俞映倞1,
杨梖1,
侯朋福1,
杨林章1,
薛利红1,,,
孙庆业2
1.农业农村部长江下游平原农业环境重点实验室/江苏省农业科学院农业资源与环境研究所 南京 210014
2.安徽大学资源与环境工程学院 合肥 230601
基金项目: 国家重点研发计划课题2016YFD0801101
江苏省农业科技自主创新资金CX(19)3646
详细信息
作者简介:王梦凡, 主要研究方向为农业面源污染治理。E-mail:15855966880@163.com
通讯作者:薛利红, 主要研究方向为农业面源污染治理。E-mail:njxuelihong@gmail.com
中图分类号:S5-33计量
文章访问数:429
HTML全文浏览量:7
PDF下载量:271
被引次数:0
出版历程
收稿日期:2020-01-28
录用日期:2020-03-31
刊出日期:2020-06-01
Effects of interface barrier materials on rice yield, nitrogen use efficiency, and NH3 volatilization
WANG Mengfan1, 2,,YU Yingliang1,
YANG Bei1,
HOU Pengfu1,
YANG Linzhang1,
XUE Lihong1,,,
SUN Qingye2
1. Key Lab of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
2. College of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
Funds: the National Key Research and Development Project of China2016YFD0801101
the Jiangsu Agricultural Science and Technology Innovation FundCX(19)3646
More Information
Corresponding author:XUE Lihong, E-mail:njxuelihong@gmail.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:氨挥发是稻田氮素损失的一个重要途径,有效控制稻田氨挥发对水稻增产减排具有重要意义。界面阻隔材料具有环境友好性和低成本的特点,可以作为一种截然不同的氨挥发减排方法。本研究比较分析了3种界面阻隔材料对水稻产量、氮肥利用率和氨挥发排放的影响,以期为水稻降本增效及减少环境污染提供技术支持。通过在稻田喷施表面分子膜材料和覆盖稻糠,比较了两种表面分子膜材料——聚乳酸(PLA)和卵磷脂(LEC)及稻糠(RB)施用后水稻产量及其构成、稻田田面水pH和铵态氮及硝态氮含量动态、稻田氨挥发及氮肥吸收利用的变化特征。结果表明,3种界面阻隔材料均显著增加了水稻产量,与常规施肥对照(CKU,无添加界面阻隔材料)相比增幅分别为13.0%(RB)、21.0%(PLA)和24.1%(LEC)。增产主要是因为有效穗数的增加,其中RB和PLA处理与CKU处理差异达显著水平;每穗粒数和结实率均无显著差异。LEC处理显著提高了氮肥利用率(19.0%),但RB处理氮肥利用率显著低于CKU。与CKU处理相比,3种界面阻隔材料的添加减少12.3%~19.9%的氨挥发量。PLA处理氨挥发减排效果最佳,达显著水平;其次为LEC处理。氨挥发减排可能与界面阻隔材料添加导致的田面水pH、铵态氮浓度变化和土壤铵态氮含量的增加有关。与CKU处理相比,所有处理均增加了田面水铵态氮浓度,但同时降低了田面水pH,且在水稻分蘖期影响较明显。其中PLA处理还提高了土壤铵态氮含量。本研究表明,稻田施加界面阻隔材料是稻田氨挥发减排以及增产增效的另一种可行的技术途径。
关键词:界面阻隔材料/
表面分子膜/
稻糠/
稻田/
氮肥利用率/
氨挥发
Abstract:NH3 volatilization emissions cause significant nitrogen losses in rice fields. Effective control of NH3 volatilization emissions in rice fields is critical to increase rice yield and nitrogen use efficiency. Interface barrier materials are environmental-friendly and low cost, making them suitable as a completely different method of reducing NH3 volatilization. This study therefore explored the impacts of interface barrier materials on rice yield and nitrogen use efficiency, which may help to achieve rice yields with low costs and reduced environmental pollution. In this study, three interface barrier materials including two surface molecular film materials:polylactic acid (PLA) and lecithin (LEC) materials were formulated as surface molecular film materials and were sprayed evenly on the field after fertilization at the basal, tillering, and earing rice stages. Rice bran was also evenly spread over the field after fertilization on the same day. The rice yield and yield composition, pH and nitrogen concentration in paddy surface water, soil nitrogen content, nitrogen use efficiency and NH3 volatilization were investigated. The experiment involved five treatments:CK (no N fertilizer), CKU (only urea), RB (rice bran + urea), PLA (polylactic acid + urea), and LEC (lecithin + urea). Fertilizer additions and field management practices remained the same across all treatments. The results showed that the RB, PLA and LEC treatments significantly increased rice yield compared to CKU treatment by 13.0%, 21.0%, and 24.1%, respectively. The nitrogen fertilizer utilization rate of LEC treatment significantly increased by 19.0% compared to the CKU. The RB treatment significantly