删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

密度与地膜覆盖对旱塬幼龄果园中大豆综合生产力的影响

本站小编 Free考研考试/2022-01-01

章伟1, 3,,
占爱1,
李世清1, 2,,
1.中国科学院水利部水土保持研究所/黄土高原土壤侵蚀与旱地农业国家重点实验室 杨凌 712100
2.西北农林科技大学资源环境学院 杨凌 712100
3.中国科学院大学 北京 100049
基金项目: 国家重点研究发展计划项目2017YFD0201807

详细信息
作者简介:章伟, 主要研究方向为旱地间作体系氮素高效利用研究。E-mail: zjw508@nwafu.edu.cn
通讯作者:李世清, 主要研究方向为植物营养生理生态研究。E-mail: sqli@ms.iswc.ac.cn
中图分类号:S565.1;S512.1

计量

文章访问数:78
HTML全文浏览量:19
PDF下载量:29
被引次数:0
出版历程

收稿日期:2020-11-17
录用日期:2021-02-04
刊出日期:2021-07-01

Effects of planting density and film mulching on the integrated productivity of soybean in young apple orchard of the Loess Plateau

ZHANG Wei1, 3,,
ZHAN Ai1,
LI Shiqing1, 2,,
1. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau/Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
2. College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: the National Key Research and Development Project of China2017YFD0201807

More Information
Corresponding author:LI Shiqing, E-mail: sqli@ms.iswc.ac.cn


摘要
HTML全文
(4)(3)
参考文献(38)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:本研究从籽粒产量兼顾蛋白品质、生物固氮及氮素副产物——秸秆氮和秸秆的角度综合评估了密度与地膜覆盖及其配合对黄土旱塬幼龄苹果园中大豆生产力的影响,旨在确定大豆最优综合生产力下合适群体密度和地膜覆盖的管理措施。2018-2019年连续两年试验设置3种大豆种植密度(高密度:24×104株·hm-2;中密度:16×104株·hm-2;低密度:10×104株·hm-2)和两种覆盖方式(覆膜与不覆膜)的完全组合处理,调查了不同处理下大豆籽粒产量及蛋白质含量、生物固氮率、器官干物质量及氮素分配等指标。结果表明,密度是大豆籽粒产量和蛋白产量的主控因子,中密度和低密度下2指标表现相似,2种密度平均的籽粒产量和蛋白产量分别较高密度下显著增加23.8%和24.5%(P < 0.05)。覆膜能够增加大豆籽粒蛋白质含量(3种密度平均增加9.6%),在与中、低密度配合下有利于根瘤固氮与地上协同互作,显著增加群体秸秆干物质量和秸秆吸氮量且不显著降低籽粒产量,从而提高对大豆干物质量、吸氮量和生物固氮量的贡献。与不覆膜相比,中、低密度下覆膜的秸秆干物质量分别增加1.76 t·hm-2、1.81 t·hm-2,对各自大豆干物质量提高的贡献率为98%、102%;秸秆吸氮量分别增加39.50 kg·hm-2、33.70 kg·hm-2,对各自大豆吸氮量提高的贡献率为79%、58%;秸秆中生物固氮量分别增加32.42 kg·hm-2、25.41 kg·hm-2,对各自大豆生物固氮量提高的贡献率为67%、59%。最终,中密度覆膜实现了大豆籽粒产量3.55 t·hm-2及蛋白产量1.27 t·hm-2、生物固氮量256.80 kg·hm-2、秸秆氮量134.87 kg·hm-2和秸秆干物质量6.84 t·hm-2各指标均较优的综合生产力,且相对不覆膜有较高的籽粒蛋白品质。在旱塬幼龄苹果园中,较高密度下覆膜既保证了大豆籽粒较多、较优产出,还可收获更多秸秆与秸秆氮,可为以节肥减排和稳产增产为目的的农田可持续集约化生产补充一定养分来源。
关键词:大豆/
种植密度/
覆膜/
生物固氮/
籽粒产量/
秸秆/
秸秆氮
Abstract:Young apple tree and soybean intercropping is an important approach to the mutual benefits winnings between ecology and economic for apple production in Loess Plateau of Northwest China. The intercropped soybean is not only the drive force for ecological benefit, but also the dominant component for economical benefit under the intercropping system in young apple orchard. Few studies focused on productivity of intercropped-soybean under the soil condition in orchard, and evaluated its integrated productivity from the perspective of grain yield, protein quality, biological nitrogen fixation (BNF) and nitrogen byproduct, nitrogen in straw and straws included. The present study aimed to determine the integrated practices for the optimally integrated productivity of soybean by planting density and film mulching. Soybean crops with three densities (high density: 24×104 plant·hm-2; medium density: 16×104 plant·hm-2; low density: 10×104 plant·hm-2) and two mulching practices (film mulching, without film mulching) were planted in the young apple orchard of the Loess Plateau in 2018 and 2019. Indicators of grain yield, grain protein content, BNF rate, biomass and nitrogen distribution in organs, etc. were investigated under different treatments. The results showed that planting density was dominant for soybean grain yield and protein yield. The similar superiority over the high density was found both for grain yield and protein yield under the medium density and low density. Relative to high density, soybean grain yield and protein yield was increased by 23.8% and 24.5% on average of medium and low density, respectively. Under medium and low density, film mulching was beneficial to synergistic interaction between root nodules biological nitrogen fixation (BNF) and shoot development, and then greatly boosted accumulation of straw dry matter and nitrogen in straws while without decreasing soybean grain yield significantly. In detail, under film mulching for soybean crops with medium density, straw dry matter, nitrogen accumulation in straws and BNF from straws was increased by 1.76 t·hm-2, 39.50 kg·hm-2 and 32.42 kg·hm-2 respectively, and contributed 98%, 79% and 67% to the improvement of soybean total dry matter, total nitrogen accumulation and total BNF in corresponding. Under film mulching for soybean crops with low density, straw dry matter, nitrogen accumulation in straws and BNF from straws was increased by 1.81 t·hm-2, 33.70 kg·hm-2 and 25.41 kg·hm-2 respectively, and contributed 102%, 58% and 59% to the improvement of soybean total dry matter, total nitrogen accumulation and total BNF in corresponding. In addition, film mulching boosted protein content in grain by 9.6% on average of three densities, mainly due to the coaction from a slight decline in grain yield and increase of nitrogen absorption by soybean plant. Finally, soybean crops with medium density and film mulching achieved the optimally integrated productivity that comprised of grain yield of 3.55 t·hm-2, protein yield of 1.27 t·hm-2, BNF of 256.80 kg·hm-2, nitrogen accumulation in straws of 134.87 kg·hm-2, straw dry matter of 6.84 t·hm-2 and the better grain protein quality in relative to its no mulching. This result indicates that the integrated practice by higher (medium) density with plastic film mulching for soybean can not only ensure plentiful grains with better protein quality, but more importantly, it is conducive to harvest more straws and nitrogen accumulation in straws that can be returned to local farmland for sustainable intensive production.
Key words:Soybean/
Planting density/
Film mulching/
Biological nitrogen fixation/
Grain yield/
Straw/
Nitrogen accumulation in straws

