删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

江西红壤旱地玉米||大豆间作模式对作物产量及种间关系的影响

本站小编 Free考研考试/2022-01-01

封亮1,,
黄国勤1,
杨文亭1,
黄天宝2,
唐海鹰1,
麻巧迎1,
王淑彬1,,
1.江西农业大学作物生理生态与遗传育种教育部重点实验室/江西农业大学生态科学研究中心 南昌 330045
2.江西省红壤研究所 南昌 331700
基金项目: 国家重点研发计划项目2016YFD030020906
江西省重点研发计划项目20171BBF60035

详细信息
作者简介:封亮, 主要从事旱地农业与生态研究。E-mail: 996597837@qq.com
通讯作者:王淑彬, 主要从事旱地农业与生态研究。E-mail: 290598920@qq.com
中图分类号:S344.2

计量

文章访问数:189
HTML全文浏览量:48
PDF下载量:51
被引次数:0
出版历程

收稿日期:2020-10-30
录用日期:2021-04-18
刊出日期:2021-07-01

Yields and interspecific relationship of the maize-soybean intercropping system in the upland red soil of Jiangxi Province

FENG Liang1,,
HUANG Guoqin1,
YANG Wenting1,
HUANG Tianbao2,
TANG Haiying1,
MA Qiaoying1,
WANG Shubin1,,
1. Key Laboratory of Crop Physiology, Ecology and Genetic Breeding/Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China
2. Jiangxi Institute of Red Soil, Nanchang 331700, China
Funds: the National Key Research and Development Project of China2016YFD030020906
the Key Research and Development Project of Jiangxi Province20171BBF60035