increased yield by 13.0% compared to CKU, but did not significantly affect the nitrogen utilization rate. The addition of RB and PLA significantly increased the effective spike number in rice, but the LEC treatment produced no significant difference in this variable. The number of grains and the seed setting rate did not differ significantly under the CKU from their interface barrier materials added. The addition of interface barrier materials reduced NH3 volatilization by 12.3%-19.9% in comparison with CKU, and the PLA treatment significantly reduced NH3 volatilization by 19.9%, and performed best. It was followed by the LEC treatment with a reduction of 14.3%. The reductions in NH3 volatilization may be related to the changes in surface water pH, NH4+-N concentration, and soil NH4+-N content caused by the addition of interface barrier materials. Compared to the CKU treatment, all treatments increased the NH4+-N concentration but lowered the pH in surface water, especially during the tillering stage. The soil NH4+-N content was also improved in the PLA treatment. This study shows that the application of interface barrier materials in rice fields is a feasible technical approach to reduce NH3 volatilization and increase rice yield and nitrogen use efficiency.
Key words:Interface barrier materials/
Surface molecular film/
Rice bran/
Rice field/
Nitrogen use efficiency/
NH3 volatilization
HTML全文
图1聚乳酸(PLA)和卵磷脂(LEC)界面阻隔材料成膜的原子力显微镜图(图a为PLA处理, 图b为LEC处理)
Figure1.Atomic force microscope (AFM) image of polylactic acid (PLA) and lecithin (LEC) interface barrier film formation (the Fig. a is PLA treatment; the Fig. b is LEC treatment)
下载: 全尺寸图片幻灯片
图23个肥期不同界面阻隔材料处理的稻田氨挥发日通量变化
CK:不施氮肥; CKU:常规施肥; RB:添加稻糠; PLA:添加聚乳酸; LEC:添加卵磷脂。
Figure2.Daily flux of NH3 volatilization of rice field under different interface barrier material treatments in three fertilizer periods
CK: no N fertilization; CKU: conventional fertilization without interface barrier materials; RB: conventional fertilization and rice bran application; PLA: conventional fertilization and polylactic acid application; LEC: conventional fertilization and lecithin application.
下载: 全尺寸图片幻灯片
图33个肥期不同界面阻隔材料对稻田田面水brrhzformula:15:erhhz浓度的影响
CK:不施氮肥; CKU:常规施肥; RB:添加稻糠; PLA:添加聚乳酸; LEC:添加卵磷脂。
Figure3.Variation of ${\rm{NH}}_4^ + {\rm{ - N}}$ concentration in surface water of rice field with different interface barrier materials in three fertilization periods
CK: no N fertilization; CKU: conventional fertilization without interface barrier materials; RB: conventional fertilization and rice bran application; PLA: conventional fertilization and polylactic acid application; LEC: conventional fertilization and lecithin application.
下载: 全尺寸图片幻灯片
图4不同界面阻隔材料水稻分蘖期施肥4 d后的土壤铵态氮和硝态氮含量
CK:不施氮肥; CKU:常规施肥; RB:添加稻糠; PLA:添加聚乳酸; LEC:添加卵磷脂。不同小写字母表示各处理间差异显著(P < 0.05)。
Figure4.${\rm{NH}}_4^ + {\rm{ - N}}$and${\rm{NO}}_3^ - {\rm{ - N}}$contents of rice field soil on 4 days after fertilization under different interface barrier material treatments in rice tillering period
CK: no N fertilization; CKU: conventional fertilization without interface barrier materials; RB: conventional fertilization and rice bran application; PLA: conventional fertilization and polylactic acid application; LEC: conventional fertilization and lecithin application. Different lowercase letters indicate significant differences among treatments (P < 0.05).
