Environmental and Experimental Botany, 2012, 82:54-65 doi: 10.1016/j.envexpbot.2012.03.011 |
[7] | VERBRUGGEN N, HERMANS C, SCHAT H. Molecular mechanisms of metal hyperaccumulation in plants[J]. New Phytologist, 2009, 181(4):759-776 doi: 10.1111/j.1469-8137.2008.02748.x |
[8] | 薛洪宝, 常华兰, 陶兆林, 等.玉米发芽过程中Cd和硫醇化合物相互作用的研究[J].农业环境科学学报, 2011, 30(5):824-829 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201105002 XUE H B, CHANG H L, TAO Z L, et al. The interaction between Cd and thiol compounds during the maize seed germination[J]. Journal of Agro-Environment Science, 2011, 30(5):824-829 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201105002 |
[9] | COBBETT C S. Phytochelatins and their roles in heavy metal detoxification[J]. Plant Physiology, 2000, 123(3):825-832 doi: 10.1104/pp.123.3.825 |
[10] | WANG F F, CUI X K, SUN Y, et al. Ethylene signaling and regulation in plant growth and stress responses[J]. Plant Cell Reports, 2013, 32(7):1099-1109 doi: 10.1007/s00299-013-1421-6 |
[11] | 于延文.乙烯和赤霉素调控植物耐逆性的分子基础[D].保定: 河北农业大学, 2016 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3101043 YU Y W. Molecular mechanism of ethylene and gibberelin in regulating stress tolerance[D]. Baoding: Hebei Agricultural University, 2016 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3101043 |
[12] | VAN LOON L C, GERAATS B P J, LINTHORST H J M. Ethylene as a modulator of disease resistance in plants[J]. Trends in Plant Science, 2006, 11(4):184-191 doi: 10.1016/j.tplants.2006.02.005 |
[13] | ACHARD P, CHENG H, DE GRAUWE L, et al. Integration of plant responses to environmentally activated phytohormonal signals[J]. Science, 2006, 311(5757):91-94 doi: 10.1126/science.1118642 |
[14] | KHAN N A, ASGHER M, PER T S, et al. Ethylene potentiates sulfur-mediated reversal of cadmium inhibited photosynthetic responses in mustard[J]. Frontiers in Plant Science, 2016, 7:1628 http://cn.bing.com/academic/profile?id=73889096e9d1390dd10ebee35cf3a630&encoded=0&v=paper_preview&mkt=zh-cn |
[15] | 刘艳菊.外源镉及乙烯对拟南芥幼苗生理代谢的影响研究[D].哈尔滨: 东北林业大学, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10225-1013366950.htm LIU Y J. Studies on physiological metabolism of arabidopsis under exogenous cadmium and ethylene[D]. Harbin: Northeast Forestry University, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10225-1013366950.htm |
[16] | 陈丹丹.乙烯调节镉胁迫下拟南芥根构型的研究[D].哈尔滨: 东北林业大学, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10225-1014408939.htm CHEN D D. Studies on ethylene regulate root configuration of arabidopsis under cadmium stress[D]. Harbin: Northeast Forestry University, 2014 http://cdmd.cnki.com.cn/Article/CDMD-10225-1014408939.htm |
[17] | 祁迎春, 王建, 陆斌, 等.榆林市区周边土壤重金属污染特征与评价[J].陕西农业科学, 2017, 63(6):50-53 doi: 10.3969/j.issn.0488-5368.2017.06.013 QI Y C, WANG J, LU B, et al. The characteristics and evaluation of heavy metal contamination for soils at the suburb of Yulin City[J]. Shaanxi Journal of Agricultural Sciences, 2017, 63(6):50-53 doi: 10.3969/j.issn.0488-5368.2017.06.013 |
[18] | 王玉萍, 常宏, 李成, 等. Ca2+对镉胁迫下玉米幼苗生长、光合特征和PSⅡ功能的影响[J].草业学报, 2016, 25(5):40-48 http://d.old.wanfangdata.com.cn/Periodical/caoyexb201605005 WANG Y P, CHANG H, LI C, et al. Effects of exogenous Ca2+ on growth, photosynthetic characteristics and photosystem Ⅱ function of maize seedlings under cadmium stress[J]. Acta Prataculturae Sinica, 2016, 25(5):40-48 http://d.old.wanfangdata.com.cn/Periodical/caoyexb201605005 |
[19] | OKUDA T, MATSUDA Y, YAMANAKA A, et al. Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment[J]. Plant Physiology, 1991, 97(3):1265-1267 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1081153 |
[20] | 张志良, 瞿伟菁.植物生理学实验指导[M].第3版.北京:高等教育出版社, 2003 ZHANG Z L, QU W J. The Experimental Guide for Plant Physiology[M]. 3rd ed. Beijing:High Education Press, 2003 |
[21] | PER T S, MASOOD A, KHAN N A. Nitric oxide improves S-assimilation and GSH production to prevent inhibitory effects of cadmium stress on photosynthesis in mustard (Brassica juncea L.)[J]. Nitric Oxide, 2017, 68:111-124 doi: 10.1016/j.niox.2016.12.012 |
