沙之敏1,
吴富钧1, 2,
方凯凯1,
徐春花3,
杨晓磊3,
朱元宏4,
曹林奎1,,
1.上海交通大学农业与生物学院 上海 200240
2.福建农林大学农学院 福州 350002
3.上海市农业技术推广服务 中心 上海 201103
4.上海青浦现代农业园区发展有限公司 上海 201717
基金项目: 上海市科技兴农推广项目(2019) No. 2-1
国家自然科学基金项目31770482
详细信息
作者简介:陈慧妍, 主要研究方向为稻田生态系统氮素循环。E-mail: huiyanchen@sjtu.edu.cn
通讯作者:曹林奎, 主要研究方向为生态农业与面源污染防控。E-mail: clk@sjtu.edu.cn
中图分类号:X171.3计量
文章访问数:159
HTML全文浏览量:12
PDF下载量:162
被引次数:0
出版历程
收稿日期:2020-08-06
录用日期:2020-11-12
刊出日期:2021-05-01
Effect of rice-frog cultivation on ammonia volatilization in rice-Chinese milk vetch rotation system
CHEN Huiyan1,,SHA Zhimin1,
WU Fujun1, 2,
FANG Kaikai1,
XU Chunhua3,
YANG Xiaolei3,
ZHU Yuanhong4,
CAO Linkui1,,
1. School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
2. College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
3. Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
4. Shanghai Qingpu Modern Agricultural Park Development Co., Ltd, Shanghai 201717, China
Funds: Shanghai Science and Technology Promotion Project(2019) No. 2-1
the National Natural Science Foundation of China31770482
More Information
Corresponding author:CAO Linkui, E-mail: clk@sjtu.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:氨挥发是稻田氮素损失的主要途径之一,探究稻田生态种养模式对稻田土壤氨挥发产生的影响,可为该模式的生态环境效益评价提供理论依据。为评估稻蛙共作模式对水稻-紫云英轮作系统氨挥发的影响,通过开展田间小区试验,采用密闭式间歇抽气法采集氨气,对水稻-紫云英轮作系统的土壤氨挥发及其影响因素进行研究。试验共设置3个处理:空白对照(CK,不施肥,不放蛙)、常规水稻种植模式(CR,施化肥,不放蛙)、稻蛙共作模式(RF,施化肥,放蛙)。结果表明:稻蛙共作模式水稻季氨挥发累积量为47.02 kg·hm-2,占当季施氮量12.9%;其后茬紫云英季的氨挥发累积量为16.27 kg·hm-2;全年轮作系统的氨挥发累积量为63.29 kg·hm-2,较常规水稻种植模式的氨挥发累积量降低15.3%。稻蛙共作模式全年水稻-紫云英轮作系统的氨挥发累积量占施氮量的比例为17.4%,显著低于常规水稻种植模式所占比例(20.5%)。水稻田面水的铵态氮浓度是影响水稻季氨挥发的主要因素,水稻田面水pH、水温、气温、风速等因素的影响次之,随温度上升,水稻田面水铵态氮浓度对氨挥发速率的影响逐渐增大。放蛙对水稻产量、水稻产量构成因素、氮肥利用效率及后茬作物紫云英产量的影响不显著。综上所述,稻蛙共作模式在水稻-紫云英轮作系统中具备一定的氨减排潜力,但该模式对稻田氨挥发影响的长期效应及其影响机理仍需进一步研究。
关键词:水稻-紫云英轮作/
稻蛙共作/
氨挥发/
产量
Abstract:Ammonia (NH3) volatilization is one of the main mechanisms of nitrogen loss in paddy fields. Studying the impact of the ecological cultivation model in paddy fields on ammonia volatilization can provide a theoretical basis for its ecological and environmental benefits. To evaluate the effects of rice-frog cultivation on ammonia volatilization in a rice-Chinese milk vetch (CMV) rotation system, the continuous airflow enclosure method was used to collect ammonia in a field plot experiment to study soil ammonia volatilization and its related factors. The experiment included three treatments: control check (CK, no fertilization, no frogs), conventional rice cultivation (CR, fertilization, no frogs), and rice-frog cultivation (RF, fertilization, frogs released). The results showed that the cumulative amount of ammonia volatilization in the rice-frog cultivation treatment was 47.02 kg·hm-2, accounting for 12.9% of the nitrogen application rate in the current season. The subsequent cumulative amount of ammonia volatilization in the Chinese milk vetch season was 16.27 kg·hm-2. The cumulative ammonia volatilization in the annual rotation system was 63.29 kg·hm-2, which was 15.3% lower than that of conventional rice planting. The cumulative amount of ammonia volatilization produced by rice-frog cultivation in the annual rice-Chinese milk vetch rotation system accounted for 17.4% of the annual nitrogen application, which was significantly lower than that of conventional rice cultivation (20.5%). The ammonium nitrogen concentration in the floodwater was the main factor affecting ammonia volatilization in the rice season, followed by the pH and temperature of the floodwater, air temperature, and wind speed. As the temperature increased, the influence of the ammonium nitrogen concentration in the floodwater on ammonia volatilization increased. Frogs did not affect the rice yield, rice yield components, nitrogen fertilizer efficiency, or Chinese milk vetch yield. Therefore, rice-frog cultivation has the potential to reduce ammonia in the rice-Chinese milk vetch rotation system, but the long-term effects of this model on ammonia volatilization in paddy fields and its mechanisms require further study.