下载: 全尺寸图片幻灯片
表1不同界面阻隔材料对水稻产量及其构成的影响
Table1.Effects of different interface barrier materials on rice yield and its components
处理 Treatment | 产量 Yield (kg?hm–2) | 有效穗数 Effective spike number (spikes?m–2) | 每穗粒数 Grain numbers per spike | 结实率 Seed setting rate (%) | 千粒重 1000-grain weight (g) |
CK | 4 285.2±563.8c | 187.1±14.3c | 126.2±11.2a | 83.8±0.04b | 26.4±0.2a |
CKU | 8 716.4±485.8b | 246.0±18.0b | 144.0±10.1a | 93.4±0.02a | 26.1±0.8ab |
RB | 9 850.4±587.2a | 289.9±28.3a | 151.7±8.9a | 93.6±0.01a | 25.5±0.5ab |
PLA | 10 548.6±545.4a | 303.2±12.5a | 143.2±11.7a | 94.3±0.01a | 25.2±0.8b |
LEC | 10 820.9±903.3a | 278.4±18.3ab | 132.4±22.4a | 92.2±0.02a | 25.5±0.6ab |
CK:不施氮肥; CKU:常规施肥; RB:添加稻糠; PLA:添加聚乳酸; LEC:添加卵磷脂。同列不同小写字母表示各处理间差异显著(P < 0.05)。CK: no N fertilization; CKU: conventional fertilization without interface barrier materials; RB: conventional fertilization and rice bran application; PLA: conventional fertilization and polylactic acid application; LEC: conventional fertilization and lecithin application. Different lowercase letters in the same column indicate significant differences among treatments (P < 0.05). |
下载: 导出CSV
表2不同界面阻隔材料对水稻氮肥利用率、氮肥农学效率和收获指数的影响
Table2.Nitrogen use efficiency, agronomic efficiency of nitrogen fertilizer, and harvest index of rice under different interface barrier material treatments
处理 Treatments | 氮素吸收量Nitrogen uptake (kg?hm–2) | 氮肥利用率 Nitrogen use efficiency (%) | 氮肥农学效率 Agronomic efficiency of nitrogen fertilizer (kg?kg–1) | 收获指数 Harvest index | ||
籽粒Grain | 秸秆Straw | 地上部Above ground | ||||
CK | 21.9±2.9c | 31.4±4.6c | 53.3±4.3c | — | — | 0.5±0.06ab |
CKU | 43.1±2.4ab | 54.9±7.8b | 98.0±5.4b | 21.2±2.6b | 21.6±2.3b | 0.6±0.06a |
RB | 27.4±19.9bc | 43.8±3.4bc | 71.2±19.7c | 8.5±9.4c | 27.0±0.7a | 0.4±0.02b |
PLA | 54.7±3.1a | 54.8±7.2b | 109.5±10.1b | 26.7±4.8b | 30.4±2.6a | 0.6±0.05a |
LEC | 57.6±4.2a | 80.7±17.3a | 137.9±15.2a | 40.3±7.2a | 27.2±6.4a | 0.6±0.05a |
CK:不施氮肥; CKU:常规施肥; RB:添加稻糠; PLA:添加聚乳酸; LEC:添加卵磷脂。同列不同小写字母表示各处理间差异显著(P < 0.05)。CK: no N fertilization; CKU: conventional fertilization without interface barrier materials; RB: conventional fertilization and rice bran application; PLA: conventional fertilization and polylactic acid application; LEC: conventional fertilization and lecithin application. Differenct lowercase letters in the same column indicate significant differences among treatments (P < 0.05). |
下载: 导出CSV
表3不同界面阻隔材料对水稻不同施肥期氨挥发累积损失量的影响
Table3.Effects of different interfacial barrier materials on the accumulated NH3 volatilization at different fertilizerperiods of rice ?