More Information
Corresponding author:WANG Shubin, E-mail: 290598920@qq.com


摘要
HTML全文
(3)(5)
参考文献(48)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:江西红壤旱地光热水资源充沛,为农业发展提供了优越的自然条件。为筛选江西红壤旱地间作优势明显、群体产量与经济效益较优的玉米||大豆的种植模式,于2018-2019年设置7个处理:玉米||大豆间作带宽2 m、行比2:2,带宽2.4 m、行比2:3,带宽2.4 m、行比2:4,带宽2.8 m、行比2:3,带宽2.8 m、行比2:4,及玉米单作和大豆单作,分析了两年间不同玉米||大豆间作模式下带宽行比变化对作物产量及种间关系的影响。结果表明:1)玉米大豆单作产量显著高于各自间作产量;间作处理中,带宽2.4 m、行比2:4模式下作物群体平均产量为6801.88 kg·hm-2,较带宽2.4 m、行比2:3模式增产7.56%,说明适宜带宽模式下增植1行大豆有利于作物增产;带宽2.4 m、行比2:4模式两年平均经济效益为15 822.96元·hm-2,较玉米、大豆单作平均经济效益增加9.90%、209.48%,说明间作种植模式相比于单作有利于提高农民经济效益。2)2019年试验中,带宽2.4 m、行比2:4模式下土地当量比(LER)最高,为1.77,与其他间作处理呈显著性差异,该模式下两年平均LER为1.59,相较于带宽2.0 m、行比2:2(1.55),带宽2.4 m、行比2:3(1.44),带宽2.8 m、行比2:3(1.35),带宽2.8 m、行比2:4(1.44)间作模式表现出较好的土地生产能力。3)带宽为2.4 m或2.8 m时,增植1行大豆,LER分别提高10.42%、7.41%,玉米实际产量损失指数(AYLM)分别提高77.01%、59.02%,玉米侵占力(AM)分别提高91.89%、82.22%,玉米竞争比率(CRM)分别提高38.69%、24.11%,经济效益(EB)分别提高8.38%、4.80%,玉米收获指数(HI)分别提高6.12%、6.25%,说明适宜带宽模式下增加大豆行可以提高间作玉米的竞争优势,以此来提高作物产量与经济效益。行比为2:3或2:4时,带宽由2.4 m增至2.8 m,LER分别减小6.67%、9.66%,AYLM分别减小42.62%、59.79%,AM分别减小64.44%、73.17%,CRM分别减小19.15%、33.14%,EB分别减小10.23%、13.99%,玉米(HI)分别减小2.08%、0.51%,说明不同行比配置模式下增加带宽均会削弱间作玉米的竞争优势,使得群体产量和经济效益降低。综上,带宽2.4 m、行比2:4种植模式能较好地协调作物种间关系,土地产出率较高,经济效益较优,可作为江西红壤旱地适宜的玉米||大豆间作模式。
关键词:红壤旱地/
间作/
玉米/
大豆/
种间关系/
群体产量
Abstract:The upland red soil in Jiangxi Province is rich in light, heat, and water resources and provides superior natural conditions for agricultural development. To screen the maize-soybean intercropping system with obvious advantages, better group yield, and economic benefits in the upland red soil of Jiangxi Province, seven treatments were set up in 2018 and 2019, of which five were maize-soybean intercropping systems with 1) 2 m bandwidth and 2-2 rows ratio, 2) 2.4 m bandwidth and 2-3 rows ratio, 2.4 m bandwidth and 2-4 rows ratio, 2.8 m bandwidth and 2-3 rows ratio, and 2.8 m bandwidth and 2-4 rows ratio; other two were sole maize and sole soybean. The effects of different intercropping patterns of maize and soybean were analyzed for crop yield and the interspecific relationships. The results showed that 1) the yield of sole maize and soybean was significantly higher than that of the intercropped ones. In the 2-year experiment, the average yield was 6801.88 kg·hm-2 under the intercropping treatment of 2.4 m bandwidth and 2-4 rows ratio, which was 7.56% higher than that under the intercropping treatment of 2.4 m bandwidth and 2-3 rows ratio, indicating that increasing one row soybean of the intercropping system with suitable bandwidth benefited yield increase. The average economic benefit of intercropping system with a 2.4 m bandwidth and 2-4 rows ratio was 15 822.96 ¥·hm-2 for the 2 years, 9.90% and 209.48% higher than that of sole maize and sole soybean, respectively. This indicated that intercropping improved the farmers' economic benefit. 2) In 2019, the land equivalent ratio (LER) of the intercropping treatment with 2.4 m bandwidth and 2-4 rows ratio was 1.77, significantly higher than the other intercropping treatments. The 2-year average LER in this intercropping system was 1.59, compared with 1.55 for the 2.0 m bandwidth and 2-2 rows ratio, 1.44 for the 2.4 m bandwidth and 2-3 rows ratio, 1.35 for the 2.8 m bandwidth and 2-3 rows ratio, and 1.44 for the 2.8 m bandwidth and 2-4 row ratio, which showed better land productivity. 3) When the bandwidth was 2.4 m or 2.8 m, adding one more row of soybean increased the LER by 10.42% and 7.41%, the maize actual yield loss (AYLM) by 77.01% and 59.02%, the maize invasion (AM) by 91.89% and 82.22%, the maize competition ratio (CRM) by 38.69% and 24.11%, the economic benefit (EB) by 8.38% and 4.80%, and the maize harvest index (HI) by 6.12% and 6.25%, respectively. These results showed that increasing the row ratio of soybean could enhance the competitive advantage of intercropped maize with a suitable bandwidth, which improved crop yield and economic benefits. When the bandwidth increased from 2.4 m to 2.8 m with the rows ratios of 2-3 and 2-4, LER decreased by 6.67% and 9.66%, AYLM decreased by 42.62% and 59.79%, AM decreased by 64.44% and 73.17%, CRM decreased by 19.15% and 33.14%, EB decreased by 10.23% and 13.99%, and HI decreased by 2.08% and 0.51%, respectively. These results showed that increased bandwidth weakens the competitive advantage of intercropped maize with different rows ratios and reduced the group yield and economic benefit. In conclusion, the maize-soybean intercropping system of 2.4 m bandwidth with a 2-4 rows ratio better coordinated the crop interspecific relationships and resulted in higher crop yield and better economic benefits. This study provides a reference for the maize-soybean intercropping system in the upland red soil of Jiangxi Province.
Key words:Upland red soil/
Intercropping/
Maize/
Soybean/
Interspecific relationship/
Group yield

HTML全文


图12018—2019年试验期间作物生育期降水量与平均温度
Figure1.Precipitation and average temperature during crop growth periods in 2018 and 2019


下载: 全尺寸图片幻灯片


图2不同处理的带宽、行比田间配置试验设计图
Figure2.Design of field experiment of different treatments with different bandwidths and row ratios


下载: 全尺寸图片幻灯片


图3玉米||大豆间作系统不同种植模式对作物收获指数的影响
各处理的详细介绍见图 1; 不同小写字母分别表示不同处理间在P < 0.05水平差异显著。
Figure3.Effects of different intercropping treatments on crop harvest index in maize||soybean intercropping system
Detail information of each treatment is shown in the figure 1. Different lowercase letters mean significant difference among treatments at P < 0.05 level.