Key words:Rice-Chinese milk vetch (Astragalus sinicus) rotation/
Rice-frog cultivation/
Ammonia volatilization/
Yield
HTML全文
图12019年试验区水稻生长气候条件
Figure1.Climate conditions of experimental site during the rice growing seasons in 2019
下载: 全尺寸图片幻灯片
图2水稻-紫云英轮作系统不同种植模式水稻季氨挥发速率变化
各处理的含义见表 1。
Figure2.Changes of ammonia volatilization rates of different planting patterns in rice season of rice-Chinese milk vetch rotation system
The meaning of each treatment is shown in the table 1.
下载: 全尺寸图片幻灯片
图3不同种植模式水稻田面水${\rm{NH}}_4^ + {\rm{ - N}}$(a)、${\rm{NO}}_3^ - {\rm{ - N}}$(b)和pH (c)动态变化
各处理的含义见表 1。
Figure3.Changes of${\rm{NH}}_4^ + {\rm{ - N}}$(a), ${\rm{NO}}_3^ - {\rm{ - N}}$(b) concentrations and pH (c) of floodwater of paddy field under different planting patterns in rice season
The meaning of each treatment is shown in the table 1.
下载: 全尺寸图片幻灯片
图4水稻田氨挥发速率与田面水${\rm{NH}}_4^ + {\rm{ - N}}$浓度(a)和pH(b)的相关性
**表示在P < 0.01水平显著相关。
Figure4.Dependence of ammonia volatilization rate on concentration of ${\rm{NH}}_4^ + {\rm{ - N}}$(a) and pH (b) of floodwater in paddy fields
** denotes significant correlation at P < 0.01 level.
下载: 全尺寸图片幻灯片
图5不同施肥时期水稻田氨挥发速率与田面水pH的Growth模型拟合
Figure5.Models to describe relation of ammonia volatilization rate and floodwater pH of paddy field in different fertilization periods
下载: 全尺寸图片幻灯片
表1水稻-紫云英轮作系统不同处理水稻季氮肥纯氮施用量
Table1.Nitrogen application rates of different treatments in rice season of rice-Chinese milk vetch rotation system?
处理Treatment | 肥料Fertilizer | 基肥Basal fertilization | 第1次追肥Topdressing 1 | 第2次追肥Topdressing 2 | 总氮量Total N |
不施肥, 不放蛙(CK)No fertilization and no frog | — | — | — | — | — |
施化肥, 不放蛙(CR)Fertilization without frog | 复合肥Compound fertilizer | 150 | 80 | 300 | |
尿素Urea | 70 | ||||
施化肥, 放蛙(RF)Fertilization with frog | 复合肥Compound fertilizer | 150 | 80 | 300 | |
尿素Urea | 70 |
下载: 导出CSV
表2水稻-紫云英轮作系统不同种植模式氨挥发累积量
Table2.Accumulation of ammonia volatilization of different planting patterns of rice-Chinese milk vetch rotation system?