处理 Treatment | 基肥期 Basal period | 分蘖期 Tillering period | 穗肥期 Earing period | 累积挥发量 Accumulation |
CK | 6.3±1.7a | 14.1±1.7b | 18.3±0.4a | 46.6±0.4a |
CKU | 5.6±0.1a | 24.5±11.7a | 23.9±11.5a | 63.0±2.5a |
RB | 10.3±5.8a | 14.4±0.7b | 22.2±3.6a | 55.2±2.4a |
PLA | 6.9±1.4a | 14.4±0.8b | 20.8±1.6a | 50.5±4.2a |
LEC | 7.0±0.8a | 12.8±1.2b | 26.5±3.9a | 54.0±5.1a |
CK:不施氮肥; CKU:常规施肥; RB:添加稻糠; PLA:添加聚乳酸; LEC:添加卵磷脂。同列不同小写字母表示各处理间差异显著(P < 0.05)。CK: no N fertilization; CKU: conventional fertilization without interface barrier materials; RB: conventional fertilization and rice bran application; PLA: conventional fertilization and polylactic acid application; LEC: conventional fertilization and lecithin application. Different lowercase letters in the same column indicate significant differences among treatments (P < 0.05). |
下载: 导出CSV
表43个施肥期不同界面阻隔材料对稻田田面水pH的影响
Table4.Effect of different interface barrier materials on pH of surface water of rice field in three fertilizer periods
处理 Treatment | 基肥期 Basal period | 分蘖期 Tillering period | 穗肥期 Earing period | |||||||
范围 Range | 均值 Mean | 范围 Range | 均值 Mean | 范围 Range | 均值 Mean | |||||
CK | 7.3~8.2 | 7.7±0.4a | 7.5~8.4 | 8.0±0.4a | 7.4~7.9 | 7.5±0.2a | ||||
CKU | 6.3~8.5 | 7.6±0.7a | 7.5~8.3 | 7.9±0.3a | 7.3~7.8 | 7.5±0.2a | ||||
RB | 7.3~8.6 | 7.8±0.4a | 7.3~7.7 | 7.5±0.1b | 6.9~7.5 | 7.2±0.2b | ||||
PLA | 7.2~8.5 | 8.0±0.5a | 7.6~8.2 | 7.9±0.2a | 7.0~7.9 | 7.5±0.3a | ||||
LEC | 7.3~8.6 | 7.9±0.5a | 7.4~8.0 | 7.8±0.2ab | 7.1~7.6 | 7.4±0.2a | ||||
CK:不施氮肥; CKU:常规施肥; RB:添加稻糠; PLA:添加聚乳酸; LEC:添加卵磷脂。同列不同小写字母表示各处理间差异显著(P < 0.05)。CK: no N fertilization; CKU: conventional fertilization without interface barrier materials; RB: conventional fertilization and rice bran application; PLA: conventional fertilization and polylactic acid application; LEC: conventional fertilization and lecithin application. Different lowercase letters in the same column indicate significant differences among treatments (P < 0.05). |
下载: 导出CSV
表5不同界面阻隔材料下稻田氨挥发日通量与田面水pH、氮浓度的相关性
Table5.Correlation between daily NH3 volatilization flux and pH, nitrogen concentration in surface water of rice field under different treatments of interface barrier materials
处理 Treatment | pH | ${\rm{NH}}_4^ + {\rm{ - N}}$浓度 ${\rm{NH}}_4^ + {\rm{ - N}}$ concentration | ${\rm{NO}}_3^ - {\rm{ - N}}$浓度 ${\rm{NO}}_3^ - {\rm{ - N}}$ concentration |
CK | 0.022 | 0.367*** | 0.019 |
CKU | 0.270* | -0.038 | 0.040 |
RB | 0.069 | 0.434*** | -0.123 |
PLA | 0.037 | 0.607*** | -0.171 |
LEC | -0.147 | 0.584*** | -0.124 |
CK:不施氮肥; CKU:常规施肥; RB:添加稻糠; PLA:添加聚乳酸; LEC:添加卵磷脂。*和***分别表示P < 0.05和P < 0.001。CK: no N fertilization; CKU: conventional fertilization without interface barrier materials; RB: conventional fertilization and rice bran application; PLA: conventional fertilization and polylactic acid application; LEC: conventional fertilization and lecithin application. * and *** represent significant correlation at P < 0.05 and P < 0.001, respectively. |
下载: 导出CSV
参考文献
