杜雄1,,,
王荣3,
杨艳敏2,,,
胡玉昆2,
侯振军4
1.河北农业大学农学院 保定 071000
2.中国科学院遗传与发育生物学研究所农业资源研究中心/河北省节水农业重点实验室 石家庄 050022
3.河北雄安新区公共服务局 雄安 071700
4.保定市望都灌溉试验站 望都 072450
基金项目: 国家水体污染控制与治理专项2018ZX07110001
科技部国际合作项目2018YFE0110100
国家自然科学基金项目31871518
国家重点研发计划项目2017YFD0300908
详细信息
作者简介:王璐, 主要从事农业耗水方面的研究。E-mail: 1742646162@qq.com
通讯作者:杜雄, 主要从事作物生长系统调控工程方面的研究, E-mail: duxiong2002@163.com
杨艳敏, 主要从事农业耗水评估方面的研究, E-mail: ymyang@sjziam.ac.cn
中图分类号:S5-3计量
文章访问数:69
HTML全文浏览量:19
PDF下载量:25
被引次数:0
出版历程
收稿日期:2020-12-30
录用日期:2021-03-19
刊出日期:2021-08-01
Optimization of the planting structure in the upstream region of Baiyangdian Lake based on the non-dominated sorting genetic algorithm (NSGA-Ⅱ)
WANG Lu1, 2,,DU Xiong1,,,
WANG Rong3,
YANG Yanmin2,,,
HU Yukun2,
HOU Zhenjun4
1. College of Agronomy, Hebei Agricultural University, Baoding 071000, China
2. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Hebei Key Laboratory of Water-Saving Agriculture, Shijiazhuang 050022, China
3. Public Service Bureau of Hebei Xiong'an New Area Management Committee, Xiong'an 071700, China
4. Wangdu Experimental Station of Irrigation, Wangdu 072450, China
Funds: the National Water Pollution Control and Treatment Special Project of China2018ZX07110001
the International Cooperation Program of Ministry of Science and Technology of China2018YFE0110100
the National Natural Science Foundation of China31871518
the National Key Research and Development Program of China2017YFD0300908
More Information
Corresponding author:DU Xiong, E-mail: duxiong2002@163.com;YANG Yanmin, E-mail: ymyang@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:合理的种植结构是实现区域水资源及土地资源优化配置的基础。针对白洋淀上游水资源紧缺、种植结构不合理等问题,结合当前主要作物种植结构现状,本研究以作物种植面积为优化变量,以水资源、土地资源、社会需求等为约束条件,以经济效益、生态效益最大及总灌溉耗水量最小为目标,构建基于非支配排序遗传算法(NSGA-Ⅱ)的作物种植结构多目标调整模型,并提出了针对白洋淀上游平原区、山区等不同水资源限制和农业机械化程度情景下的种植结构调整优化方案。研究结果表明,在平原区现状机械化水平下,在不限制用水的情景下,可以通过调减一年两作的种植面积,增加蔬菜和绿豆-鲜食玉米等的种植面积,达到提高经济效益12.6%的目的,而生态效益和节水效益都有所降低。在限水情景下,小麦-玉米调减比例增加,调增绿豆-鲜食玉米、春季甘薯、蔬菜和果蔬的面积,实现经济效益和节水效益的提高;而要达到节水20%的目标,所有作物的种植面积都要缩减,高耗水种植制度小麦-玉米种植面积缩减比例达21.5%,同时经济效益和生态效益都下降。在未来提高机械化水平的情景下,调整优化后的经济效益相比现状机械化水平提高或下降减少。在山区所有情景下,小麦-玉米种植面积随着对水分限制水平(不限水—小于现状水资源—节水20%)的增加调减比例增加,同时增加果树的种植面积。在山区可以通过种植结构的调整达到既节水20%,同时经济效益提高的目标,这是平原区所不能达到的。总之,无论是平原区还是山区,均是在不限水情景下优化后的经济效益、生态效益相对较高,而节水越多,优化后的经济效益、生态效益增幅越小、降幅越大。并且在平原区如果在节水要求不高的情景下应适当增加蔬菜面积,减少粮食种植面积;在节水要求高的情景下应削减所有作物包括水果、蔬菜的种植面积,在山区应该适当削减粮食种植面积,扩大果树的种植面积。该研究不仅可为研究区未来作物种植结构调整提供决策依据,也为在类似地区种植结构调整和水资源优化管理提供了新的情景参考。
关键词:NSGA-Ⅱ算法/
种植结构/
经济效益/
生态效益/
水资源优化
Abstract:Reasonable planting structures are the basis of the optimal allocation of regional water and land resources. The upstream region of Baiyangdian Lake suffers from the perils of water shortage and an unreasonable planting structure. On the base of the current status of the main crop planting structure, this study considered the crop planting area as optimization variable, the water resources, land resources, and social needs as the constraints, while seeking to maximize the economic and ecological benefits and to minimize the irrigation water consumption based on the non-dominated sorting genetic algorithm (NSGA-Ⅱ) of the crop planting structure adjustment model. This study also proposed the planting structure optimization schemes under different scenarios of various water restrictions and agricultural mechanization levels in the mountain area and plain area of the upstream of Baiyangdian Lake. The results showed that, at the current status of mechanization level, the area of the rotations of two crops in a year scaled down, while vegetables and mung beans-fresh maize areas increased, the economic benefits should increase 12.6%, and ecological and water-saving benefits decreased under the no-restricted irrigation water; while wheat-maize, mung beans-fresh maize, spring sweet potato, vegetables and fruits areas increased under restricted irrigation water inducing