处理Treatment | 水稻季Rice season | 紫云英季Chinese milk vetch season | 轮作系统Rotationsystem | 占施氮量的比例Percentage of applied nitrogen (%) | ||||
基肥Base fertilization | 第1次追肥Topdressing 1 | 第2次追肥Topdressing 2 | 总计Total | 水稻季Rice season | 轮作系统Rotation system | |||
CK | 2.14±0.22b | 4.94±0.27b | 29.99±4.12a | 37.08±4.20b | 19.20±2.14a | 56.27±6.11b | — | |
CR | 11.04±2.11a | 8.95±1.84a | 35.72±0.84a | 55.72±2.02a | 19.05±1.41a | 74.76±2.60a | 15.29±0.55a | 20.52±0.71a |
RF | 6.92±0.55a | 7.56±1.10a | 32.54±4.48a | 47.02±5.31ab | 16.27±0.97a | 63.29±4.70ab | 12.91±1.46a | 17.37±1.29b |
各处理的含义见表 1。不同小写字母表示处理间在P < 0.05水平差异显著。The meaning of each treatment is shown in the table 1. Different lowercase letters indicate significant differences among treatments at P < 0.05 level. |
下载: 导出CSV
表3稻田氨挥发速率与各影响因素的逐步回归分析
Table3.Stepwise regression of ammonia volatilization and affecting factors in paddy fields
施肥阶段Fertilization stage | 因子Factor | 系数Coefficient | 常数Constant | 模型拟合度R2Goodness of fit | 显著性P Significance |
基肥期Base fertilization | ${\rm{NH}}_4^ + {\rm{ - N}}$ | 0.017 | ?3.398 | 0.639 | < 0.0001 |
pH | 0.482 | ||||
第1次追肥Topdressing 1 | pH | 0.970 | ?7.415 | 0.607 | < 0.0001 |
${\rm{NH}}_4^ + {\rm{ - N}}$ | 0.023 | ||||
风速Wind speed | 0.215 | ||||
第2次追肥Topdressing 2 | ${\rm{NH}}_4^ + {\rm{ - N}}$ | 0.059 | 1.665 | 0.734 | < 0.0001 |
风速Wind speed | ?0.265 | ||||
降雨量Precipitation | ?0.025 | ||||
日照Sunshine | ?0.068 | ||||
总计Total | ${\rm{NH}}_4^ + {\rm{ - N}}$ | 0.030 | ?5.722 | 0.563 | < 0.0001 |
风速Wind speed | ?0.229 | ||||
pH | 0.675 | ||||
水温Water temperature | ?0.069 | ||||
气温Air temperature | 0.128 |
下载: 导出CSV
表4不同种植模式水稻-紫云英轮作系统产量和氮肥利用效率
Table4.Yields and nitrogen fertilizer efficiencis of different planting patterns in rice season of rice-Chinese milk vetch rotation system
项目Item | CK | CR | RF |
水稻籽粒产量Grain yield of rice (t?hm?2) | 5.73±0.37b | 8.33±0.35a | 8.32±0.32a |
水稻秸秆产量Straw yield of rice (t?hm?2) | 9.70±0.06a | 12.59±1.07a | 11.72±1.50a |
紫云英产量Chinese milk vetch production (t?hm?2) | 6.57±0.54a | 6.32±0.35a | 5.48±0.52a |
水稻平均株高Average plant height of rice (cm) | 90.45±0.98b | 102.89±1.78a | 101.05±2.26a |
水稻平均穗长Average panicle length of rice (cm) | 14.57±0.13a | 15.41±0.29a | 14.75±0.51a |
水稻单位面积有效穗数Panicles per area of rice (×104?hm?2) | 276.00±13.86b | 400.67±16.67a | 444.44±6.41a |
水稻每穗粒数Spikelets per panicle of rice (spikelets?panicle?1) | 106.57±5.34a | 99.23±6.06ab | 80.09±8.51b |
水稻结实率Grain filling of rice (%) | 95.48±0.65a | 95.61±0.49a | 95.61±0.63a |
水稻千粒重1000-grain weight of rice (g) | 25.40±0.29a | 24.76±0.40a | 24.43±0.33a |
水稻收获指数Rice harvest index (%) | 37.09±1.60a | 39.96±1.26a | 41.90±2.20a |
水稻氮素利用率Rice nitrogen use efficiency (%) | — | 40.99±5.39a | 35.25±5.28a |
水稻氮肥农学利用率Rice nitrogen agronomic efficiency [kg?kg?1(N)] | — | 8.67±1.16a | 8.62±1.08a |
水稻单位产量的氨挥发累积排放量Rice yield-scale cumulative emissions of ammonia volatilization (g?kg?1) | 6.51±0.81a | 6.72±1.48a | 5.63±0.52a |
各处理的含义见表 1。同行不同小写字母表示处理间差异显著。The meaning of each treatment is shown in the table 1. Different lowercase letters in the same line mean significant differences at P < 0.05 level. |
下载: 导出CSV
参考文献
[1] | LIAN Z M, OUYANG W, HAO F H, et al. Changes in fertilizer categories significantly altered the estimates of ammonia volatilizations induced from increased synthetic fertilizer application to Chinese rice fields[J]. Agriculture, Ecosystems & Environment, 2018, 265: 112-122 http://www.sciencedirect.com/science/article/pii/S0167880918302214 |
[2] | GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010 doi: 10.1126/science.1182570 |