HTML全文


图12018年和2019年大豆生长期间试验地月降水量和气温变化
Figure1.Variations of precipitation (P) and mean temperature (T) monthly in 2018 and 2019 during soybean growth period at the experiment area


下载: 全尺寸图片幻灯片


图2种植密度与覆膜对大豆籽粒蛋白含量及产量的影响
D: 种植密度; M: 覆盖措施。不同字母表示同一年份高、中、低密度下覆膜与不覆膜处理在P < 0.05水平差异显著。**和***分别表示在P < 0.01和P < 0.001水平差异显著, ns表示差异不显著。
Figure2.Effects of planting density and film mulching on protein content and yield of soybean grains
D: planting density; M: film mulching practice. Different letters in bars indicate significant differences at P < 0.05 level among different planting densities with and without film mulching. ** and *** represents significant differences at P < 0.01 and P < 0.001 levels, respectively. ns means no significant difference.


下载: 全尺寸图片幻灯片


图3种植密度与地膜覆盖对大豆生物固氮效率与固氮量的影响
D: 种植密度; M: 覆盖措施。不同字母表示不同密度覆膜与不覆膜处理在P < 0.05水平差异显著。*、**和***分别表示在P < 0.05、P < 0.01和P < 0.001水平差异显著, ns表示差异不显著。
Figure3.Effects of planting density and film mulching on biological nitrogen fixation (BNF) rate and amount of soybean
D: planting density; M: film mulching practice. Different letters in bars indicate significant differences at P < 0.05 level among different planting densities with and without film mulching. *, ** and *** represent significant differences at P < 0.05, P < 0.01 and P < 0.001, respectively. ns means no significant difference.