increased economic and water-saving benefits. In the 20% water-saving scenario, almost all crop areas would be scaled down, including vegetables, area of wheat-maize decreased 21.5%, and economic and ecological benefits decreased. In the scenario without water limitation, the optimized economic benefit increased the most, the ecological benefit decrease the least, water consumption increased, and the grain yield decreased the least. However, in the scenario of 20% water saving, the economic and ecological benefits and grain yield decreased. Under current and future mechanization levels, the fruit tree area increased under different water restriction scenarios. With no-water limitation, the economic and ecological benefits maximally improved after optimization, and water use and grain yield maximally decrease. Under the 20% water-saving scenario, the economic benefit increased the least, the ecological benefit decreased, and grain yield decreased the most. These results indicate that the current and future mechanization scenarios are not limited by water in the plain or mountainous areas, and the optimized economic and ecological benefits are relatively high. Moreover, in the plain areas with low water-saving requirements, the vegetable planting area should be increased, and the grain planting area should be reduced. In areas with high water-saving requirements, the planting area of all crops, including fruits and vegetables, should be reduced. In the mountainous areas, the grain planting area should be reduced, and the fruit tree planting area should be expanded. This study provides a decision basis for future regional planting structure adjustment. Past adjustments in the planting structure, with more adjustments according to different crop types, tended to ignore adjustments in the different cropping systems or to consider the fixed number of years or different climate scenarios. This paper proposed different scenarios of mechanization and water limitations and highlighted the optimization results under different scenarios for similar areas after adjustment in the planting structure.
Key words:Non-dominated sorting genetic algorithm (NSGA-Ⅱ)/
Planting structure/
Economic benefits/
Ecological benefits/
Optimization of water resources
HTML全文
图1NSGA-Ⅱ主要流程图
Figure1.NSGA-Ⅱmain flow chart
下载: 全尺寸图片幻灯片
表1白洋淀上游各种种植制度单位面积机械种植成本
Table1.Mechanical planting cost per unit area of various cropping system in the upper stream of Baiyangdian Lake ?
种植制度 Cropping system | 灌溉 Irrigation | 种子 Seeds | 耕地 Cultivated land | 播种 Sowing | 收获 Harvest | 肥料 Fertilizer | 农药 Pesticide | 农膜 Mulching films | 劳力 Labor | 总成本 Total cost |
小麦-玉米Wheat-maize | 1875 | 1800 | 1800 | 675 | 2100 | 3900 | 630 | 60 | 1200 | 14 040 |
小麦-谷子Wheat-millet | 1875 | 1140 | 1800 | 750 | 1800 | 3975 | 480 | 0 | 1080 | 12 900 |
小麦-大豆Wheat-soybean | 1875 | 1470 | 1800 | 600 | 1800 | 3405 | 630 | 0 | 1320 | 12 900 |
小麦-夏甘薯 Wheat-summer sweet potato | 2100 | 6300 | 2775 | 3900 | 3300 | 4950 | 630 | 0 | 2130 | 26 085 |
小麦-绿豆 Wheat-mung bean | 1875 | 1575 | 1800 | 600 | 1800 | 3585 | 630 | 60 | 1470 | 13 395 |
绿豆-鲜食玉米 Mung beans-fresh maize | 1575 | 2775 | 900 | 675 | 2100 | 3210 | 600 | 120 | 2050 | 14 005 |
玉米一作Maize | 375 | 750 | 900 | 375 | 1200 | 1800 | 300 | 60 | 390 | 6150 |
棉花一作Cotton | 1200 | 540 | 900 | 375 | 1200 | 2550 | 1080 | 615 | 3180 | 11 640 |
春甘薯一作 Spring sweet potato | 1800 | 15 750 | 1875 | 3600 | 2400 | 3000 | 1250 | 900 | 3740 | 34 315 |
谷子一作Millet | 375 | 90 | 900 | 450 | 900 | 975 | 150 | 0 | 270 | 4110 |
花生一作Peanut | 375 | 2370 | 900 | 375 | 900 | 2250 | 615 | 120 | 750 | 8655 |
高粱一作Sorghum | 375 | 600 | 900 | 375 | 900 | 900 | 225 | 0 | 1095 | 5370 |
下载: 导出CSV
表2白洋淀上游各种种植制度单位面积非机械类种植成本
Table2.Non-mechanical planting cost per unit area of various cropping system in the upper stream of Baiyangdian Lake ?