下载: 全尺寸图片幻灯片

表1供试土壤的基础肥力与光合有效辐射状况
Table1.Agro-chemical properties of the test soils
年份
Year
pH有机质
Organic matter (g?kg–1)
碱解氮
Available nitrogen (mg?kg–1)
速效钾
Available potassium (mg?kg–1)
有效磷
Available phosphorus (mg?kg–1)
有效辐射
Effective radiation (MJ?m–2)
20185.7419.79105.00257.0114.22679.05
20195.7219.70102.76174.0812.80641.79


下载: 导出CSV
表2玉米||大豆间作系统不同种植模式对作物产量与农学指标的影响
Table2.Effects of planting patterns of maize||soybean intercropping system on yields and agronomic indicators of crops
年份
Year
处理
Treatment
玉米Maize大豆Soybean
产量
Yield (kg?hm–2)
穗长
Spike length (cm)
千粒重
1000-seed weight (g)
每行粒数
Grains per row
每穗行数
Rows per ear
每穗粒数
Grains per panicle
单株有效荚数
Effective pods per plant
单株粒数
Seeds number per plant
百粒重
100-seed weight (g)
产量
Yield (kg?hm–2)
2018B2.0R2:26029.6b16.55a256.13ab12.89c34.45c414.44d26.89b51.41a23.43a612.33e
B2.4R2:34797.00d18.26a265.53a14.89a36.56abc536.33a26.20b47.43b22.56a673.20d
B2.4R2:45146.50c19.39a244.43b13.78bc39.56ab532.64a26.21b38.93d23.61a743.07bc
B2.8R2:34355.73e18.33a254.13ab14.00ab36.11bc504.44b29.00a47.40b23.00a705.60cd
B2.8R2:44450.00e18.11a252.03ab13.78bc35.22c478.00c24.40c39.21d23.91a759.53b
SM/SS6404.75a19.56a243.10b14.00ab39.89a525.10a23.89c40.88c23.07a1222.00a
2019B2.0R2:26666.67b18.52ab294.56a13.80a36.50a501.30a24.22a41.41ab15.52d672.22c
B2.4R2:36550.00b18.63a298.59a13.07a36.80a481.01ab18.65bc36.31bc17.50ab627.85d
B2.4R2:46977.78b17.43abc294.49a12.80a35.07a449.04ab24.05a46.00a17.91a736.40b
B2.8R2:35595.24c16.90bc291.36a13.07a32.93a430.45b22.78ab42.17ab17.32abc611.91d
B2.8R2:45780.95c16.50c292.65a13.20a32.67a431.07b22.11ab44.33ab16.38bcd700.27c
SM/SS7992.38a18.23ab296.51a13.20a34.80a459.01ab16.09c29.50c16.04cd823.11a
年份Year (Y)**ns****ns*********
处理
Treatment (T)
***nsns*******ns**
Y×T****ns**ns**ns**ns**
各处理的详细介绍见图 1; 不同小写字母表示同一年份不同处理间在P < 0.05水平差异显著。**和*分别表示在P < 0.01和P < 0.05水平有显著影响; ns代表影响不显著。Detail information of each treatment is shown in the figure 1. Different lowercase letters mean significant difference among treatments in the same year at P < 0.05 level. ** and * indicate significant effects at P < 0.01 and P < 0.05 levels, respectively. “ns” means no significant effect.


下载: 导出CSV
表3玉米||大豆间作系统不同种植模式对玉米(M)和大豆(S)土地当量比(LER)、相对拥挤系数(K)、作物侵占力(A)与侵占比率(CR)的影响
Table3.Effects of intercropping treatments on land equivalent ratio (LER), relative crowding coefficient (K), crop invasiveness (A) and invasiveness ratio (CR) of maize (M) and soybean (S) in maize||soybean intercropping system
年份
Year
处理
Treatment
LERKACR
LERMLERSLERKMKSKAMASCRMCRS
2018B2.0R2:20.94a0.50d1.44a16.34a1.00a16.33a0.88bc–0.88bc1.88b0.53b
B2.4R2:30.75c0.55c1.30bc4.13c0.89ab3.67c0.83c–0.83b1.88b0.53b
B2.4R2:40.80b0.61ab1.41a8.32b0.77b6.38b1.53a–1.53d2.68a0.37c
B2.8R2:30.68d0.58bc1.26c2.84c1.03a2.94c0.57d–0.57a1.56c0.64a
B2.8R2:40.70d0.62a1.31b4.05c0.93a3.75c0.96b–0.96c1.99b0.50b
2019B2.0R2:20.84ab0.82b1.65b5.12b4.47a22.69b0.03d–0.03a1.02d0.98a
B2.4R2:30.82b0.76c1.58c6.39b2.34b14.92bc0.64b–0.64c1.48b0.67c
B2.4R2:40.87a0.89a1.77a14.51a4.47a61.86a1.31a–1.31d1.98a0.51d
B2.8R2:30.70c0.74c1.44d3.13b2.23b6.92c0.32c–0.32b1.25c0.80b
B2.8R2:40.73c0.85ab1.58c4.70b3.25ab15.12bc0.68b–0.68c1.51b0.66c
各处理的详细介绍见图 1; 不同小写字母表示同一年份不同处理间在P < 0.05水平差异显著。Detail information of each treatment is shown in the figure 1. Different lowercase letters mean significant difference among treatments in the same year at P < 0.05 level.