[1] | SUN L Y, WU Z, MA Y C, et al. Ammonia volatilization and atmospheric N deposition following straw and urea application from a rice-wheat rotation in southeastern China[J]. Atmospheric Environment, 2018, 181: 97–105 doi: 10.1016/j.atmosenv.2018.02.050 |
[2] | 彭玉净, 田玉华, 尹斌.添加脲酶抑制剂NBPT对麦秆还田稻田氨挥发的影响[J].中国生态农业学报, 2012, 20(1): 19–23 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20120104&journal_id=zgstny PENG Y J, TIAN Y H, YIN B. Effects of NBPT urease inhibitor on ammonia volatilization in paddy fields with wheat straw application[J]. Chinese Journal of Eco-Agriculture, 2012, 20(1): 19–23 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20120104&journal_id=zgstny |
[3] | 徐嘉翼, 牛世伟, 隋世江, 等.聚天门冬氨酸/盐对水稻田面水氮素变化及养分利用的影响[J].农业环境科学学报, 2019, 38(8): 1696–1703 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201908006 XU J Y, NIU S W, SUI S J, et al. Effects of polyaspartic-acid/salt on nitrogen loss from paddy surface water and nutrients utilization[J]. Journal of Agro-Environment Science, 2019, 38(8): 1696–1703 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201908006 |
[4] | ZHANG Z J, CHU G, LIU L J, et al. Mid-season nitrogen application strategies for rice varieties differing in panicle size[J]. Field Crops Research, 2013, 150: 9–18 doi: 10.1016/j.fcr.2013.06.002 |
[5] | HE T H, LIU D Y, YUAN J J, et al. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field[J]. Agriculture, Ecosystems & Environment, 2018, 264: 44–53 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6aa976f2cf13b2acef92016c58958bc8 |
[6] | 宋蝶, 陈新兵, 董洋阳, 等.养分专家系统推荐施肥对苏北地区水稻产量和肥料利用率的影响[J].中国生态农业学报(中英文), 2020, 28(1): 68–75 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2020-0108&journal_id=zgstny SONG D, CHEN X B, DONG Y Y, et al. Effect of nutrient expert recommendation fertilization on rice yield and fertilizer use in northern Jiangsu Province[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1): 68–75 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2020-0108&journal_id=zgstny |
[7] | XUE L H, YU Y L, YANG L Z. Maintaining yields and reducing nitrogen loss in rice-wheat rotation system in Taihu Lake region with proper fertilizer management[J]. Environmental Research Letters, 2014, 9(11): 115010 doi: 10.1088/1748-9326/9/11/115010 |
[8] | GU B J, GE Y, REN Y, et al. Atmospheric reactive nitrogen in China: Sources, recent trends, and damage costs[J]. Environmental Science & Technology, 2012, 46(17): 9420–9427 doi: 10.1021/es301446g |
[9] | XU J Z, PENG S, Z YANG S H, et al. Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements[J]. Agricultural Water Management, 2012, 104: 184–192 doi: 10.1016/j.agwat.2011.12.013 |
[10] | YIN B, SHEN R F, ZHU Z L. Use of new water soluble surface film-forming material to reduce ammonia loss from water solution[J]. Pedosphere, 1996, 6(4): 329–334 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c9cf20103e06b94a257f09c4a3b8c7a |
[11] | 许前欣, 赵振达, 李振云.稻田水面分子膜对提高氮肥利用率的研究[J].农业环境报护, 1998, 17(5): 216–218 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800429636 XU Q X, ZHAO Z D, LI Z Y. Study on the effect of paddy water surface molecular membrane on increasing utilization rate of nitrogen fertilizers[J]. Agro-Environmental Protection, 1998, 17(5): 216–218 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800429636 |