种植制度 Cropping system | 灌溉Irrigation | 种子 Seed | 耕地Cultivated land | 播种Sowing | 收获Harvest | 肥料Fertilizer | 农药Pesticide | 农膜Mulching films | 劳力Labor | 总成本 Total cost |
小麦-谷子 Wheat-millet | 1875 | 1140 | 3600 | 1200 | 3150 | 3975 | 480 | 0 | 1080 | 16 500 |
小麦-大豆 Wheat-soybean | 1875 | 1470 | 3600 | 900 | 3150 | 3405 | 630 | 0 | 1320 | 16 350 |
小麦-夏甘薯 Wheat-summer sweet potato | 2100 | 6300 | 6300 | 3900 | 5700 | 4950 | 630 | 0 | 2130 | 32 010 |
小麦-绿豆 Wheat-mung bean | 1875 | 1575 | 3600 | 900 | 3150 | 3585 | 630 | 60 | 1470 | 16 845 |
绿豆-鲜食玉米 Mung beans-fresh maize | 1575 | 2775 | 2700 | 1375 | 5950 | 3210 | 600 | 120 | 2050 | 20 355 |
玉米一作Maize | 375 | 750 | 2700 | 750 | 2700 | 1800 | 300 | 60 | 390 | 9825 |
棉花一作Cotton | 1200 | 540 | 2700 | 750 | 3000 | 2550 | 1080 | 615 | 3180 | 15 615 |
春甘薯一作 Spring sweet potato | 1800 | 15 750 | 5400 | 3600 | 4800 | 3000 | 1250 | 900 | 3740 | 40 240 |
谷子一作Millet | 375 | 90 | 2700 | 900 | 2250 | 975 | 150 | 0 | 270 | 7710 |
花生一作Peanut | 375 | 2370 | 2700 | 750 | 2700 | 2250 | 615 | 120 | 750 | 12 630 |
高粱一作Sorghum | 375 | 600 | 2700 | 900 | 2250 | 900 | 225 | 0 | 1095 | 9045 |
下载: 导出CSV
表3白洋淀上游蔬菜的完全非机械化以及完全机械化种植成本
Table3.Cost of fully mechanized and completely non-mechanized planting of vegetables in the upper stream of Baiyangdian Lake ?
项目 Item | 蔬菜类别 Vegetables category | 蔬菜名称 Vegetable name | 种子 Seeds | 灌溉Irrigation | 耕地 Cultivated land | 播种 Sowing | 收获 Harvest | 肥料 Fertilizer | 农药 Pesticide | 劳力 Labor | 总成本 Total cost |
完全非机械化种植成本Completely non-mechanized planting cost | 大田蔬菜 Outdoor vegetables | 白菜Cabbage | 1450 | 2750 | 2250 | 2200 | 7500 | 4000 | 1362 | 3300 | 24 812 |
萝卜Radish | 1350 | 2850 | 2250 | 2015 | 9200 | 3800 | 1254 | 3100 | 25 819 | ||
南瓜Pumpkin | 1050 | 2890 | 2250 | 2350 | 8000 | 4150 | 1450 | 3300 | 25 440 | ||
大葱Onion | 1500 | 2630 | 2250 | 2550 | 7670 | 4550 | 1560 | 3000 | 25 710 | ||
设施蔬菜Facilities vegetables | 黄瓜Cucumber | 2650 | 3750 | 3125 | 3750 | 12 500 | 7420 | 3600 | 4658 | 41 453 | |
西红柿Tomatoes | 2600 | 3055 | 3125 | 3250 | 12 300 | 7500 | 3000 | 4575 | 39 405 | ||
豆角Beans | 2825 | 3175 | 3125 | 3500 | 10 920 | 7650 | 3250 | 4820 | 39 265 | ||
辣椒Chili | 2750 | 3505 | 3125 | 3620 | 10 620 | 7200 | 3060 | 3200 | 37 080 | ||
完全机械化 种植成本 Fully mechanized planting cost | 大田蔬菜Outdoor vegetables | 白菜Cabbage | 1450 | 2750 | 1500 | 1467 | 5000 | 4000 | 1362 | 3300 | 20 829 |
萝卜Radish | 1350 | 2850 | 1500 | 1343 | 6133 | 3800 | 1254 | 3100 | 21 331 | ||
南瓜Pumpkin | 1050 | 2890 | 1500 | 1567 | 5333 | 4150 | 1450 | 3300 | 21 240 | ||
大葱Onion | 1500 | 2630 | 1500 | 1700 | 5113 | 4550 | 1560 | 3000 | 21 553 | ||
设施蔬菜Facilities vegetables | 黄瓜Cucumber | 2650 | 3750 | 2083 | 2500 | 8333 | 7420 | 3600 | 4658 | 34 994 | |
西红柿Tomatoes | 2600 | 3055 | 2083 | 2167 | 8200 | 7500 | 3000 | 4575 | 33 180 | ||
豆角Beans | 2825 | 3175 | 2083 | 2333 | 7280 | 7650 | 3250 | 4820 | 33 416 | ||
辣椒Chili | 2750 | 3505 | 2083 | 2413 | 7080 | 7200 | 3060 | 3200 | 31 291 |
下载: 导出CSV
表4白洋淀上游各果树的完全机械化以及完全非机械化种植成本
Table4.Cost of fully mechanized and completely non-mechanized planting of fruit trees in the upper stream of Baiyangdian Lake ?