[22] | ZHOU W, ZHAO D, LIN X. Effects of waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and mixtalol in winter rape (Brassica napus L.)[J]. Journal of Plant Growth Regulation, 1997, 16(1):47-53 https://www.researchgate.net/publication/226986171_Effects_of_Waterlogging_on_Nitrogen_Accumulation_and_Alleviation_of_Waterlogging_Damage_by_Application_of_Nitrogen_Fertilizer_and_Mixtalol_in_Winter_Rape_Brassica_napusL |
[23] | AEBI H. Catalase in vitro[J]. Methods in Enzymology, 1984, 105:121-126 doi: 10.1016/S0076-6879(84)05016-3 |
[24] | FOYER C H, HALLIWELL B. The presence of glutathione and glutathione reductase in chloroplasts:A proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1):21-25 doi: 10.1007/BF00386001 |
[25] | ANDERSON M E. Determination of glutathione and glutathione disulfide in biological samples[J]. Methods in Enzymology, 1985, 113:548-555 doi: 10.1016/S0076-6879(85)13073-9 |
[26] | GAITONDE M K. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids[J]. Biochemical Journal, 1967, 104(2):627-633 doi: 10.1042/bj1040627 |
[27] | DEVI S R, PRASAD M N V. Copper toxicity in Ceratophyllum demersum L. (coontail), a free floating macrophyte:Response of antioxidant enzymes and antioxidants[J]. Plant Science, 1998, 138(2):157-165 doi: 10.1016/S0168-9452(98)00161-7 |
[28] | 潘瑶, 尹洁, 高子平, 等.硫对水稻幼苗镉积累特性及亚细胞分布特征的影响[J].农业资源与环境学报, 2015, 32(3):275-281 http://d.old.wanfangdata.com.cn/Periodical/nyhjyfz201503010 PAN Y, YIN J, GAO Z P, et al. Effects of sulfur on the accumulation and subcellular distribution of cadmium in rice seedlings[J]. Journal of Agricultural Resources and Environment, 2015, 32(3):275-281 http://d.old.wanfangdata.com.cn/Periodical/nyhjyfz201503010 |
[29] | 张雯.硫硒交互对水稻幼苗镉累积和毒害的影响机制研究[D].上海: 华东理工大学, 2014 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2562052 ZHANG W. Influence mechanism of sulfur and selenium interaction on cadmium accumulation and toxicity in rice seedling[D]. Shanghai: East China University of Science and Technology, 2014 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2562052 |
[30] | APEL K, HIRT H. Reactive oxygen species:Metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55:373-399 doi: 10.1146/annurev.arplant.55.031903.141701 |
[31] | ABOZEID A, YING Z J, LIN Y C, et al. Ethylene improves root system development under cadmium stress by modulating superoxide anion concentration in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2017, 8:253 |
[32] | MASOOD A, KHAN M I R, FATMA M, et al. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard[J]. Plant Physiology and Biochemistry, 2016, 104:1-10 doi: 10.1016/j.plaphy.2016.03.017 |
[33] | DONG Y J, CHEN W F, XU L L, et al. Nitric oxide can induce tolerance to oxidative stress of peanut seedlings under cadmium toxicity[J]. Plant Growth Regulation, 2016, 79(1):19-28 doi: 10.1007/s10725-015-0105-3 |
[34] | MENDOZA-CóZATL D G, MORENO-SáNCHEZ R. Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants[J]. Journal of Theoretical Biology, 2006, 238(4):919-936 doi: 10.1016/j.jtbi.2005.07.003 |
[35] | LIANG T, DING H, WANG G D, et al. Sulfur decreases cadmium translocation and enhances cadmium tolerance by promoting sulfur assimilation and glutathione metabolism in Brassica chinensis L.[J]. Ecotoxicology and Environmental Safety, 2016, 124:129-137 doi: 10.1016/j.ecoenv.2015.10.011 |
[36] | LUO L L, KANG J Q, PANG H X, et al. Sulfur protects pakchoi (Brassica chinensis L.) seedlings against cadmium stress by regulating ascorbate-glutathione metabolism[J]. International Journal of Molecular Sciences, 2017, 18(8):1628 doi: 10.3390/ijms18081628 |
[37] | ZHAO H, JIN Q J, WANG Y J, et al. Effects of nitric oxide on alleviating cadmium stress in Typha angustifolia[J]. Plant Growth Regulation, 2016, 78(2):243-251 doi: 10.1007/s10725-015-0089-z |
[38] | WóJCIK M, DRESLER S, PLAK A, et al. Naturally evolved enhanced Cd tolerance of Dianthus carthusianorum L. is not related to accumulation of thiol peptides and organic acids[J]. Environmental Science and Pollution Research, 2015, 22(10):7906-7917 doi: 10.1007/s11356-014-3963-8 |
[39] | EBBS S, LAU I, AHNER B, et al. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl)[J]. Planta, 2002, 214(4):635-640 doi: 10.1007/s004250100650 |