[12] | 李振声, 朱兆良, 章申, 等.挖掘生物高效利用土壤养分潜力保持土壤环境良性循环[M].北京:中国农业大学出版社, 2004: 1–426 LI Z S, ZHU Z L, ZHANG S, et al. Exploiting the Potential of Bio-Efficient Utilization of Soil Nutrients and Maintaining a Virtuous Cycle of Soil Environment[M]. Beijing: China Agricultural University Press, 2004: 1–426 |
[13] | 史青山, 杨国俊, 诸化斌, 等.稻田抑氨膜在水稻上应用效果初探[J].上海农业科技, 2005, (3): 114–115 doi: 10.3969/j.issn.1001-0106.2005.03.103 SHI Q S, YANG G J, ZHU H B, et al. Preliminary study on the application effect of ammonia suppression film in rice field on rice[J]. Shanghai Agricultural Science and Technology, 2005, (3): 114–115 doi: 10.3969/j.issn.1001-0106.2005.03.103 |
[14] | 何文寿, 孙权, 朱兆良, 等.水稻田喷施液态分子膜及节氮节水技术研究[J].土壤学报, 2002, 39(S1): 191–199 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000001957650 HE W S, SUN Q, ZHU Z L, et al. Study on spraying film of liquid molecular in paddy field with techniques of both nitrogen fertilizer and water saving[J]. Acta Pedologica Sinica, 2002, 39(S1): 191–199 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000001957650 |
[15] | 唐丹琦, 王娟, 郑天龙, 等.聚乳酸/淀粉固体缓释碳源生物反硝化研究[J].环境科学, 2014, 35(6): 2236–2240 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201406027 TANG D Q, WANG J, ZHENG T L, et al. Effect of PLA/starch slow-release carbon source on biological denitrification[J]. Environmental Science, 2014, 35(6): 2236–2240 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201406027 |
[16] | 赵淑敏, 谭红梅, 葛红霞, 等.大豆磷脂及其应用[J].大豆通报, 2006, (1): 39–42 doi: 10.3969/j.issn.1674-3547.2006.01.015 ZHAO S M, TAN H M, GE H X, et al. Application of phosphatide in soybean[J]. Soybean Bulletin, 2006, (1): 39–42 doi: 10.3969/j.issn.1674-3547.2006.01.015 |
[17] | 蔡卓, 程龙军, 江彩英, 等.大豆卵磷脂的研究现状[J].化工技术与开发, 2008, 37(9): 34–37 doi: 10.3969/j.issn.1671-9905.2008.09.009 CAI Z, CHENG L J, JIANG C Y, et al. Recent development in soybean lecithin[J]. Technology & Development of Chemical Industry, 2008, 37(9): 34–37 doi: 10.3969/j.issn.1671-9905.2008.09.009 |
[18] | 宋庆乃, 蒲淑英, 于佩锋.稻糠稻作, 农业生产的一大飞跃——日本水田除草和水稻施肥的新动向(四)[J].中国稻米, 2002, (4): 40–41 doi: 10.3969/j.issn.1006-8082.2002.04.031 SONG Q N, PU S Y, YU P F. Rice bran rice, a big leap in agricultural production — New trends in weeding and fertilizing rice in Japan's paddy fields (4)[J]. China Rice, 2002, (4): 40–41 doi: 10.3969/j.issn.1006-8082.2002.04.031 |
[19] | 王朝辉, 刘学军, 巨晓棠, 等.田间土壤氨挥发的原位测定——通气法[J].植物营养与肥料学报, 2002, 8(2): 205–209 doi: 10.3321/j.issn:1008-505X.2002.02.014 WANG Z H, LIU X J, JU X T, et al. Field in situ determination of ammonia volatilization from soil: Venting method[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 205–209 doi: 10.3321/j.issn:1008-505X.2002.02.014 |
[20] | 周玉玲, 侯朋福, 李刚华, 等.两种土壤增效剂对稻田氨挥发排放的影响[J].环境科学, 2019, 40(8): 3746–3752 http://d.old.wanfangdata.com.cn/Periodical/hjkx201908043 ZHOU Y L, HOU P F, LI G H, et al. Effect of two soil synergists on ammonia volatilization in paddy fields[J]. Environmental Science, 2019, 40(8): 3746–3752 http://d.old.wanfangdata.com.cn/Periodical/hjkx201908043 |