项目 Item | 水果 Fruit | 灌溉加人工Irrigation and labor | 施肥加人工Fertilization and labor | 农药加人工 Pesticide and labor | 剪枝 Pruning | 疏果 Fruit thinning | 套袋加袋子 Bagging and bags | 收获 Harvest | 反光膜Reflective film | 总成本 Total cost |
完全非机械化种植成本 Completely non-mechanized planting cost | 苹果Apple | 1200 | 5400 | 6350 | 1500 | 6000 | 8000 | 5400 | 2250 | 36 100 |
梨Pear | 1170 | 5175 | 5160 | 1450 | 5600 | 8025 | 4500 | 31 080 | ||
葡萄Grapes | 1300 | 7500 | 6500 | 1700 | 6500 | 9000 | 4800 | 37 300 | ||
桃Peach | 1350 | 5700 | 6600 | 1300 | 5400 | 7500 | 4000 | 31 850 | ||
完全机械化种植成本Fully mechanized planting cost | 苹果Apple | 1200 | 5400 | 6350 | 1500 | 6000 | 8000 | 3600 | 2250 | 34 300 |
梨Pear | 1170 | 5175 | 5160 | 1450 | 5600 | 8025 | 3000 | 29 580 | ||
葡萄Grapes | 1300 | 7500 | 6500 | 1700 | 6500 | 9000 | 3200 | 35 700 | ||
桃Peach | 1350 | 5700 | 6600 | 1300 | 5400 | 7500 | 2667 | 30 517 |
下载: 导出CSV
表5白洋淀上游平原区、山区不同种植制度的作物单位面积产量与产值
Table5.Output value per unit area and yield per unit area of crops of different cropping systems in plain and mountainous areas in the upper stream of Baiyangdian Lake
种植制度 Cropping system | 价格 Price (¥?kg–1) | 平原区Plain area | 山区Mountainous area | ||||
产量Yield (×103 kg?hm–2) | 产值Output value (×103 ¥?hm–2) | 产量Yield (×103 kg?hm–2) | 产值Output vale (×103 ¥?hm–2) | ||||
小麦-玉米Wheat-maize | 2.2~1.8 | 6.5~7.6 | 27.9 | 5.8~5.9 | 23.4 | ||
小麦-谷子Wheat-millet | 2.2~4.0 | 6.5~3.9 | 29.7 | 5.8~3.4 | 26.5 | ||
小麦-大豆Wheat-soybean | 2.2~4.5 | 6.5~2.3 | 24.8 | 5.8~2.1 | 22.3 | ||
小麦-夏甘薯Wheat-summer sweet potato | 2.2~2.0 | 6.5~15.2 | 44.8 | 5.8~11.1 | 35.0 | ||
小麦-绿豆Wheat-mung bean | 2.2~7.4 | 6.5~1.4 | 24.8 | 5.8~1.1 | 21.1 | ||
绿豆-鲜食玉米Mung beans-fresh maize | 7.4~2.2 | 1.4~13.7 | 40.6 | 1.1~10.6 | 31.6 | ||
玉米一作Maize | 1.8 | 7.6 | 13.7 | 5.9 | 10.6 | ||
棉花一作Cotton | 7.6 | 3.2 | 24.2 | 2.3 | 17.6 | ||
春甘薯一作Spring sweet potato | 2 | 31.0 | 61.9 | 22.6 | 45.1 | ||
谷子一作Millet | 4 | 3.9 | 15.4 | 3.4 | 13.7 | ||
花生一作Peanut | 5.5 | 4.9 | 26.8 | 4.2 | 23.1 | ||
高粱一作Sorghum | 2.6 | 6.0 | 15.6 | 6.0 | 15.5 | ||
蔬菜Vegetables | / | / | 99.3 | / | 99.3 | ||
果树Fruit | / | / | 113.1 | / | 113.1 |
下载: 导出CSV
表6白洋淀上游不同情景下平原区、山区各作物单位面积净产值取值
Table6.Value of net output value per unit area of crops of different cropping systems in plain and mountain areas under differentscenarios in the upper stream of Baiyangdian Lake ?
种植制度 Cropping system | 平原区Plain area | 山区Mountainous area | |||
现状机械化情景 Current mechanization scenario | 未来机械化情景 Future mechanization scenario | 现状机械化情景 Current mechanization scenario | 未来机械化情景 Future mechanization scenario | ||
小麦-玉米Wheat-maize | 13.9 | 13.9 | 9.4 | 9.4 | |
小麦-谷子Wheat-millet | 16.2 | 16.8 | 11.7 | 12.2 | |
小麦-大豆Wheat-soybean | 11.3 | 11.9 | 7.5 | 8.0 | |
小麦-夏甘薯Wheat-summer sweet potato | 17.6 | 18.7 | 5.8 | 6.6 | |
小麦-绿豆Wheat-mung bean | 10.8 | 11.4 | 5.8 | 6.3 | |
绿豆-鲜食玉米Mung beans-fresh maize | 25.4 | 26.5 | 14.1 | 15.0 | |
玉米一作Maize | 6.8 | 7.5 | 2.5 | 3.0 | |
棉花一作Cotton | 11.9 | 12.6 | 3.8 | 4.4 | |
春甘薯一作Spring sweet | 26.6 | 27.6 | 7.6 | 8.4 | |
谷子一作Millet | 10.7 | 11.3 | 7.6 | 8.1 | |
花生一作Peanut | 17.4 | 18.2 | 12.3 | 12.8 | |
高粱一作Sorghum | 9.6 | 10.2 | 8.2 | 8.7 | |
蔬菜Vegetables | 68.5 | 68.6 | 68.5 | 68.6 | |
果树Fruit | 79.9 | 80.0 | 80.0 | 80.0 |
下载: 导出CSV
表7白洋淀上游平原区不同情景下种植结构优化调整后不同种植制度的面积变化
Table7.Changes in planting areas of different cropping systems after planting structure adjustment under different scenarios of mechanization level and irrigation in the plain area of the upstream of Baiyangdian Lake
种植制度 Cropping system | 面积现状 Area status (hm2) | 面积变化率Change rate of area (%) | |||||
CS1 | CS2 | CS3 | FS1 | FS2 | FS3 | ||
小麦-玉米Wheat-maize | 266 117.0 | –5.8 | –15.9 | –21.5 | –6.0 | –16.1 | –22.0 |
小麦-谷子Wheat-millet | 886.5 | –15.9 | –14.3 | –8.0 | –13.3 | –16.1 | –6.5 |
小麦-大豆Wheat-soybean | 4923.0 | –19.4 | –18.2 | –17.6 | –17.7 | –15.8 | –15.7 |
小麦-夏甘薯Wheat-summer sweet potato | 644.8 | –18.0 | –13.1 | –7.2 | –13.4 | –8.9 | –2.9 |