下载: 导出CSV
表4玉米||大豆间作系统不同种植模式对玉米(M)和大豆(S)实际产量损失(AYL)的影响
Table4.Effects of intercropping patterns on actual yield loss (AYL) of maize (M) and soybean (S) in maize||soybean intercropping system
处理
Treatment
20182019
AYLMAYLSAYLAYLMAYLsAYL
B2.0R2:20.88 bc0.00a0.89 b0.67 c0.63 a1.30 b
B2.4R2:30.78 c–0.05ab0.73 c0.95 b0.32 b1.27 b
B2.4R2:41.44 a–0.09b1.34 a1.65 a0.34 b
B2.8R2:30.58 d0.01a0.60 d0.63 c0.30 b0.93 c
B2.8R2:40.93 b–0.03ab0.90 b1.01 b0.33 b1.34 b
各处理的详细介绍见图 1; 不同小写字母表示同一年份不同处理在P < 0.05水平差异显著。Detail information of each treatment is shown in the figure 1. Different lowercase letters mean significant difference among treatments in the same year at P < 0.05 level.


下载: 导出CSV
表5玉米||大豆间作系统不同种植模式对玉米(M)和大豆(S)经济效益(EB)与间作优势指数(IA)的影响
Table5.Effects of intercropping patterns on economic benefit (EB) and intercrop dominance index (IA) of maize (M) and soybean (S) in maize||soybean intercropping system
处理
Treatment
20182019EB
IAMIASIAIAMIASIA20182019
B2.0R2:21.77bc0.01a1.78b1.34c3.17a4.51b15 120.87a16 694.44b
B2.4R2:31.57c–0.25ab1.32c1.91b1.58b3.48c12 960.00c16 239.26b
B2.4R2:42.87a–0.46b2.41a3.30a1.68b4.98a14 008.33b17 637.59a
B2.8R2:31.17d0.07a1.23c1.26c1.52b2.78d12 239.47d14 250.00d
B2.8R2:41.86b–0.15ab1.71b2.02b1.65b3.66c12 697.67c15 063.24c
SM12 809.5015 984.80
SS6110.004115.55
各处理的详细介绍见图 1; 玉米大豆的经济产值以2019年市场价格计算, 玉米价格2.0元?kg–1, 大豆价格5.0元?kg–1。Detail information of each treatment is shown in the figure 1. The economic values of maize and soybean calculated by market price in 2019, the price of maize was 2.0 ¥?kg–1, the price of soybean was 5.0 ¥?kg–1.


