删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

桑轮纹病发生区桑叶表面细菌群落结构在冠层内的分异

本站小编 Free考研考试/2022-01-01

尹诗琳1, 2,,
张建华1, 3,
李星月4,
唐甜1,
王谢1, 3,,
1.四川省农业科学院土壤肥料研究所 成都 610066
2.四川农业大学林学院 成都 611130
3.农业部西南山地农业 环境重点实验室 成都 610066
4.四川省农业科学院植物保护研究所 成都 610066
基金项目: 国家现代农业产业技术体系建设专项CARS-18

详细信息
作者简介:尹诗琳, 主要研究方向为桑园土壤微生物多样性与病虫害生物防治。E-mail: yinshilin6793@163.com
通讯作者:王谢, 主要研究方向为桑树的土壤-植物-微生物系统结构与功能。E-mail: wangxiechangde@hotmail.com
中图分类号:S888.71

计量

文章访问数:187
HTML全文浏览量:4
PDF下载量:378
被引次数:0
出版历程

收稿日期:2020-07-06
录用日期:2020-09-15
刊出日期:2021-03-01

Differentiation in the bacterial community structure of mulberry leaf surfaces in the canopy where mulberry ring rot disease occurs

YIN Shilin1, 2,,
ZHANG Jianhua1, 3,
LI Xingyue4,
TANG Tian1,
WANG Xie1, 3,,
1. Institute of Soil and Fertilizer, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
2. College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
3. Key Laboratory of Southwest Mountain Agricultural Environment of the Ministry of Agriculture, Chengdu 610066, China
4. Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
Funds: the Special Fund for the Industrial System Construction of Modern Agriculture of ChinaCARS-18

More Information
Corresponding author:WANG Xie, E-mail: wangxiechangde@hotmail.com


摘要
HTML全文
(1)(6)
参考文献(56)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:探明桑轮纹病发生区冠层内叶表面微生物多样性、结构组成和功能的变化情况,有助于快速筛选控制桑轮纹病病原菌(Gonatophragmium mori)潜在的拮抗微生物。本研究基于高通量测序技术,分析冠层上部和下部叶片上表面和下表面细菌相对丰度的差异。结果发现:1)在多样性指数(Shannon)上,冠层上部叶片是冠层下部叶片的1.26倍,冠层内叶片上表面是下表面的1.49倍。2)在结构上,冠层下部叶片的下表面(LB)和冠层上部叶片的下表面(UB)的优势属均为泛菌属(Pantoea),其相对丰度分别为38.04%和25.31%,而冠层下部叶片的上表面(LS)为沙雷氏菌属(Serratia)、冠层上部叶片的上表面(US)为寡养单胞菌属(Stenotrophomonas),其相对丰度分别为18.0%、23.73%。3)在功能上,冠层下部叶片细菌的碳水化合物和氨基酸的运输和代谢功能比冠层上部叶片强,然而脂质的运输和代谢功能比冠层上部叶片弱;冠层上部叶片上表面细菌的细胞壁生物发生功能比下表面强,而氨基酸的运输和代谢功能弱于下表面;冠层下部叶片上表面细菌的次生代谢物的生物合成、运输和分解代谢和脂质运输和代谢功能强于下表面,而细胞运动比下表面弱。4)冠层内叶片表面芽孢杆菌属(Bacillus)、不粘柄菌属(Asticcacaulis)和苯基杆菌属(Phenylobacterium)的相对丰度与病原菌的相对丰度负相关性显著(P < 0.05),相关性最大的为芽孢杆菌属,系数为-0.87。上述结果表明桑轮纹病发生区冠层内桑叶上下表面细菌群落的多样性、结构组成和功能存在显著差异,对进一步研究桑轮纹病的生物防控具有一定的科学意义。
关键词:桑轮纹病/
冠层部位/
多样性指数/
功能/
高通量测序
Abstract:To identify the antagonistic bacteria of Gonatophragmium, this study investigated variations in the diversity, structure, and function of phylloplane microorganisms in the mulberry ring rot disease areas of mulberry canopy. Using high-throughput sequencing technology, we analyzed the relative abundance of bacteria on the upper and lower surfaces of the upper and lower leaves in the canopy. The results showed that 1) the Shannon index in upper canopy was 1.26 times of that in the lower canopy, and the upper surface of leaves was 1.49 times of that in the lower surface. 2) The dominant genera in the lower surface of a leaf in the lower canopy (LB) and the lower surface of a leaf in the upper canopy (UB) were the genus Pantoea, with relative abundances of 38.04% and 25.31%, respectively. In the upper surface of a leaf in the lower canopy (LS), it was Serratia and the upper surface of a leaf in the upper canopy (US) was Stenotrophomonas, with relative abundances of 18.0% and 23.73%, respectively. 3) The transport and metabolism of carbohydrates and amino acids of bacteria in the lower canopy leaves were stronger than those in the upper canopy leaves; however, lipid metabolism and transport were weaker in the lower canopy leaves. The cell wall biogenesis function of bacteria on the upper surface of leaf in upper canopy was stronger than that on the lower surface, whereas the amino acid transport and metabolism functions were weaker on the upper surface. The biosynthesis, transport, and catabolism of secondary metabolites, lipid transport, and the metabolism of bacteria on the upper surface of lower canopy leaves were stronger than those on the lower surface, but cell movement was weaker on the upper surface. The relative abundances of Bacillus, Asticcacaulis, and Phenylobacterium were significantly negatively related to the relative abundance of pathogens (P < 0.05); the most significant correlation was for Bacillus (-0.87). These results indicate significant differences in the diversity, structure, and function of bacterial communities on the upper and lower surfaces of mulberry leaves in the canopy, which will assist further research on the biological control of mulberry ring rot disease.
Key words:Mulberry ring rot/
Canopy part/
Diversity index/
Function/
High-throughput sequencing