下载: 全尺寸图片幻灯片


图4种植密度与地膜覆盖组合处理下大豆开花期根瘤数量和根瘤干重
H: 高密度; M: 中密度; L: 低密度; FM: 覆膜; NN: 不覆膜。不同字母表示处理间差异显著(P < 0.05)。
Figure4.Nodule number and nodule dry weight per plant at flowering stage of soybean under different treatments of planting density and film mulching
H: high density; M: medium density; L: low density; FM: film mulching; NM: no mulching. Different letters in bars indicate significant differences at P < 0.05 level among treatments.


下载: 全尺寸图片幻灯片

表1种植密度与地膜覆盖对大豆群体籽粒产量及单株生产力性状的影响
Table1.Effects of planting density and film mulching on grain yield and traits of productivity of soybeans
年份
Year
处理Treatment籽粒产量
Grain yield (t?hm–2)
产量构成要素Yield component
种植密度
Planting density
覆盖
Mulching
单株粒数
Grains number per plant
单株有效荚数
Pods number per plant
单株粒重
Grain weight per plant (g)
单株分枝数
Branches number per plant
荚/茎叶
(质量比)
Pod/straw
2018高HighFM2.83±0.03a63.56±2.96b33.12±1.80a14.62±0.26a2.59±0.05a0.65±0.05a
NM3.00±0.11a74.78±2.57a35.86±1.46a15.50±0.70a2.61±0.08a0.70±0.03a
中MediumFM3.55±0.05a99.74±4.29b46.61±2.44b26.71±0.80a3.30±0.06a0.67±0.04b
NM3.73±0.14a117.34±3.79a56.13±2.12a28.06±1.23a3.22±0.02b0.87±0.04a
低LowFM3.47±0.03a138.93±4.75b63.15±2.88b36.16±0.65a3.58±0.05a0.69±0.05b
NM3.61±0.12a163.45±5.72a74.78±2.96a37.62±1.41a3.41±0.04b0.90±0.04a
变异来源Source of variation
密度Density (D)***************
覆盖Mulching (M)ns************
D×Mns******ns****
2019高HighFM2.77±0.11a66.33±1.86b33.16±1.35a13.52±0.34a2.46±0.02a0.65±0.08a
NM2.94±0.02a78.03±1.61a33.64±0.90a15.60±0.77a2.51±0.04a0.76±0.08a
中MediumFM3.51±0.13a108.87±2.38b45.55±1.41b26.41±1.33a3.26±0.03a0.66±0.03b
NM3.66±0.18a128.08±2.98a53.36±2.23a27.54±0.84a3.13±0.06b0.99±0.10a
低LowFM3.54±0.08a146.06±3.91b59.61±2.63b36.86±1.48a3.51±0.04a0.70±0.04b
NM3.54±0.10a171.83±4.88a69.67±2.88a36.82±1.80a3.29±0.06b1.03±0.03a
变异来源Source of variation
密度Density (D)***************
覆盖Mulching (M)ns***********
D×Mns******ns***
FM: 覆膜; NM: 不覆膜; 单株荚/茎叶(质量比)比值越大, 代表植株个体生殖生长能力越强。同一年份同一密度不同字母表示覆膜与不覆膜处理在P < 0.05水平差异显著; *、**和***分别表示在P < 0.05、P < 0.01和P < 0.001水平差异显著, ns表示差异不显著。FM: film mulching; NM: no mulching. The greater ratio of pod/straw indicates the stronger capacity of reproduction growth. Different letters indicate significant differences at P < 0.05 level between film mulching and no mulching for the same density in the same year. *, ** and *** represent significant differences at the levels of P < 0.05, P < 0.01 and P < 0.001, respectively. ns means no significant difference.