下载: 导出CSV

参考文献(48)
[1]李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望[J]. 中国生态农业学报, 2016, 24(4): 403-415 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201604001.htm
LI L. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403-415 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201604001.htm
[2]TAN Y, HU F L, CHAI Q, et al. Expanding row ratio with lowered nitrogen fertilization improves system productivity of maize/pea strip intercropping[J]. European Journal of Agronomy, 2020, 113: 125986 doi: 10.1016/j.eja.2019.125986
[3]陈曼, 万秀娟, 梁峥, 等. 间作套种控制病虫害的研究进展[J]. 农业科技通讯, 2016, (8): 8-11 doi: 10.3969/j.issn.1000-6400.2016.08.003
CHEN M, WAN X J, LIANG Z, et al. Research progress of intercropping and interplanting for pest control[J]. Bulletin of Agricultural Science and Technology, 2016, (8): 8-11 doi: 10.3969/j.issn.1000-6400.2016.08.003
[4]YIN W, CHAI Q, ZHAO C, et al. Water utilization in intercropping: A review[J]. Agricultural Water Management, 2020, 241: 106335 doi: 10.1016/j.agwat.2020.106335
[5]RODRIGUEZ C, CARLSSON G, ENGLUND J E, et al. Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems. A meta-analysis[J]. European Journal of Agronomy, 2020, 118: 126077 doi: 10.1016/j.eja.2020.126077
[6]田艺心, 曹鹏鹏, 高凤菊, 等. 减氮施肥对间作玉米-大豆生长性状及经济效益的影响[J]. 山东农业科学, 2019, 51(11): 109-113 https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201911022.htm
TIAN Y X, CAO P P, GAO F J, et al. Effects of nitrogen reduction on growth traits and economic benefits of intercropped maize and soybean[J]. Shandong Agricultural Sciences, 2019, 51(11): 109-113 https://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201911022.htm
[7]李河旺, 张冬菊, 李向涛, 等. 粮豆间作——中国大豆面积恢复的有效途径[J]. 大豆科技, 2013, (6): 37-39 doi: 10.3969/j.issn.1674-3547.2013.06.010
LI H W, ZHANG D J, LI X T, et al. Intercropping of grain crops and soybean: An effective way to restore soybean area in China[J]. Soybean Science & Technology, 2013, (6): 37-39 doi: 10.3969/j.issn.1674-3547.2013.06.010
[8]POWER A G. The ecology of intercropping[J]. Trends in Ecology & Evolution, 1989, 4(10): 324-325 http://www.cell.com/trends/ecology-evolution/comments/0169-5347(89)90048-7
[9]DAPAAH H K, ASAFU-AGYEI J N, ENNIN S A, et al. Yield stability of cassava, maize, soya bean and cowpea intercrops[J]. The Journal of Agricultural Science, 2003, 140(1): 73-82 doi: 10.1017/S0021859602002770
[10]NDAKIDEMI P A. Manipulating legume/cereal mixtures to optimize the above and below ground interactions in the traditional African cropping systems[J]. African Journal of Biotechnology, 2007, 525(25): 2526-2533 http://www.oalib.com/paper/1329855
[11]任媛媛, 王志梁, 王小林, 等. 黄土塬区玉米大豆不同间作方式对产量和经济收益的影响及其机制[J]. 生态学报, 2015, 35(12): 4168-4177 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201512033.htm
REN Y Y, WANG Z L, WANG X L, et al. The effect and mechanism of intercropping pattern on yield and economic benefit on the Loess Plateau[J]. Acta Ecologica Sinica, 2015, 35(12): 4168-4177 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201512033.htm
[12]WANG R N, SUN Z X, ZHANG L Z, et al. Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping[J]. Field Crops Research, 2020, 253: 107819 doi: 10.1016/j.fcr.2020.107819
[13]WANG C, ZHOU L B, ZHANG G B, et al. Responses of photosynthetic characteristics and dry matter formation in waxy Sorghum to row ratio configurations in waxy Sorghum-soybean intercropping systems[J]. Field Crops Research, 2021, 263: 108077 doi: 10.1016/j.fcr.2021.108077
[14]VAN OORT P A J, GOU F, STOMPH T J, et al. Effects of strip width on yields in relay-strip intercropping: a simulation study[J]. European Journal of Agronomy, 2020, 112: 125936 doi: 10.1016/j.eja.2019.125936
[15]YANG W T, LI Z X, WANG J W, et al. Crop yield, nitrogen acquisition and sugarcane quality as affected by interspecific competition and nitrogen application[J]. Field Crops Research, 2013, 146: 44-50 doi: 10.1016/j.fcr.2013.03.008