[3] | HUANG X, SONG Y, LI M M, et al. A high-resolution ammonia emission inventory in China[J]. Global Biogeochemical Cycles, 2012, 26(1): GB1030 http://smartsearch.nstl.gov.cn/paper_detail.html?id=f92f7993bfe9d118e5695949b4bc8a52 |
[4] | 王文林, 刘波, 韩睿明, 等. 农业源氨排放影响因素研究进展[J]. 生态与农村环境学报, 2016, 32(6): 870-878 https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201606002.htm WANG W L, LIU B, HAN R M, et al. Review of researches on factors affecting emission of ammonia from agriculture[J]. Journal of Ecology and Rural Environment, 2016, 32(6): 870-878 https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201606002.htm |
[5] | JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041-3046 doi: 10.1073/pnas.0813417106 |
[6] | DONG Y B, WU Z, ZHANG X, et al. Dynamic responses of ammonia volatilization to different rates of fresh and field-aged biochar in a rice-wheat rotation system[J]. Field Crops Research, 2019, 241: 107568 doi: 10.1016/j.fcr.2019.107568 |
[7] | HE T H, LIU D Y, YUAN J J, et al. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field[J]. Agriculture, Ecosystems & Environment, 2018, 264: 44-53 |
[8] | XIA L L, LI X B, MA Q Q, et al. Simultaneous quantification of N2, NH3 and N2O emissions from a flooded paddy field under different N fertilization regimes[J]. Global Change Biology, 2020, 26(4): 2292-2303 doi: 10.1111/gcb.14958 |
[9] | LIU X D, CHEN L Y, HUA Z L, et al. Comparing ammonia volatilization between conventional and slow-release nitrogen fertilizers in paddy fields in the Taihu Lake region[J]. Environmental Science and Pollution Research, 2020, 27(8): 8386-8394 doi: 10.1007/s11356-019-07536-2 |
[10] | WEBB J, THORMAN R E, FERNANDA-ALLER M, et al. Emission factors for ammonia and nitrous oxide emissions following immediate manure incorporation on two contrasting soil types[J]. Atmospheric Environment, 2014, 82: 280-287 doi: 10.1016/j.atmosenv.2013.10.043 |
[11] | LOURO A, SAWAMOTO T, CHADWICK D, et al. Effect of slurry and ammonium nitrate application on greenhouse gas fluxes of a grassland soil under atypical South West England weather conditions[J]. Agriculture, Ecosystems & Environment, 2013, 181: 1-11 http://www.sciencedirect.com/science/article/pii/S0167880913003046 |
[12] | YI X M, YI K, FANG K K, et al. Microbial community structures and important associations between soil nutrients and the responses of specific taxa to rice-frog cultivation[J]. Frontiers in Microbiology, 2019, 10: 1752 doi: 10.3389/fmicb.2019.01752 |
[13] | YI X M, YUAN J, ZHU Y H, et al. Comparison of the abundance and community structure of N-cycling bacteria in paddy rhizosphere soil under different rice cultivation patterns[J]. International Journal of Molecular Sciences, 2018, 19(12): 3772 doi: 10.3390/ijms19123772 |
[14] | TENG Q, HU X F, LUO F, et al. Influences of introducing frogs in the paddy fields on soil properties and rice growth[J]. Journal of Soils and Sediments, 2016, 16(1): 51-61 doi: 10.1007/s11368-015-1183-6 |
[15] | 林海雁, 黄倩霞, 邵紫依, 等. 养殖虎纹蛙稻田土壤酶活性及主要养分含量特征[J]. 核农学报, 2018, 32(4): 802-808 https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201804021.htm LIN H Y, HUANG Q X, SHAO Z Y, et al. Characterization of soil enzymatic activities and main nutrient contents in paddy field for eco-planting and breeding rice and frog[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(4): 802-808 https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201804021.htm |