下载: 导出CSV
表2种植密度与地膜覆盖对成熟期大豆干物质量和吸氮量及其器官分配的影响
Table2.Effects of planting density and film mulching on dry matter and N uptake and its allocation in soybean
年份
Year
处理Treatment干物质量Dry matter weight (t?hm–2)吸氮量N uptake (kg?hm–2)
种植密度
Planting density
覆盖
Mulching
秸秆
Straw
籽粒
Grain

Root

Total
秸秆
Straw
籽粒
Grain

Root

Total
2018
High
FM5.56±0.35a2.46±0.02a1.67±0.12a9.69±0.28a117.67±7.39a162.31±2.57a14.59±2.32a294.57±7.15a
NM5.44±0.37a2.61±0.10a1.56±0.11a9.61±0.17a109.56±5.20a160.91±3.22a16.19±2.09a286.66±4.55a

Medium
FM6.81±0.41a3.09±0.04a1.38±0.13a11.28±0.29a137.20±5.40a205.16±3.30a15.39±3.43a357.74±8.52a
NM5.43±0.20b3.25±0.11a1.25±0.11a9.93±0.23b102.38±5.69b200.01±5.05a11.97±2.78a314.36±7.74b

Low
FM6.77±0.11a3.02±0.02a0.91±0.09a10.70±0.13a137.00±8.75a207.25±2.37a9.54±1.67a353.79±4.66a
NM5.34±0.25b3.14±0.10a0.78±0.14a9.26±0.38b98.56±3.21b191.21±7.86a9.64±2.05a299.41±9.70b
变异来源Source of variation
种植密度
Planting density (D)
************ns******
覆盖Mulching (M)***nsns***********
D×M**nsns**nsns***
2019
High
FM5.50±0.25a2.41±0.10a1.49±0.07a9.40±0.21a116.23±2.99a156.53±3.65a14.30±2.32a287.06±5.61a
NM4.93±0.32a2.56±0.02a1.35±0.08a8.84±0.44ab108.56±5.52a156.88±3.26a15.39±1.89a280.83±11.40a
中MediumFM6.86±0.13a3.05±0.11a1.33±0.10a11.24±0.25a132.55±2.95a202.63±7.61a13.56±1.78a348.74±8.97a
NM4.73±0.23b3.18±0.16a1.11±0.09ab9.02±0.46b88.37±8.11b192.12±12.16a12.25±2.05a292.74±15.80b

Low
FM6.77±0.19a3.08±0.07a1.00±0.08a10.85±0.25a116.20±4.10a213.28±4.96a9.33±2.67a338.81±8.60a
NM4.58±0.09b3.08±0.09a1.09±0.06a8.75±0.43b87.24±1.78b180.63±3.39b9.59±1.08a277.76±15.2b
变异来源Source of variation
种植密度
Planting density (D)
**********ns*******
覆盖Mulching (M)**nsns*******ns***
D×M**nsns****nsns**
FM: 覆膜; NM: 不覆膜。同一年份同一密度不同字母表示覆膜与不覆膜处理在P < 0.05水平差异显著; *、**和***分别表示在P < 0.05、P < 0.01和P < 0.001水平差异显著, ns表示差异不显著。FM: film mulching; NM: no mulching. Different letters indicate significant differences at P < 0.05 level between film mulching and no mulching for the same density in the same year. *, ** and *** represent significant differences at the levels of P < 0.05, P < 0.01 and P < 0.001, respectively. ns means no significant difference.