[16]任家兵, 张梦瑶, 肖靖秀, 等. 小麦||蚕豆间作提高间作产量的优势及其氮肥响应[J]. 中国生态农业学报(中英文), 2020, 28(12): 1890-1900 doi: 10.13930/j.cnki.cjea.200332
REN J B, ZHANG M Y, XIAO J X, et al. Wheat and faba bean intercropping to improve yield and response to nitrogen[J]. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1890-1900 doi: 10.13930/j.cnki.cjea.200332
[17]赵建华, 孙建好, 陈亮之, 等. 玉米行距对大豆/玉米间作作物生长及种间竞争力的影响[J]. 大豆科学, 2019, 38(2): 229-235 https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX201902008.htm
ZHAO J H, SUN J H, CHEN L Z, et al. Growth and interspecific competition of crops as affected by maize row spacing in soybean/maize intercropping system[J]. Soybean Science, 2019, 38(2): 229-235 https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX201902008.htm
[18]王小春, 杨文钰, 邓小燕, 等. 玉/豆和玉/薯模式下玉米氮素吸收利用差异及氮肥调控效应[J]. 作物学报, 2014, 40(3): 519-530 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201403016.htm
WANG X C, YANG W Y, DENG X Y, et al. Differences of nitrogen uptake and utilization and nitrogen regulation effects in maize between maize/soybean and maize/sweet potato relay intercropping systems[J]. Acta Agronomica Sinica, 2014, 40(3): 519-530 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201403016.htm
[19]XU R K, ZHAO A Z, LI Q M, et al. Acidity regime of the Red Soils in a subtropical region of Southern China under field conditions[J]. Geoderma, 2003, 115(1/2): 75-84 http://www.sciencedirect.com/science/article/pii/S0016706103000776
[20]王淑彬, 张鹏, 杨文亭, 等. 红壤旱地玉米大豆间作模式适宜玉米品种筛选[J]. 江西农业大学学报, 2020, 42(1): 10-19 https://www.cnki.com.cn/Article/CJFDTOTAL-JXND202001002.htm
WANG S B, ZHANG P, YANG W T, et al. Selection of maize varieties suitable for maize soybean intercropping model in red soil[J]. Acta Agriculturae Universitatis Jiangxiensis, 2020, 42(1): 10-19 https://www.cnki.com.cn/Article/CJFDTOTAL-JXND202001002.htm
[21]YANG W T, MIAO J Q, WANG X W, et al. Corn-soybean intercropping and nitrogen rates affected crop nitrogen and carbon uptake and C: N ratio in upland red soil[J]. Journal of Plant Nutrition, 2018, 41(15): 1890-1902 doi: 10.1080/01904167.2018.1476540
[22]赵建华, 孙建好, 李伟绮. 玉米播期对大豆/玉米间作产量及种间竞争力的影响[J]. 中国生态农业学报, 2018, 26(11): 1634-1642 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201811007.htm
ZHAO J H, SUN J H, LI W Q. Effect of maize sowing date on yield and interspecific competition in soybean/maize intercropping system[J]. Chinese Journal of Eco-Agriculture, 2018, 26(11): 1634-1642 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201811007.htm
[23]廖敦平. 玉米-大豆带状套作下不同行距配置的系统评定[D]. 雅安: 四川农业大学, 2015: 18-20
LIAO D P. Identification of advantages of maize-soybean relay strip intercropping system in different narrow-row planting patterns[D]. Ya'an: Sichuan Agricultural University, 2015: 18-20
[24]樊志龙, 柴强, 曹卫东, 等. 绿肥在我国旱地农业生态系统中的服务功能及其应用[J]. 应用生态学报, 2020, 31(4): 1389-1402 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202004039.htm
FAN Z L, CHAI Q, CAO W D, et al. Ecosystem service function of green manure and its application in dryland agriculture of China[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1389-1402 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202004039.htm
[25]张晓娜, 陈平, 庞婷, 等. 玉米/豆科间作种植模式对作物干物质积累、分配及产量的影响[J]. 四川农业大学学报, 2017, 35(4): 484-490 https://www.cnki.com.cn/Article/CJFDTOTAL-SCND201704004.htm
ZHANG X N, CHEN P, PANG T, et al. The effects of dry matter accumulation, distribution and yield in the maize/soybean and maize/peanut intercropping system[J]. Journal of Sichuan Agricultural University, 2017, 35(4): 484-490 https://www.cnki.com.cn/Article/CJFDTOTAL-SCND201704004.htm
[26]罗华, 王杰, 宋勇, 等. 玉米-大豆间套作模式研究现状及其展望[J]. 作物研究, 2020, 34(5): 502-506 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYJ202005022.htm
LUO H, WANG J, SONG Y, et al. Research status and prospect of maize and soybean intercropping model[J]. Crop Research, 2020, 34(5): 502-506 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYJ202005022.htm