小麦-绿豆Wheat-mung bean | 459.9 | –17.1 | –12.1 | –8.7 | –14.9 | –10.3 | –6.9 |
绿豆-鲜食玉米Mung beans-fresh maize | 51.1 | 1.1 | 2.2 | –3.9 | 6.2 | 7.1 | 2.1 |
玉米一作Maize | 10 182.0 | –19.1 | –18.5 | –15.6 | –19.0 | –18.3 | –15.4 |
棉花一作Cotton | 4633.0 | –17.4 | –11.5 | –13.7 | –14.9 | –9.6 | –11.9 |
春薯一作Spring sweet | 5803.2 | –19.2 | 3.3 | –16.2 | –14.5 | 8.5 | –11.3 |
谷子一作Millet | 98.5 | –7.8 | –11.3 | –10.2 | –5.4 | –9.4 | –8.5 |
花生一作Peanut | 86 791.0 | –17.8 | –13.9 | –14.9 | –15.3 | –12.7 | –12.9 |
高粱一作Sorghum | 27.0 | –19.0 | –17.2 | –15.1 | –17.1 | –15.9 | –13.8 |
蔬菜Vegetables | 113 838.0 | 32.1 | 17.6 | –18.0 | 32.6 | 17.7 | –17.5 |
果树Fruit | 20 140.0 | –4.5 | 15.6 | –17.6 | 1.1 | 20.0 | –12.4 |
CS1、CS2和CS3分别代表现状机械化水平下农田灌溉用水不受限制、不超过现状以及不超过现状的80%; FS1、FS2和FS3代表未来机械化水平下农田灌溉用水不受限制、不超过现状以及不超过现状的80%。C and F represent the current and future levels of mechanization; S1, S2, and S3 represent scenarios of no-restricted irrigation water, no-exceeding the current situation and no-exceeding 80% of the current situation of irrigation water, respectively. |
下载: 导出CSV
表8白洋淀上游平原区不同情景下种植结构优化调整的效益分析
Table8.Benefits of planting structure adjustment under different scenarios of mechanization level and irrigation in the plain area of the upstream of Baiyangdian Lake
种植制度 Cropping system | 现状 Status quo | 变化率Change rate (%) | |||||
CS1 | CS2 | CS3 | FS1 | FS2 | FS3 | ||
经济Economic benefit | 149.8×108 ¥ | 12.6 | 5.3 | –18.4 | 14.9 | 6.6 | –16.9 |
生态Ecological benefit | 11.4×108 ¥ | –1.0 | –8.1 | –19.7 | –0.4 | –7.7 | –19.4 |
用水Water consumption | 15.9×108 m3 | 3.0 | –6.3 | –19.8 | 3.4 | –5.9 | –19.6 |
产量Crop yield | 40.7×108 kg | –6.8 | –15.0 | –20.9 | –6.7 | –14.9 | –21.1 |
CS1、CS2和CS3分别代表现状机械化水平下农田灌溉用水不受限制、不超过现状以及不超过现状的80%; FS1、FS2和FS3代表未来机械化水平下农田灌溉用水不受限制、不超过现状以及不超过现状的80%。表中产量仅为粮食作物产量, 不包括经济作物以及蔬菜、果树产量。C and F represent the current and future levels of mechanization; S1, S2, and S3 represent scenarios of no-restricted irrigation water, no-exceeding the current situation and no-exceeding 80% of the current situation of irrigation water, respectively. The crop yield is the output of food crops, excluding those of cash crops, vegetables and fruit trees. |
下载: 导出CSV
表9白洋淀上游山区种植结构优化调整后不同种植制度的面积变化
Table9.Changes in planting areas of different cropping systems after planting structure adjustment under different scenarios of mechanization level and irrigation in the mountainous area of the upstream of Baiyangdian Lake
种植制度 Cropping system | 面积现状 Area status (hm2) | 面积变化率Change rate of area (%) | |||||
CS1 | CS2 | CS3 | FS1 | FS2 | FS3 | ||
小麦-玉米Wheat-maize | 72 304.0 | –6.3 | –11.8 | –65.9 | –6.7 | –11.7 | –61.5 |
小麦-谷子Wheat-millet | 1439.5 | –18.4 | –17.7 | –14.1 | –12.2 | –16.8 | –15.9 |
小麦-大豆Wheat-soybean | 6141.0 | –16.7 | –18.4 | –17.9 | –17.7 | –17.4 | –17.8 |
小麦-夏甘薯Wheat-summer sweet potato | 1338.4 | –16.6 | –14.8 | –18.5 | –9.1 | –13.0 | –14.9 |
小麦-绿豆Wheat-mung bean | 461.7 | –16.9 | –11.6 | –15.4 | –11.7 | –11.8 | –15.4 |
绿豆-鲜食玉米Mung beans-fresh maize | 51.3 | 0.6 | 1.7 | 3.5 | –2.1 | –10.2 | 1.1 |
玉米一作Maize | 74 083.0 | –11.0 | –8.5 | –18.2 | –17.8 | –19.4 | –18.1 |
棉花一作Cotton | 1903.0 | –18.0 | –16.8 | –17.5 | –16.4 | –13.1 | –13.8 |
春薯一作Spring sweet | 12 045.6 | –19.0 | –18.1 | –19.2 | –18.2 | –19.4 | –18.2 |
谷子一作Millet | 12 955.5 | –16.3 | –18.3 | –14.4 | –19.0 | –16.8 | –19.2 |
花生一作Peanut | 20 964.0 | –18.0 | –18.8 | –17.9 | –17.0 | –18.3 | –18.2 |
高粱一作Sorghum | 1880.0 | –13.9 | –16.0 | –18.0 | –16.3 | –17.1 | –18.1 |
蔬菜Vegetables | 36 095.0 | –0.4 | 9.7 | 1.5 | 14.1 | 6.0 | –17.0 |
果树Fruit | 115 925.0 | 18.5 | 14.7 | 13.2 | 16.1 | 13.9 | 17.1 |
CS1、CS2和CS3分别代表现状机械化水平下农田灌溉用水不受限制、不超过现状以及不超过现状的80%; FS1、FS2和FS3代表未来机械化水平下农田灌溉用水不受限制、不超过现状以及不超过现状的80%。C and F represent the current and future levels of mechanization; S1, S2, and S3 represent scenarios of no-restricted irrigation water, no-exceeding the current situation and no-exceeding 80% of the current situation of irrigation water, respectively. |