下载: 导出CSV
表3不同种植密度与地膜覆盖处理生物固氮对大豆籽粒和秸秆产出的贡献量
Table3.Contributions of biological nitrogen fixation (BNF) to N production of grain and straw of soybean under different treatments of planting density and film mulching
项目Item年份
Year
H-FMH-NMM-FMM-NML-FML-NM
籽粒中的生物固氮量
BNF contribution to N in grain [kg(N)?hm–2]
201893.88±2.50cd103.15±3.00c153.73±3.64a144.3±4.70ab151.90±3.72a133.12±0.83b
201985.85±1.92c85.19±0.78c142.66±4.76a124.78±6.80b141.07±3.11a125.18±1.44b
生物固氮对籽粒产量的贡献
BNF contribution to grain yield (t?hm–2)
20181.64±0.05d1.92±0.06c2.66±0.06a2.69±0.06a2.54±0.05ab2.51±0.02b
20191.52±0.06b1.60±0.03b2.47±0.09a2.38±0.10a2.42±0.06a2.45±0.04a
生物固氮对籽粒蛋白质含量的贡献
BNF contribution to grain protein content (g?kg–1)
2018238.52±13.06c247.02±7.13c310.95±2.54a277.68±7.14b314.37±3.46a264.97±6.19b
2019222.65±7.42c207.97±3.53cd292.33±3.54a245.24±2.62b286.27±4.06a254.02±8.30b
生物固氮对籽粒蛋白产量的贡献
BNF contribution to protein yield (t?hm–2)
20180.59±0.05c0.64±0.03c0.96±0.03a0.90±0.03a0.95±0.00a0.83±0.01b
20190.54±0.03c0.53±0.02c0.89±0.03a0.78±0.04b0.88±0.02a0.78±0.01b
秸秆中的生物固氮量
BNF in straw [kg(N)?hm–2]
201868.06±5.99b70.24±3.43b102.81±5.67a73.91±6.72b100.42±2.03a68.62±5.33b
201963.75±3.15c58.95±3.06c93.32±5.27a57.39±5.66c79.47±4.34b60.46±1.34c
生物固氮对秸秆干物质的贡献
BNF contribution to straw dry matter (t?hm–2)
20183.22±0.09bc3.49±0.08b5.10±0.06a3.92±0.11b4.96±0.10ab3.72±0.07b
20193.02±0.06c2.68±0.10d4.83±0.11a3.07±0.12c4.63±0.08b3.17±0.10c
贡献估计值为生物固氮率与指标值之积[25]。H: 高密度; M: 中密度; L: 低密度; FM: 覆膜; NN: 不覆膜。同行不同字母表示处理间差异显著(P < 0.05)。The contribution value is the product of biological nitrogen fixation rate and index value. H: high density; M: medium density; L: low density; FM: film mulching; NM: no mulching. Different letters in the same line indicate significant differences at P < 0.05 level among treatments.