HTML全文


图1不同冠层位置桑叶叶片上下表面细菌OTU丰度的样本韦恩图和聚类树图
LB: 冠层下部叶片的下表面; LS: 冠层下部叶片的上表面; UB: 冠层上部叶片的下表面; US: 冠层上部叶片的上表面。
Figure1.Venn diagram and cluster tree of bacteria based on OTU number of upper and lower surfaces of leaves from different parts of canopy of mulberry
LB: lower surface of leaf from lower canopy; LS: upper surface of leaf from lower canopy; UB: lower surface of leaf from upper canopy; US: upper surface of leaf from upper canopy.


下载: 全尺寸图片幻灯片

表1高通量测序使用的引物
Table1.High throughput sequencing primers
引物Primer 序列5'-3' Sequence 5'-3'
341F CCCTACACGACGCTCTTCCGATCTG (barcode) CCTACGGGNGGCWGCAG
805R GACTGGAGTTCCTTGGCACCCGAGAATTCCAGACTACHVGGGTATCTAATCC
ITS1 CCCTACACGACGCTCTTCCGATCTN (barcode) CTTGGTCATTTAGAGGAAGTAA
ITS2-Rev GTGACTGGAGTTCCTTGGCACCCGAGAATTCCAGCTGCGTTCTTCATCGATGC


下载: 导出CSV
表2不同冠层位置桑叶叶片上下表面细菌序列长度统计表
Table2.Sequence length statistics of bicteria in upper and lower surfaces of leaves from different parts of canopy of mulberry
样本
Sample
原始序列
Raw_num
优化序列
Clean_num
高质量序列
Filtered_num
序列长度
Mean_len
冠层下部叶片的下表面Lower surface of leaf from lower canopy (LB) 254 376 234 265 227 294 423.20
冠层下部叶片的上表面Upper surface of leaf form lower canopy (LS) 227 695 209 246 203 185 419.27
冠层上部叶片的下表面Lower surface of leaf from upper canopy (UB) 253 532 232 206 228 482 420.94
冠层上部叶片的上表面Upper surface of leaf from upper canopy (US) 212 680 195 515 194 092 418.25