[21] | 聂江文, 王幼娟, 吴邦魁, 等.施氮对冬种紫云英不还田条件下稻田土壤微生物数量与结构的影响[J].生态学杂志, 2018, 37(12): 3617–3624 http://d.old.wanfangdata.com.cn/Periodical/stxzz201812016 NIE J W, WANG Y J, WU B K, et al. Effects of nitrogen application on the abundance and community of soil microbes in paddy field under the condition of no returning Chinese milk vetch[J]. Chinese Journal of Ecology, 2018, 37(12): 3617–3624 http://d.old.wanfangdata.com.cn/Periodical/stxzz201812016 |
[22] | CHEN X P, CUI Z L, FAN M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523): 486–489 doi: 10.1038/nature13609 |
[23] | 尹斌, 朱兆良.稻田氮素损失与实用控制技术——液态分子膜[C]//氮素循环与农业和环境学术研讨会论文(摘要)集.厦门: 中国土壤协会, 2001: 86–87 YIN B, ZHU Z L. Nitrogen loss in paddy fields and practical control technology — liquid molecular film[C]//Symposium on Nitrogen Cycle and Agriculture and Environment. Xiamen: Soil Science Society of China, 2001: 86–87 |
[24] | CHATTERJEE D, MOHANTY S, GURU P K, et al. Comparative assessment of urea briquette applicators on greenhouse gas emission, nitrogen loss and soil enzymatic activities in tropical lowland rice[J]. Agriculture, Ecosystems & Environment, 2018, 252: 178–190 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c888bdc6c9453b367a4754119ee8e76a |
[25] | YAO H Y, HUANG S, QIU Q F, et al. Effects of different fertilizers on the abundance and community structure of ammonia oxidizers in a yellow clay soil[J]. Applied Microbiology and Biotechnology, 2016, 100(15): 6815–6826 doi: 10.1007/s00253-016-7502-z |
[26] | 顾大路, 黄秀华, 王红军.稻田施稻糠的除草效果及对水稻生育的影响[J].江苏农业科学, 2006, (1): 64–65 doi: 10.3969/j.issn.1002-1302.2006.01.022 GU D L, HUANG X H, WANG H J. Effects of chaff on weeds in rice field and growth of rice[J]. Jiangsu Agricultural Sciences, 2006, (1): 64–65 doi: 10.3969/j.issn.1002-1302.2006.01.022 |
[27] | 徐珊珊, 侯朋福, 范立慧, 等.生活污水灌溉对麦秸还田稻田氨挥发排放的影响[J].环境科学, 2016, 37(10): 3963–3970 http://d.old.wanfangdata.com.cn/Periodical/hjkx201610039 XU S S, HOU P F, FAN L H, et al. Effect of straw incorporation and domestic sewage irrigation on ammonia volatilization from paddy fields[J]. Environmental Science, 2016, 37(10): 3963–3970 http://d.old.wanfangdata.com.cn/Periodical/hjkx201610039 |
[28] | HUDA A, GAIHRE Y K, ISLAM M R, et al. Floodwater ammonium, nitrogen use efficiency and rice yields with fertilizer deep placement and alternate wetting and drying under triple rice cropping systems[J]. Nutrient Cycling in Agroeco- systems, 2016, 104(1): 53–66 doi: 10.1007/s10705-015-9758-6 |
[29] | 蒋金勇, 唐海兵, 栾东磊, 等.聚乳酸/聚丁二酸-己二酸丁二酯可降解抗氧化薄膜对鲜切西兰花的保鲜效果[J].食品科学, 2019, 40(13): 274–280 doi: 10.7506/spkx1002-6630-20180615-317 JIANG J Y, TANG H B, LUAN D L, et al. Effect of polylactic acid/poly (butylene succinate-co-adipate) biodegradable film containing different essential oils in preserving quality and extending shelf-life of fresh-cut broccoli[J]. Food Science, 2019, 40(13): 274–280 doi: 10.7506/spkx1002-6630-20180615-317 |