下载: 导出CSV

参考文献(38)
[1]杨双晓, 翟军哲, 马丽君. 陕西渭北旱塬区老龄苹果园蹲接改造复壮技术[J]. 山西果树, 2018, (2): 42-43 doi: 10.3969/j.issn.1005-345X.2018.02.017
YANG S X, ZHAI J Z, MA L J. Technology of regeneration and rejuvenation of aging apple orchard in dryland of Weibei in Shaanxi Province[J]. Shanxi Fruits, 2018, (2): 42-43 doi: 10.3969/j.issn.1005-345X.2018.02.017
[2]闫旭宇, 李玲, 李娟, 等. 基于文献计量分析的陕西苹果研究现状[J]. 延安大学学报: 自然科学版, 2019, 38(1): 82-86, 93 https://www.cnki.com.cn/Article/CJFDTOTAL-YSZR201901020.htm
YAN X Y, LI L, LI J, et al. Research status of Shaanxi apple based on bibliometric analysis[J]. Journal of Yan'an University: Natural Science Edition, 2019, 38(1): 82-86, 93 https://www.cnki.com.cn/Article/CJFDTOTAL-YSZR201901020.htm
[3]宋西德, 刘粉莲, 张永. 黄土丘陵沟壑区林农复合生态系统立体经营模式研究[J]. 西北林学院学报, 2004, 19(4): 43-46 doi: 10.3969/j.issn.1001-7461.2004.04.012
SONG X D, LIU F L, ZHANG Y. Study on the comprehensive management models for agroforestry ecosystem on hilly and gully region of the loess plateau[J]. Journal of Northwest Forestry University, 2004, 19(4): 43-46 doi: 10.3969/j.issn.1001-7461.2004.04.012
[4]廖文超, 毕华兴, 高路博, 等. 苹果-大豆间作系统光照分布及其对作物的影响[J]. 西北林学院学报, 2014, 29(1): 25-29 doi: 10.3969/j.issn.1001-7461.2014.01.05
LIAO W C, BI H X, GAO L B, et al. Light distribution in apple-soybean intercropping and its impact on the crops[J]. Journal of Northwest Forestry University, 2014, 29(1): 25-29 doi: 10.3969/j.issn.1001-7461.2014.01.05
[5]赵双进, 张孟臣, 杨春燕, 等. 栽培因子对大豆生长发育及群体产量的影响——Ⅰ. 播期、密度、行株距(配置方式)对产量的影响[J]. 中国油料作物学报, 2002, 24(4): 29-32 doi: 10.3321/j.issn:1007-9084.2002.04.007
ZHAO S J, ZHANG M C, YANG C Y, et al. Effect of culture factors on growth and yield of soybean Ⅰ. Effect of sowing date, density, space in row and plant space on yield[J]. Chinese Journal of Oil Crop Sciences, 2002, 24(4): 29-32 doi: 10.3321/j.issn:1007-9084.2002.04.007
[6]焦浩, 纪永民, 张存岭. 种植方式和密度对大豆产量和单株性状的影响[J]. 作物杂志, 2008, (5): 50-53 doi: 10.3969/j.issn.1001-7283.2008.05.014
JIAO H, JI Y M, ZHANG C L. Effect of planting pattern and density on soybean yield and other traits[J]. Crops, 2008, (5): 50-53 doi: 10.3969/j.issn.1001-7283.2008.05.014
[7]陈光荣, 高世铭, 张国宏, 等. 种植方式与密度对旱作大豆产量和水分利用效率的影响[J]. 灌溉排水学报, 2010, 29(5): 39-41 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201005009.htm
CHEN G R, GAO S M, ZHANG G H, et al. The influence of different planting patterns and density on soybean water use efficiency and grain yield[J]. Journal of Irrigation and Drainage, 2010, 29(5): 39-41 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201005009.htm
[8]任冬莲, 刘学义, 王瑞. 地膜覆盖春大豆增产效应研究[J]. 山西农业科学, 2006, 34(1): 35-37 doi: 10.3969/j.issn.1002-2481.2006.01.010
REN D L, LIU X Y, WANG R. Benefit of yield increasing of spring soybean by film mulching[J]. Journal of Shanxi Agricultural Sciences, 2006, 34(1): 35-37 doi: 10.3969/j.issn.1002-2481.2006.01.010
[9]何世炜, 常生华, 武得礼, 等. 大豆播种密度对籽实产量及其构成因素影响的研究[J]. 草业学报, 2005, 14(5): 43-47 doi: 10.3321/j.issn:1004-5759.2005.05.008
HE S W, CHANG S H, WU D L, et al. The effect of Glycine max sowing density on seeds yield and plant morphology[J]. Acta Pratacultural Science, 2005, 14(5): 43-47 doi: 10.3321/j.issn:1004-5759.2005.05.008
[10]张伟, 张惠君, 王海英, 等. 株行距和种植密度对高油大豆农艺性状及产量的影响[J]. 大豆科学, 2006, 25(3): 283-287 doi: 10.3969/j.issn.1000-9841.2006.03.016
ZHANG W, ZHANG H J, WANG H Y, et al. Effects of spacings and planting densities on agronomic traits and yield in high-oil soybeans[J]. Soybean Science, 2006, 25(3): 283-287 doi: 10.3969/j.issn.1000-9841.2006.03.016
[11]林蔚刚, 胡立成, 董丽华, 等. 大豆不同群体叶面积与光强垂直分布初步分析[J]. 大豆科学, 1996, 15(1): 56-61 https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX601.008.htm
LIN W G, HU L C, DONG L H, et al. The primarily analysis on distribution of leaf area and intensity of illumination at different colony of soybean in vertical direction[J]. Soybean Science, 1996, 15(1): 56-61 https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX601.008.htm
[12]郭志利, 孙常青, 梁楠. 旱地春大豆地膜覆盖增产节水效果及密度效应研究[J]. 中国生态农业学报, 2007, 15(1): 205-206 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200701053.htm