下载: 导出CSV
表10白洋淀上游山区不同情景下种植结构优化调整的效益分析
Table10.Benefits of planting structure adjustment under different scenarios of mechanization level and irrigation in themountainous area of the upstream of Baiyangdian Lake
种植制度 Cropping system | 现状 Status quo | 变化率Change rate (%) | |||||
CS1 | CS2 | CS3 | FS1 | FS2 | FS3 | ||
经济Economic benefit | 131.4×108 ¥ | 11.8 | 10.7 | 5.2 | 13.3 | 9.6 | 5.2 |
生态Ecological benefit | 8.0×108 ¥ | 3.7 | 1.7 | –13.6 | 3.0 | 0.1 | –12.4 |
用水Water consumption | 5.8×108 m3 | 0.9 | 0.0 | –20.0 | 1.7 | –2.1 | –20.0 |
产量Crop yield | 17.0×108 kg | –10.5 | –12.4 | –42.0 | –12.1 | –15.3 | –39.7 |
CS1、CS2和CS3分别代表现状机械化水平下农田灌溉用水不受限制、不超过现状以及不超过现状的80%; FS1、FS2和FS3代表未来机械化水平下农田灌溉用水不受限制、不超过现状以及不超过现状的80%。表中产量仅为粮食作物产量, 不包括经济作物以及蔬菜、果树产量。C and F represent the current and future levels of mechanization; S1, S2, and S3 represent scenarios of no-restricted irrigation water, no-exceeding the current situation and no-exceeding 80% of the current situation of irrigation water, respectively. The crop yield is the output of food crops, excluding those of cash crops, vegetables and fruit trees. |
下载: 导出CSV
参考文献
[1] | 金涛. 中国粮食作物种植结构调整及其水土资源利用效应[J]. 自然资源学报, 2019, 34(1): 14-25 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201901002.htm JIN T. The adjustment of China's grain cropping structure and its effect on the consumption of water and land resources[J]. Journal of Natural Resources, 2019, 34(1): 14-25 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201901002.htm |
[2] | 张展羽, 司涵, 冯宝平, 等. 缺水灌区农业水土资源优化配置模型[J]. 水利学报, 2014, 45(4): 403-409 https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201404004.htm ZHANG Z Y, SI H, FENG B P, et al. An optimal model for agriculture water and soil resources configuration in water shortage irrigation area[J]. Journal of Hydraulic Engineering, 2014, 45(4): 403-409 https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201404004.htm |
[3] | HU Y K, MOIWO J P, YANG Y H, et al. Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain[J]. Journal of Hydrology, 2010, 393(3/4): 219-232 http://www.cabdirect.org/abstracts/20103338303.html |
[4] | 高明杰, 罗其友. 水资源约束地区种植结构优化研究——以华北地区为例[J]. 自然资源学报, 2008, 23(2): 204-210 doi: 10.3321/j.issn:1000-3037.2008.02.004 GAO M J, LUO Q Y. Study on cropping structure optimization in region short of water-A case study of North China[J]. Journal of Natural Resources, 2008, 23(2): 204-210 doi: 10.3321/j.issn:1000-3037.2008.02.004 |
[5] | REN D D, YANG Y H, HU Y K, et al. Evaluating the potentials of cropping adjustment for groundwater conservation and food production in the piedmont region of the North China Plain[J]. Stochastic Environmental Research and Risk Assessment, 2021, 35(1): 117-128 doi: 10.1007/s00477-019-01713-y |
[6] | XIAO D P, SHEN Y J, QI Y Q, et al. Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain Region[J]. Agricultural Systems, 2017, 153: 109-117 doi: 10.1016/j.agsy.2017.01.018 |
[7] | ZHONG H L, SUN L X, FISCHER G, et al. Mission Impossible? Maintaining regional grain production level and recovering local groundwater table by cropping system adaptation across the North China Plain[J]. Agricultural Water Management, 2017, 193: 1-12 doi: 10.1016/j.agwat.2017.07.014 |
[8] | GAO B, JU X T, MENG Q F, et al. The impact of alternative cropping systems on global warming potential, grain yield and groundwater use[J]. Agriculture, Ecosystems & Environment, 2015, 203: 46-54 http://www.sciencedirect.com/science/article/pii/S0167880915000213 |
[9] | 牛凯. 中国农业结构调整的多目标线性规划模型研究[J]. 浙江农业学报, 2011, 23(4): 840-846 doi: 10.3969/j.issn.1004-1524.2011.04.038 NIU K. Studies of multi-objective linear programming model on Chinese agricultural structure adjustment[J]. Acta Agriculturae Zhejiangensis, 2011, 23(4): 840-846 doi: 10.3969/j.issn.1004-1524.2011.04.038 |