[30] | 张翀, 韩晓阳, 李雪倩, 等.川中丘陵区紫色土冬小麦/夏玉米轮作氨挥发研究[J].中国生态农业学报, 2015, 23(11): 1359–1366 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20151102&journal_id=zgstny ZHANG C, HAN X Y, LI X Q, et al. Ammonia volatilization in winter wheat/summer maize rotation system of purple soil in hilly area of Central Sichuan Basin[J]. Chinese Journal of Eco-Agriculture, 2015, 23(11): 1359–1366 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=20151102&journal_id=zgstny |
[31] | 吴邦信, 陈天祥, 孙海健.单分子膜水面阻蒸发技术的绿色化学[J].环境保护, 2003, (11): 11–13 doi: 10.3969/j.issn.0253-9705.2003.11.004 WU B X, CHEN T X, SUN H J. Green chemistry of water surface obstruction evaporation technologies with monomolecular films[J]. Environmental Protection, 2003, (11): 11–13 doi: 10.3969/j.issn.0253-9705.2003.11.004 |
[32] | 江镇海.聚乳酸的应用与市场前景[J].上海化工, 2010, 35(2): 37–38 doi: 10.3969/j.issn.1004-017X.2010.02.009 JIANG Z H. Application and market prospect of polylactic acid[J]. Shanghai Chemical Industry, 2010, 35(2): 37–38 doi: 10.3969/j.issn.1004-017X.2010.02.009 |
[33] | TRZASKOWSKA P A, PONIATOWSKA A, TRZASKOWSKI M, et al. Lecithin suspensions for electrophoretic deposition on stainless steel coatings[J]. Materials Science and Engineering: C, 2018, 93: 134–144 doi: 10.1016/j.msec.2018.07.052 |
[34] | 陈先茂, 秦厚国, 彭春瑞, 等.稻糠替代化学除草剂控制早稻田杂草的试验初报[J].中国稻米, 2010, 16(3): 39–40 doi: 10.3969/j.issn.1006-8082.2010.03.014 CHEN X M, QIN H G, PENG C R, et al. Primary studies on use rice bran instead of herbicides to control the weeds in the early paddy rice field[J]. China Rice, 2010, 16(3): 39–40 doi: 10.3969/j.issn.1006-8082.2010.03.014 |
[35] | 田光明, 蔡祖聪, 曹金留, 等.镇江丘陵区稻田化肥氮的氨挥发及其影响因素[J].土壤学报, 2001, 38(3): 324–332 doi: 10.3321/j.issn:0564-3929.2001.03.012 TIAN G M, CAI Z C, CAO J L, et al. Ammonia volatilization from paddy field and its affecting factors in Zhenjiang hilly region[J]. Acta Pedologica Sinica, 2001, 38(3): 324–332 doi: 10.3321/j.issn:0564-3929.2001.03.012 |
[36] | 余双, 崔远来, 韩焕豪, 等.不同水肥制度下稻田氨挥发变化规律[J].灌溉排水学报, 2015, 34(3): 1–5 http://d.old.wanfangdata.com.cn/Periodical/ggps201503001 YU S, CUI Y L, HAN H H, et al. Variation of ammonia volatilization in paddy field under different irrigation and fertilization systems[J]. Journal of Irrigation and Drainage, 2015, 34(3): 1–5 http://d.old.wanfangdata.com.cn/Periodical/ggps201503001 |
[37] | 王强, 姜丽娜, 潘建清, 等.一次性施肥稻田田面水氮素变化特征和流失风险评估[J].农业环境科学学报, 2019, 38(1): 168–175 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201901023 WANG Q, JIANG L N, PAN J Q, et al. Dynamic variation and runoff loss evaluation of nitrogen in the surface water of paddy fields as affected by single basal fertilizer application[J]. Journal of Agro-Environment Science, 2019, 38(1): 168–175 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201901023 |
[38] | 胡春胜, 张玉铭, 秦树平, 等.华北平原农田生态系统氮素过程及其环境效应研究[J].中国生态农业学报, 2018, 26(10): 1501–1514 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2018-1009&journal_id=zgstny HU C S, ZHANG Y M, QIN S P, et al. Nitrogen processes and related environmental effects on agro-ecosystem in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1501–1514 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2018-1009&journal_id=zgstny |