GUO Z L, SUN C Q, LIANG N. Impacts of plastic mulching on water saving and yield increasing of dry land spring soybean and its density effect[J]. Chinese Journal of Eco-Agriculture, 2007, 15(1): 205-206 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200701053.htm
[13]李欣欣, 许锐能, 廖红. 大豆共生固氮在农业减肥增效中的贡献及应用潜力[J]. 大豆科学, 2016, 35(4): 531-535 https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX201604002.htm
LI X X, XU R N, LIAO H. Contributions of symbiotic nitrogen fixation in soybean to reducing fertilization while increasing efficiency in agriculture[J]. Soybean Science, 2016, 35(4): 531-535 https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX201604002.htm
[14]张秋磊, 林敏, 平淑珍. 生物固氮及在可持续农业中的应用[J]. 生物技术通报, 2008, (2): 1-4 https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT200802002.htm
ZHANG Q L, LIN M, PING S Z. Biological nitrogen fixation and its application in sustainable agriculture[J]. Biotechnology Bulletin, 2008, (2): 1-4 https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT200802002.htm
[15]SHEN Y W, SUI P, HUANG J X, et al. Global warming potential from maize and maize-soybean as affected by nitrogen fertilizer and cropping practices in the North China Plain[J]. Field Crops Research, 2018, 225: 117-127 doi: 10.1016/j.fcr.2018.06.007
[16]ENRICO J M, PICCINETTI C F, BARRACO M R, et al. Biological nitrogen fixation in field pea and vetch: Response to inoculation and residual effect on maize in the Pampean Region[J]. European Journal of Agronomy, 2020, 115: 126016 doi: 10.1016/j.eja.2020.126016
[17]CHEN P, SONG C, LIU X M, et al. Yield advantage and nitrogen fate in an additive maize-soybean relay intercropping system[J]. Science of the Total Environment, 2019, 657: 987-999 doi: 10.1016/j.scitotenv.2018.11.376
[18]KERMAH M, FRANKE A C, ADJEI-NSIAH S, et al. N2-fixation and N contribution by grain legumes under different soil fertility status and cropping systems in the Guinea savanna of northern Ghana[J]. Agriculture, Ecosystems & Environment, 2018, 261: 201-210 http://www.ncbi.nlm.nih.gov/pubmed/29970948
[19]SHEARER G, KOHL D H. N2-fixation in field settings: estimations based on natural 15N abundance[J]. Functional Plant Biology, 1986, 13(6): 699 http://ci.nii.ac.jp/naid/30022626249
[20]HOUNGNANDAN P, YEMADJE R G H, OIKEH S O, et al. Improved estimation of biological nitrogen fixation of soybean cultivars (Glycine max L. Merril) using 15N natural abundance technique[J]. Biology and Fertility of Soils, 2008, 45(2): 175-183 doi: 10.1007/s00374-008-0311-5
[21]UNKOVICH M, HERRIDGE D, PEOPLES M, et al. Measuring Plant-associated Nitrogen Fixation in Agricultural Systems[M]. Canberra, Australia: Australian Centre for International Agricultural Research (ACIAR) Press, 2008.
[22]程文龙, 韩上, 李敏, 等. 主要农作物秸秆养分资源现状及其肥料替代潜力分析——以安徽省为例[J]. 中国生态农业学报: 中英文, 2020, 28(11): 1789-1798 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202011013.htm
CHENG W L, HAN S, LI M, et al. Current situation of the main crop straw nutrient resources and the substitute potential of crop straw for chemical fertilizer: a case study of Anhui Province[J]. Chinese Journal of Eco-Agriculture, 2020, 28(11): 1789-1798 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202011013.htm
[23]马昱萱, 刘立志, 张宇飞, 等. 添加碳氮对大豆秸秆还田土壤酶活性及微生物量碳的影响[J]. 东北林业大学学报, 2019, 47(10): 75-80 https://www.cnki.com.cn/Article/CJFDTOTAL-DBLY201910015.htm
MA Y X, LIU L Z, ZHANG Y F, et al. Effects of carbon and nitrogen addition on soil enzyme activity and microbial biomass carbon content of soybean straw after returning to field[J]. Journal of Northeast Forestry University, 2019, 47(10): 75-80 https://www.cnki.com.cn/Article/CJFDTOTAL-DBLY201910015.htm
[24]明应会. 秸秆还田条件下大豆生产机械化技术[J]. 种子科技, 2018, 36(1): 120 https://www.cnki.com.cn/Article/CJFDTOTAL-ZJKJ201801091.htm
MING Y H. Mechanization technology for soybean production under straw returning to field[J]. Seed Science & Technology, 2018, 36(1): 120 https://www.cnki.com.cn/Article/CJFDTOTAL-ZJKJ201801091.htm
[25]关大伟, 李力, 岳现录, 等. 我国大豆的生物固氮潜力研究[J]. 植物营养与肥料学报, 2014, 20(6): 1497-1504 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201406021.htm