[16] | 郭文啸, 赵琦, 朱元宏, 等. 蛙稻生态种养模式对土壤微生物特性的影响[J]. 江苏农业科学, 2018, 46(5): 57-60 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201805015.htm GUO W X, ZHAO Q, ZHU Y H, et al. Effect of frog and rice ecological farming model on soil microbial characteristics[J]. Jiangsu Agricultural Sciences, 2018, 46(5): 57-60 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201805015.htm |
[17] | SHA Z M, CHU Q N, ZHAO Z, et al. Variations in nutrient and trace element composition of rice in an organic rice-frog coculture system[J]. Scientific Reports, 2017, 7(1): 15706 doi: 10.1038/s41598-017-15658-1 |
[18] | 刘功朋, 张玉烛, 黄志农, 等. 水稻牛蛙生态种养对稻飞虱防效及水稻产量的影响[J]. 中国生物防治学报, 2013, 29(2): 207-213 doi: 10.3969/j.issn.2095-039X.2013.02.009 LIU G P, ZHANG Y Z, HUANG Z N, et al. Effects of rice-bullfrog mixed cultivation on rice planthoppers and rice yield[J]. Chinese Journal of Biological Control, 2013, 29(2): 207-213 doi: 10.3969/j.issn.2095-039X.2013.02.009 |
[19] | FANG K K, YI X M, DAI W, et al. Effects of integrated rice-frog farming on paddy field greenhouse gas emissions[J]. International Journal of Environmental Research and Public Health, 2019, 16(11): 1930 doi: 10.3390/ijerph16111930 |
[20] | GAO H, SHA Z M, WANG F, et al. Nitrogen leakage in a rice-duck co-culture system with different fertilizer treatments in China[J]. Science of The Total Environment, 2019, 686: 555-567 doi: 10.1016/j.scitotenv.2019.05.460 |
[21] | XU G C, LIU X, WANG Q S, et al. Integrated rice-duck farming mitigates the global warming potential in rice season[J]. Science of The Total Environment, 2017, 575: 58-66 doi: 10.1016/j.scitotenv.2016.09.233 |
[22] | FREI M, BECKER K. Integrated rice-fish production and methane emission under greenhouse conditions[J]. Agriculture, Ecosystems & Environment, 2005, 107(1): 51-56 http://www.sciencedirect.com/science/article/pii/S0167880904003305 |
[23] | LI C F, CAO C G, WANG J P, et al. Nitrogen losses from integrated rice-duck and rice-fish ecosystems in southern China[J]. Plant and Soil, 2008, 307(1/2): 207-217 |
[24] | 罗喜秀, 李成芳, 陈灿, 等. 稻蟹共作模式生态效应研究进展[J]. 作物研究, 2019, 33(5): 352-355 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYJ201905003.htm LUO X X, LI C F, CHEN C, et al. Research status of ecological effect under the co-production mode of rice and crabs[J]. Crop Research, 2019, 33(5): 352-355 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYJ201905003.htm |
[25] | 王昂, 马旭洲, 于永清, 等. 北方稻蟹共作系统氨挥发损失的研究[J]. 浙江农业学报, 2018, 30(4): 622-631 doi: 10.3969/j.issn.1004-1524.2018.04.14 WANG A, MA X Z, YU Y Q, et al. Ammonia volatilization from rice-crab culture systems in northern China[J]. Acta Agriculturae Zhejiangensis, 2018, 30(4): 622-631 doi: 10.3969/j.issn.1004-1524.2018.04.14 |
[26] | 刘功朋. 不同蛙类及密度对水稻主要害虫、天敌及其产量的影响[D]. 长沙: 湖南农业大学, 2013: 11-16 LIU G P. Effects of different frog species and densities on main insect pests, natural enemies and rice yield[D]. Changsha: Hunan Agricultural University, 2013: 11-16 |
[27] | KISSEL D E, BREWER B L, ARKIN G F. Design and test of a field sampler for ammonia volatilization[J]. Soil Science Society of America Journal, 1977, 41(6): 1133-1138 doi: 10.2136/sssaj1977.03615995004100060024x |
[28] | 白志刚. 氮肥运筹对水稻氮代谢及稻田氮肥利用率的影响[D]. 杭州: 中国农业科学院(中国水稻研究所), 2019: 18 BAI Z G. Effects of N management strategy on N metabolism in rice plant and N use efficiency in paddy soil[D]. Hangzhou: Chinese Academy of Agricultural Sciences (China National Rice Research Institute), 2019: 18 |
[29] | SUN H J, ZHANG H L, POWLSON D, et al. Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine[J]. Field Crops Research, 2015, 173: 1-7 doi: 10.1016/j.fcr.2014.12.012 |