[27]张悦, 邸万通, 王晶晶, 等. 北方农牧交错带间套作资源利用的研究进展[J]. 生态学杂志, 2017, 36(9): 2623-2632 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201709030.htm
ZHANG Y, DI W T, WANG J J, et al. Progress and perspectives of resource use in intercropping system in agro-pastoral ecotone[J]. Chinese Journal of Ecology, 2017, 36(9): 2623-2632 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201709030.htm
[28]雍太文, 刘小明, 宋春, 等. 种植方式对玉米-大豆套作体系中作物产量、养分吸收和种间竞争的影响[J]. 中国生态农业学报, 2015, 23(6): 659-667 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201506001.htm
YONG T W, LIU X M, SONG C, et al. Effect of planting patterns on crop yield, nutrients uptake and interspecific competition in maize-soybean relay strip intercropping system[J]. Chinese Journal of Eco-Agriculture, 2015, 23(6): 659-667 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201506001.htm
[29]龚万灼, 吴雨珊, 雍太文, 等. 玉米-大豆带状套作中荫蔽及光照恢复对大豆生长特性与产量的影响[J]. 中国油料作物学报, 2015, 37(4): 475-480 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201504007.htm
GONG W Z, WU Y S, YONG T W, et al. Effects of shade and lighting recovery on growth and yield of soybean in maize-soybean relay strip intercropping[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(4): 475-480 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201504007.htm
[30]雍太文, 陈平, 刘小明, 等. 减量施氮对玉米-大豆套作系统土壤氮素氨化、硝化及固氮作用的影响[J]. 作物学报, 2018, 44(10): 1485-1495 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201810011.htm
YONG T W, CHEN P, LIU X M, et al. Effects of reduced nitrogen on soil ammonification, nitrification, and nitrogen fixation in maize-soybean relay intercropping systems[J]. Acta Agronomica Sinica, 2018, 44(10): 1485-1495 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201810011.htm
[31]罗万宇, 唐庄峻, 任永福, 等. 带宽、行比对鲜食玉米间作鲜食大豆群体产量效益的影响[J]. 四川农业大学学报, 2019, 37(4): 442-451 https://www.cnki.com.cn/Article/CJFDTOTAL-SCND201904003.htm
LUO W Y, TANG Z J, REN Y F, et al. Effects of bandwidth and row ratio on population yield and benefit of fresh maize intercropping with fresh soybean[J]. Journal of Sichuan Agricultural University, 2019, 37(4): 442-451 https://www.cnki.com.cn/Article/CJFDTOTAL-SCND201904003.htm
[32]毛璐, 宋春, 徐敏, 等. 栽培模式及施肥对玉米和大豆根际土壤磷素有效性的影响[J]. 中国生态农业学报, 2015, 23(12): 1502-1510 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201512002.htm
MAO L, SONG C, XU M, et al. Effects of cropping patterns and fertilization on rhizosphere soil phosphorus availability of maize/soybean relay intercropping system[J]. Chinese Journal of Eco-Agriculture, 2015, 23(12): 1502-1510 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201512002.htm
[33]杨晓璐. 宽窄行配置对马铃薯光合特性及产量品质的影响[D]. 重庆: 西南大学, 2019: 2-4
YANG X L. Effects of wide-narrow row spacing configurations on photosynthetic characteristics, yield and quality of potato[D]. Chongqing: Southwest University, 2019: 2-4
[34]慈敦伟, 张礼凤, 汪宝卿, 等. 大豆种质资源农艺性状和产量的年份间差异及其关系[J]. 植物遗传资源学报, 2011, 12(6): 872-880 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYC201106009.htm
CI D W, ZHANG L F, WANG B Q, et al. Variation of agronomic traits and production of germplasm resources of soybean in different years and the relationship between them[J]. Journal of Plant Genetic Resources, 2011, 12(6): 872-880 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYC201106009.htm
[35]徐振华. 区域粮食作物产量、养分效率和经济效益的关系及调控途径研究[D]. 保定: 河北农业大学, 2011: 7-10
XU Z H. Relationships and regulatory approaches among yield, nutrient efficiency and benefits of grain crop[D]. Baoding: Hebei Agricultural University, 2011: 7-10
[36]封亮, 王淑彬, 杨文亭, 等. 带宽、行比配置对玉米农艺性状及干物质积累影响[J]. 江西农业大学学报, 2020, 42(3): 429-437 https://www.cnki.com.cn/Article/CJFDTOTAL-JXND202003004.htm
FENG L, WANG S B, YANG W T, et al. Effects of bandwidth and row ratio on the agronomic characters and dry matter accumulation of corn[J]. Acta Agriculturae Universitatis Jiangxiensis, 2020, 42(3): 429-437 https://www.cnki.com.cn/Article/CJFDTOTAL-JXND202003004.htm