GUAN D W, LI L, YUE X L, et al. Study on potential of biological nitrogen fixation of soybean in China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1497-1504 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201406021.htm
[26]王立明, 杨如萍, 陈光荣, 等. 陇黄系列大豆新品种适宜种植密度研究[J]. 中国种业, 2020, (9): 42-45 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWPZ202009017.htm
WANG L M, YANG R P, CHEN G R, et al. Study on suitable planting density of new Longhuang soybean varieties[J]. China Seed Industry, 2020, (9): 42-45 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWPZ202009017.htm
[27]杨从党. 作物研究过程中生态场理论的应用[J]. 中国生态农业学报, 2002, 10(4): 108-110 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200204034.htm
YANG C D. Application of ecological field theory to research of crops[J]. Chinese Journal of Eco-Agriculture, 2002, 10(4): 108-110 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200204034.htm
[28]朱占玲. 苹果生产系统养分投入特征和生命周期环境效应评价[D]. 泰安: 山东农业大学, 2019: 9-10
ZHU Z L. Characteristics of nutrients input and life cycle environmental impacts in apple production system[D]. Tai'an: Shandong Agricultural University, 2019: 9-10
[29]孔祥俊. 黄土高原苹果园养分投入及土壤氮素累积特征[D]. 杨凌: 西北农林科技大学, 2019: 14-17
KONG X J. Nutrient input and soil nitrogen accumulation characteristics of apple orchard in loess plateau[D]. Yangling: Northwest A & F University, 2019: 14-17
[30]LUO S S, ZHU L, LIU J L, et al. Mulching effects on labile soil organic nitrogen pools under a spring maize cropping system in semiarid farmland[J]. Agronomy Journal, 2015, 107(4): 1465-1472 doi: 10.2134/agronj14.0643
[31]HAUGGAARD-NIELSEN H, GOODING M, AMBUS P, et al. Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems[J]. Field Crops Research, 2009, 113(1): 64-71 http://europepmc.org/abstract/AGR/IND44214326
[32]王树起, 韩晓增, 乔云发, 等. 不同供N方式对大豆生长和结瘤固氮的影响[J]. 大豆科学, 2009, 28(5): 859-862 https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX200905021.htm
WANG S Q, HAN X Z, QIAO Y F, et al. Soybean (Glycine max L.) growth and nitrogen fixation as affected by different N supplying modes[J]. Soybean Science, 2009, 28(5): 859-862 https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX200905021.htm
[33]韩晓增, 严君, 李晓慧. 大豆共生固氮能力对土壤无机氮浓度的响应与调控[J]. 大豆科技, 2010, (1): 6-8 https://www.cnki.com.cn/Article/CJFDTOTAL-DDTB201001005.htm
HAN X Z, YAN J, LI X H. Response and control of soybean symbiotic nitrogen-fixing ability on soil inorganic nitrogen concentration[J]. Soybean Science & Technology, 2010, (1): 6-8 https://www.cnki.com.cn/Article/CJFDTOTAL-DDTB201001005.htm
[34]WEBER C R. Nodulating and nonnodulating soybean isolines: Ⅱ. response to applied nitrogen and modified soil conditions 1[J]. Agronomy Journal, 1966, 58(1): 46-49 doi: 10.2134/agronj1966.00021962005800010015x
[35]UZIAKOWA Z. The influence of different forms of nitrogen nutrition upon the growth and symbiosis of soybeans[J]. Acta Microbiological Polonica, 1959, 8: 315-318
[36]魏圆云, 崔丽娟, 张曼胤, 等. 土壤有机碳矿化激发效应的微生物机制研究进展[J]. 生态学杂志, 2019, 38(4): 1202-1211 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201904032.htm
WEI Y Y, CUI L J, ZHANG M Y, et al. Research advances in microbial mechanisms underlying priming effect of soil organic carbon mineralization[J]. Chinese Journal of Ecology, 2019, 38(4): 1202-1211 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201904032.htm
[37]赖振光, 韦剑锋, 蔡昭艳, 等. 甘蔗/大豆间作及地膜覆盖对大豆生长与产量及品质的影响[J]. 湖南农业大学学报: 自然科学版, 2016, 42(6): 587-591 https://www.cnki.com.cn/Article/CJFDTOTAL-HNND201606002.htm
LAI Z G, WEI J F, CAI Z Y, et al. Effect of sugarcane-soybean intercropping and mulch on growth, yield and quality of soybean[J]. Journal of Hunan Agricultural University: Natural Sciences, 2016, 42(6): 587-591 https://www.cnki.com.cn/Article/CJFDTOTAL-HNND201606002.htm
[38]杨梅, 刘章勇. 农业土地共享和土地分离及其潜在的生物多样性效应[J]. 中国生态农业学报, 2017, 25(6): 787-794 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201706001.htm
YANG M, LIU Z Y. Agricultural land sharing/sparing and their potential effects on biodiversity[J]. Chinese Journal of Eco-Agriculture, 2017, 25(6): 787-794 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201706001.htm

相关话题/生物 物质 土壤 图片 农业