[30] | 陈宇眺. 栽培模式对水稻产量和氮肥利用率的影响及生理机制的研究[D]. 武汉: 华中农业大学, 2016: 62-63 CHEN Y T. Effects of cultivation patterns on rice yield and nitrogen use efficiency and its mechanisms[D]. Wuhan: Huazhong Agricultural University, 2016: 62-63 |
[31] | 余姗, 薛利红, 花昀, 等. 水热炭减少稻田氨挥发损失的效果与机制[J]. 环境科学, 2020, 41(2): 922-931 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202002051.htm YU S, XUE L H, HUA Y, et al. Effect of applying hydrochar for reduction of ammonia volatilization and mechanisms in paddy soil[J]. Environmental Science, 2020, 41(2): 922-931 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202002051.htm |
[32] | SUN H J, FENG Y F, XUE L H, et al. Responses of ammonia volatilization from rice paddy soil to application of wood vinegar alone or combined with biochar[J]. Chemosphere, 2020, 242: 125247 doi: 10.1016/j.chemosphere.2019.125247 |
[33] | LIN K M, WU J P. Effect of introducing frogs and fish on soil phosphorus availability dynamics and their relationship with rice yield in paddy fields[J]. Scientific Reports, 2020, 10(1): 21 doi: 10.1038/s41598-019-56644-z |
[34] | WYNGAARD N, CABRERA M L, SHOBER A, et al. Fertilization strategy can affect the estimation of soil nitrogen mineralization potential with chemical methods[J]. Plant and Soil, 2018, 432(1/2): 75-89 doi: 10.1007/s11104-018-3786-3 |
[35] | WHALEN J K, CHANG C, CLAYTON G W, et al. Cattle manure amendments can increase the pH of acid soils[J]. Soil Science Society of America Journal, 2000, 64(3): 962-966 doi: 10.2136/sssaj2000.643962x |
[36] | WYNGAARD N, FRANKLIN D H, HABTESELASSIE M Y, et al. Legacy effect of fertilization and tillage systems on nitrogen mineralization and microbial communities[J]. Soil Science Society of America Journal, 2016, 80(5): 1262-1271 doi: 10.2136/sssaj2016.03.0070 |
[37] | 何一帆. 云南8种无尾两栖类呼吸和水分调节器官的环境适应性研究[D]. 昆明: 云南师范大学, 2018: 2-6 HE Y F. Studies on the environmental adaptability of respiratory and water regulation structures of 8 species of Anura Ampthibians in Yunnan Province[D]. Kunming: Yunnan Normal University, 2018: 2-6 |
[38] | CHEN G, ZHAO G H, CHENG W D, et al. Rice nitrogen use efficiency does not link to ammonia volatilization in paddy fields[J]. Science of the Total Environment, 2020, 741: 140433 doi: 10.1016/j.scitotenv.2020.140433 |
[39] | 陈贵, 施卫明, 赵国华, 等. 太湖地区主栽高产水稻品种对土壤和肥料氮的利用特性研究[J]. 土壤, 2016, 48(2): 241-247 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201602005.htm CHEN G, SHI W M, ZHAO G H, et al. Characteristics of utilization of n sources from soil and fertilizer by rice varieties with high yield in Taihu Lake Area[J]. Soils, 2016, 48(2): 241-247 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201602005.htm |
[40] | 郭文啸. 不同种植模式对稻田土壤养分和微生物特性的影响[D]. 上海: 上海交通大学, 2017: 38-41 GUO W X. Response of soil nutrient and microbiological characteristics to different rice cultivation patterns[D]. Shanghai: Shanghai Jiao Tong University, 2017: 38-41 |
[41] | 鲁艳红, 廖育林, 聂军, 等. 稻-蛙生态种养技术模式研究与展望[J]. 湖南农业科学, 2017, (3): 74-76 https://www.cnki.com.cn/Article/CJFDTOTAL-HNNK201703021.htm LU Y H, LIAO Y L, NIE J, et al. Research and prospect of rice-frog ecological cultivation and breeding technology mode[J]. Hunan Agricultural Sciences, 2017, (3): 74-76 https://www.cnki.com.cn/Article/CJFDTOTAL-HNNK201703021.htm |
[42] | LIA H, Felix B, INGE V D W, et al. Survival analysis of brown plant hoppers (Nilaparvata lugens) in rice using video recordings of predation events[J]. Biological Control, 2018, 127: 155-161 doi: 10.1016/j.biocontrol.2018.08.023 |