[37]封亮, 王淑彬, 杨文亭, 等. 红壤旱地玉米大豆间作模式对大豆农艺性状和产量的影响[J]. 大豆科学, 2020, 39(6): 882-890
FENG L, WANG S B, YANG W T, et al. Effects of maize soybean intercropping patterns on soybean agronomic characters and yield in upland red soil[J]. Soybean Science, 2020, 39(6): 882-890
[38]杨文钰, 杨峰. 发展玉豆带状复合种植, 保障国家粮食安全[J]. 中国农业科学, 2019, 52(21): 3748-3750 doi: 10.3864/j.issn.0578-1752.2019.21.003
YANG W Y, YANG F. Developing maize-soybean strip intercropping for demand security of national food[J]. Scientia Agricultura Sinica, 2019, 52(21): 3748-3750 doi: 10.3864/j.issn.0578-1752.2019.21.003
[39]卢凤芝. 不同带宽对玉米-大豆带状套作系统作物养分积累竞争和产量的影响[D]. 雅安: 四川农业大学, 2014: 18-20
LU F Z. Effects of different strip-widths on grain yield, crop nutrition accumulation and competitiveness in maize and soybean relay strip intercropping system[D]. Ya'an: Sichuan Agricultural University, 2014: 18-20
[40]吕越, 吴普特, 陈小莉, 等. 地上部与地下部作用对玉米/大豆间作优势的影响[J]. 农业机械学报, 2014, 45(1): 129-136, 142 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201401021.htm
LYU Y, WU P T, CHEN X L, et al. Effect of above- and below-ground interactions on maize/soybean intercropping advantage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 129-136, 142 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201401021.htm
[41]周勋波, 杨国敏, 孙淑娟, 等. 不同株行距配置对夏大豆群体结构及光截获的影响[J]. 生态学报, 2010, 30(3): 691-697 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201003016.htm
ZHOU X B, YANG G M, SUN S J, et al. Effect of different plant-row spacing on population structure and PAR interception in summer soybean[J]. Acta Ecologica Sinica, 2010, 30(3): 691-697 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201003016.htm
[42]CAVALIERI A, BAK F, GARCIA-LEMOS A M, et al. Effects of intra- and interspecific plant density on rhizosphere bacterial communities[J]. Frontiers in Microbiology, 2020, 11: 1045 DOI: 10.3389/fmicb.2020.01045
[43]余常兵, 孙建好, 李隆. 种间相互作用对作物生长及养分吸收的影响[J]. 植物营养与肥料学报, 2009, 15(1): 1-8 doi: 10.3321/j.issn:1008-505X.2009.01.001
YU C B, SUN J H, LI L. Effect of interspecific interaction on crop growth and nutrition accumulation[J]. Plant Nutrition and Fertilizer Science, 2009, 15(1): 1-8 doi: 10.3321/j.issn:1008-505X.2009.01.001
[44]徐幸. 种植密度对不同株高玉米品种茎秆抗倒伏性能及产量的影响[D]. 长春: 吉林农业大学, 2019: 45-50
XU X. The effects of planting density on stems lodging resistance and yield for different plant height maize varieties[D]. Changchun: Jilin Agricultural University, 2019: 45-50
[45]杨梦平, 潘丽丽, 张勇, 等. 株距对不同株型大豆农艺性状及产量的影响[J]. 大豆科学, 2017, 36(3): 377-384 https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX201703008.htm
YANG M P, PAN L L, ZHANG Y, et al. Effect of plant spacing on agronomic trait and yield of different plant type soybean[J]. Soybean Science, 2017, 36(3): 377-384 https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX201703008.htm
[46]田艺心, 高凤菊, 曹鹏鹏. 鲁西北地区夏玉米/大豆间作适宜模式分析[J]. 大豆科学, 2020, 39(4): 571-576 https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX202004011.htm
TIAN Y X, GAO F J, CAO P P. Analysis on suitable model of summer maize/soybean intercropping in northwest Shandong Province[J]. Soybean Science, 2020, 39(4): 571-576 https://www.cnki.com.cn/Article/CJFDTOTAL-DDKX202004011.htm
[47]刘鑫. 玉豆带状间作系统光能分布、截获与利用研究[D]. 雅安: 四川农业大学, 2016: 83-84
LIU X. Study of the light distribution, interception and use efficiency in maize-soybean strip intercropping system[D]. Ya'an: Sichuan Agricultural University, 2016: 83-84
[48]赵建华, 孙建好, 李隆, 等. 玉米行距变化对间作系统生产力及玉米生长的影响[J]. 农业资源与环境学报, 2017, 34(2): 189-196 https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201702014.htm
ZHAO J H, SUN J H, LI L, et al. Effects of maize row spacing on system productivity and the growth of intercropped maize in intercropping system[J]. Journal of Agricultural Resources and Environment, 2017, 34(2): 189-196 https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ201702014.htm

相关话题/作物 系统 生态 四川农业大学 资源