[10] | 武雪萍, 吴会军, 庄严, 等. 节水型种植结构优化灰色多目标规划模型和方法研究——以洛阳市为例[J]. 中国农业资源与区划, 2008, 29(6): 16-21 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ200806007.htm WU X P, WU H J, ZHUANG Y, et al. Planning model with grey multiple targets for optimization of water saving plantation structure and method STUDY-Taking Luoyang City as an example[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2008, 29(6): 16-21 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ200806007.htm |
[11] | 张礼华, 秦灏. 多目标妥协约束法在灌区种植结构优化中的应用[J]. 现代农业科技, 2010, (12): 222-223 doi: 10.3969/j.issn.1007-5739.2010.12.146 ZHANG L H, QIN H. The application of multi-objective compromise constraint method in the optimization of planting structure in irrigated area[J]. Modern Agricultural Sciences and Technology, 2010, (12): 222-223 doi: 10.3969/j.issn.1007-5739.2010.12.146 |
[12] | 汤瑞凉, 郭存芝, 董晓娟. 灌溉水资源优化调配的熵权系数模型研究[J]. 河海大学学报: 自然科学版, 2000, 28(1): 20-23 https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200001003.htm TANG R L, GUO C Z, DONG X J. An optimazition model with entropic coefficients for management in irrigation water resources[J]. Journal of Hohai University, 2000, 28(1): 20-23 https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200001003.htm |
[13] | 陈守煜, 马建琴, 张振伟. 作物种植结构多目标模糊优化模型与方法[J]. 大连理工大学学报, 2003, 43(1): 12-15 https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG200301002.htm CHEN S Y, MA J Q, ZHANG Z W. A multi-objective fuzzy optimization model for planting structure and its method[J]. Journal of Dalian University of Technology, 2003, 43(1): 12-15 https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG200301002.htm |
[14] | 周惠成, 彭慧, 张弛, 等. 基于水资源合理利用的多目标农作物种植结构调整与评价[J]. 农业工程学报, 2007, 23(9): 45-49 doi: 10.3321/j.issn:1002-6819.2007.09.008 ZHOU H C, PENG H, ZHANG C, et al. Optimization and evaluation of multi-objective crop pattern based on irrigation water resources allocation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(9): 45-49 doi: 10.3321/j.issn:1002-6819.2007.09.008 |
[15] | 李茉, 郭萍, 杨献献. 基于分式规划的种植结构多目标不确定性模型研究[J]. 节水灌溉, 2013, (9): 79-81 doi: 10.3969/j.issn.1007-4929.2013.09.021 LI M, GUO P, YANG X X. Planting configuration multi-objective & uncertainty programming model based on fractional-programming[J]. Water Saving Irrigation, 2013, (9): 79-81 doi: 10.3969/j.issn.1007-4929.2013.09.021 |
[16] | 高小永. 基于多目标蚁群算法的土地利用优化配置[D]. 武汉: 武汉大学, 2010 GAO X Y. Optimizing land use allocation based on multi-objective ant colony algorithm[D]. Wuhan: Wuhan University, 2010 |
[17] | 邓莉. 模糊遗传算法及其在图像恢复中的应用[D]. 重庆: 西南大学, 2008 DENG L. Fuzzy genetic algorithm and its application on the image restoration[D]. Chongqing: Southwest University, 2008 |
[18] | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197 doi: 10.1109/4235.996017 |
[19] | 胡洪静, 吴鑫淼, 齐成伟, 等. 节水压采区农业种植结构多目标优化研究——以衡水市为例[J]. 灌溉排水学报, 2017, 36(10): 95-99 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201710017.htm HU H J, WU X M, QI C W, et al. Using multi-objective optimization to restructure agriculture with consideration of the constrains on groundwater extraction: taking Hengshui as an example[J]. Journal of Irrigation and Drainage, 2017, 36(10): 95-99 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201710017.htm |
[20] | 罗建美. 京津冀平原农业种植结构优化及其节水效应研究[D]. 北京: 中国科学院大学, 2019 LUO J M. Study on the optimization of agricultural planting structure and its water-saving effect in Beijing-Tianjin-Hebei Plain[D]. Beijing: University of Chinese Academy of Sciences, 2019 |
[21] | 高彦春, 王晗, 龙笛. 白洋淀流域水文条件变化和面临的生态环境问题[J]. 资源科学, 2009, 31(9): 1506-1513 doi: 10.3321/j.issn:1007-7588.2009.09.008 GAO Y C, WANG H, LONG D. Changes in hydrological conditions and the eco-environmental problems in Baiyangdian watershed[J]. Resources Science, 2009, 31(9): 1506-1513 doi: 10.3321/j.issn:1007-7588.2009.09.008 |
[22] | 白志杰, 任丹丹, 杨艳敏, 等. 雄安新区上游农业种植结构及需水时空演变[J]. 中国生态农业学报(中英文), 2019, 27(7): 1067-1077 doi: 10.13930/j.cnki.cjea.190323 BAI Z J, REN D D, YANG Y M, et al. Trend of agricultural plantation and irrigation requirements in the upper reaches of Xiongan New Area[J]. Chinese Journal of Eco-Agriculture, 2019, 27(7): 1067-1077 doi: 10.13930/j.cnki.cjea.190323 |