下载: 导出CSV
表3不同冠层位置桑叶叶片上下表面细菌群落丰富度和多样性
Table3.Bacterial community richness and diversity on upper and lower surfaces of leaves from different parts of canopy of mulberry
样本
Sample
Chao1指数
Chao1 index
ACE指数
ACE index
香农指数
Shannon index
辛普森指数
Simpson index
LB 1184.53±95.24a 2079.80±288.12a 1.44±0.47b 0.46±0.18a
LS 1058.43±215.96a 1610.93±406.28ab 2.70±0.64a 0.20±0.13ab
UB 1307.57±523.09a 1790.37±498.46ab 2.32±0.16a 0.25±0.03a
US 1007.92±121.93a 1464.64±209.73b 2.88±0.46a 0.14±0.06b
LB: 冠层下部叶片的下表面; LS: 冠层下部叶片的上表面; UB: 冠层上部叶片的下表面; US: 冠层上部叶片的上表面。表中数值为平均值±标准偏差, 同列不同小写字母表示处理间差异显著(P < 0.05)。LB: lower surface of leaf from lower canopy; LS: upper surface of leaf from lower canopy; UB: lower surface of leaf from upper canopy; US: upper surface of leaf from upper canopy. The values in the table are mean±SD. Different lowercase letters in a column indicate significant differences at P < 0.05 level.


下载: 导出CSV
表4不同冠层位置桑叶叶片上下表面细菌各分类水平上数量排名前10物种相对丰度在各样本中所占比例
Table4.Proportions of relative abundances of top ten items at each taxonomic level of bacteria on upper and lower surfaces ofleaves from different parts of canopy of mulberry ?%
分类Taxonomic 名称Name LB LS UB US
门Phylum 变形菌门Proteobacteria 99.29 88.04 91.22 78.52
拟杆菌门Bacteroidetes 0.23 10.45 5.98 19.16
放线菌门Actinobacteria 0.15 1.13 0.97 1.21
厚壁菌门Firmicutes 0.22 0.18 0.80 0.64
广古生菌门Euryarchaeota 0.02 0.08 0.48 0.23
酸杆菌门Acidobacteria 0.00 0.03 0.16 0.03
未分类菌门Unclassified 0.03 0.01 0.09 0.02
浮霉菌门Planctomycetes 0.04 0.03 0.05 0.02
Candidatus Saccharibacteria 0.01 0.01 0.04 0.01
奇古菌门Thaumarchaeota 0.00 0.00 0.04 0.02
纲Class γ-变形菌纲Gammaproteobacteria 94.99 67.53 77.77 52.82
α-变形菌纲Alphaproteobacteria 4.06 16.09 10.47 18.98
黄杆菌纲Flavobacteriia 0.08 8.31 5.04 10.30
β-变形菌纲Betaproteobacteria 0.23 4.42 2.79 6.68
鞘脂杆菌纲Sphingobacteria 0.08 1.86 0.45 8.21
放线菌纲Actinobacteria 0.15 1.13 0.97 1.21
芽胞杆菌纲Bacilli 0.19 0.12 0.47 0.43
纤维粘网菌纲Cytophagia 0.06 0.23 0.12 0.46
拟杆菌纲Bacteroidia 0.01 0.04 0.35 0.19
梭菌纲Clostridia 0.02 0.05 0.30 0.18
目Order 肠杆菌目Enterobacteriales 84.10 43.80 48.65 11.72
假单胞菌目Pseudomonadales 7.31 10.47 19.31 16.44
黄色单胞杆菌目Xanthomonadales 3.58 13.26 9.77 24.62
黄杆菌目Flavobacteriales 0.08 8.31 5.05 10.31
根瘤菌目Rhizobiales 2.44 7.12 4.94 4.99
鞘脂单胞菌目Sphingomonadales 0.84 4.39 2.22 9.01
伯克氏菌目Burkholderiales 0.23 4.41 2.73 6.60
鞘脂杆菌目Sphingobacteriales 0.08 1.86 0.45 8.22
柄杆菌目Caulobacterales 0.19 1.74 2.78 4.59
红螺菌目Rhodospirales 0.47 0.27 0.22 0.15
科Family 肠杆菌科Enterobacteriaceae 84.09 43.80 48.71 11.72
黄色单胞菌科Xanthomonadaceae 3.58 13.26 9.77 24.62
莫拉式菌科Moraxellaceae 2.49 2.86 14.68 12.59
黄杆菌科Flavobacteriaceae 0.08 8.31 5.05 10.31
科Family 假单胞菌科Pseudomonadaceae 4.82 7.60 4.64 3.85
鞘脂菌科Sphingomonadaceae 0.83 4.32 2.05 8.90
根瘤菌科Rhizobiaceae 1.42 5.06 2.46 2.96
鞘脂杆菌科Sphingobacteriaceae 0.05 1.85 0.41 8.18
柄杆菌科Caulobacteraceae 0.19 1.74 2.78 4.59
丛毛单胞菌科Comamonadaceae 0.14 3.85 2.39 0.76
属Genus 泛菌属Pantoea 38.04 13.86 25.31 7.69
未分类菌属Unclassified 20.99 7.40 23.29 3.75
寡养单胞菌属Stenotrophomonas 3.35 12.17 7.40 23.73
沙雷氏菌属Serratia 17.74 18.00 0.37 0.00
不动杆菌属Acinetobacter 0.28 1.72 14.62 12.48
假单胞菌属Pseudomonas 4.81 7.59 4.63 3.83
金黄杆菌属Chryseobacterium 0.00 6.45 3.51 9.39
鞘氨醇单胞菌属Sphingomonas 0.77 3.79 1.88 8.70
克吕沃尔菌属Kluyvera 6.95 5.09 0.00 0.40
短波单胞菌属Brevundimonas 0.19 1.67 2.50 4.46
LB: 冠层下部叶片的下表面; LS: 冠层下部叶片的上表面; UB: 冠层上部叶片的下表面; US: 冠层上部叶片的上表面。LB: lower surface of leaf from lower canopy; LS: upper surface of leaf from lower canopy; UB: lower surface of leaf from upper canopy; US: upper surface of leaf from upper canopy.