[23] | 王雷明. 水资源约束条件下的农业种植结构优化研究——以河套灌区为例[D]. 杨凌: 西北农林科技大学, 2017 WANG L M. Optimization of agricultural planting structure under water resources constraints-study of Hetao irrigation district[D]. Yangling: Northwest A & F University, 2017 |
[24] | 陈兆波. 基于水资源高效利用的塔里木河流域农业种植结构优化研究[D]. 北京: 中国农业科学院, 2008 CHEN Z B. Study on the agriculture planting structure optimization based on the high efficient utilization of water resources in Tarim watershed[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008 |
[25] | 河北省水利厅. 河北省用水定额[R]. 石家庄: 河北省水利厅, 2016 Department of Water Resources of Hebei Province. Water Quota of Hebei Province[R]. Shijiazhuang: Department of Water Resources of Hebei Province, 2016 |
[26] | 杨明智, 裴源生, 李旭东. 中国粮食自给率研究——粮食、谷物和口粮自给率分析[J]. 自然资源学报, 2019, 34(4): 881-889 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201904016.htm YANG M Z, PEI Y S, LI X D. Study on grain self-sufficiency rate in China: an analysis of grain, cereal grain and edible grain[J]. Journal of Natural Resources, 2019, 34(4): 881-889 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201904016.htm |
[27] | 河北省统计局. 保定统计年鉴[M]. 北京: 中国统计出版社, 2016 Statistics Bureau of Hebei Province. Baoding Statistical Yearbook[M]. Beijing: China Statistics Press, 2016 |
[28] | 王涛, 吕昌河. 基于合理膳食结构的人均食物需求量估算[J]. 农业工程学报, 2012, 28(5): 273-277 doi: 10.3969/j.issn.1002-6819.2012.05.045 WANG T, LYU C H. Estimation of food grain demand per capita based on rational dietary pattern[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 273-277 doi: 10.3969/j.issn.1002-6819.2012.05.045 |
[29] | 石玉林, 卢良恕. 中国农业需水与节水高效农业建设[M]. 北京: 中国水利水电出版社, 2001 SHI Y L, LU L S. China's Agricultural Water Demand and Water-saving and Efficient Agricultural Construction[M]. Beijing: China Water Resources and Hydropower Press, 2001 |
[30] | 河北省政府办公厅. 河北省人民政府关于加快推进农业机械化和农机装备产业转型升级的实施意见[EB/OL]. 河北省人民政府网. [2019-09-19]. http://www.njhs.moa.gov.cn/gdxw/201909/t20190919_6328304.htm General Office of Hebei Provincial Government. Hebei Province People's Government on accelerating agricultural mechanization and agricultural machinery and equipment industry transformation and upgrading of the implementation opinions[EB/OL]. [2019-09-19]. http://www.njhs.moa.gov.cn/gdxw/201909/t20190919_6328304.htm |
[31] | 龙新. 2018年全国农作物耕种收综合机械化率超过67%[EB/OL]. 农民日报网. [2019-01-02]. http://www.chinacoop.gov.cn/HTML/2019/01/03/147203.html LONG X. 2018 national farming comprehensive mechanization rate more than 67%[EB/OL]. Farmers Daily Website. [2019-01-02]. http://www.chinacoop.gov.cn/HTML/2019/01/03/147203.html |
[32] | 长江蔬菜传媒. 全国设施蔬菜种植面积和分布情况[EB/OL]. 中投顾问产业研究中心网. [2020-01-16]. https://new.qq.com/omn/20200116/20200116A03JAC00.html Yangtze River Vegetable Media. Planting area and distribution of vegetable facilities in China[EB/OL]. CIC Consultant Industry Research Center Network. [2020-01-16]. https://new.qq.com/omn/20200116/20200116A03JAC00.html |
[33] | 张珊, 谭倩, 蔡宴朋, 等. 基于模糊优选和可信性的农业水资源多目标优化配置模型[J]. 南水北调与水利科技, 2018, 16(3): 79-85 https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201803012.htm ZHANG S, TAN Q, CAI Y P, et al. A multi-objective optimization model for agricultural water resources based on fuzzy optimal selection and credibility[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(3): 79-85 https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201803012.htm |
[34] | 马林潇, 何英, 林丽, 等. "三条红线"约束下的种植结构多目标优化模型研究[J]. 灌溉排水学报, 2018, 37(9): 123-128 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201809020.htm MA L X, HE Y, LIN L, et al. Multi-objective optimization of main crops cultivation in Manasi County using the genetic algorithm with the "Three Red Lines" in consideration[J]. Journal of Irrigation and Drainage, 2018, 37(9): 123-128 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201809020.htm |