下载: 导出CSV
表5不同冠层位置桑叶叶片上下表面两两间细菌丰度存在显著差异(P < 0.05)的属
Table5.Genus significantly different (P < 0.05) among upper and lower surfaces of leaves from different parts of canopy of mulberry
菌属名称Genus 丰度Abundance 丰度差值Effect size 菌属名称Genus 丰度Abundance 丰度差值Effect size
LB LS LB UB
勒克氏菌属Leclercia 10 1 0.00 马赛菌属Massilia 37 204 ?0.08
薄层菌属Hymenobacter 7 98 ?0.05 微杆菌属Microbacterium 26 205 ?0.09
金黄杆菌属Chryseobacterium 95 11 843 ?6.49 大理石雕菌属Marmoricola 1 37 ?0.02
地嗜皮菌属Geodermatophilus 10 152 ?0.08 副球菌属Marmoricola 6 75 ?0.04
鞘氨醇单胞菌属Sphingomonas 1583 3866 ?1.23
UB US LS US
鞘氨醇单胞菌属Sphingomonas 3866 15 237 ?6.70 克雷伯氏菌属Klebsiella 6 0 0.00
异常球菌属Deinococcus 9 41 ?0.02 巨球型菌属Megasphaera 0 6 0.00
勒克氏菌属Leclercia 9 0 0.00 异常球菌属Deinococcus 6 41 ?0.02
沉积物杆状菌属Sediminibacterium 0 15 ?0.01
LB: 冠层下部叶片的下表面; LS: 冠层下部叶片的上表面; UB: 冠层上部叶片的下表面; US: 冠层上部叶片的上表面。LB: lower surface of leaf from lower canopy; LS: upper surface of leaf from lower canopy; UB: lower surface of leaf from upper canopy; US: upper surface of leaf from upper canopy.


下载: 导出CSV
表6不同冠层位置桑叶叶片上下表面两两间丰度存在显著差异(P < 0.05)的细菌功能分类
Table6.Functional classification with significant differences (P < 0.05) among upper and lower surfaces of leaves from different parts of canopy of mulberry
样本
Sample
功能预测
Function
均值之差
Difference between means
LB-LS 次生代谢物的生物合成、运输和分解代谢
Secondary metabolites biosynthesis, transport, and catabolism
?0.45
脂质运输和代谢
Lipid transport and metabolism
?0.71
细胞运动Cell motility 0.35
UB-US 氨基酸的运输和代谢
Amino acid transport and metabolism
0.85
细胞壁生物发生
Cell wall/membrane/envelope biogenesis
?0.60
LB-UB 脂质运输和代谢
Lipid transport and metabolism
?0.87
碳水化合物运输和代谢
Carbohydrate transport and metabolism
1.82
LS-US 氨基酸的运输和代谢
Amino acid transport and metabolism
0.92
LB: 冠层下部叶片的下表面; LS: 冠层下部叶片的上表面; UB: 冠层上部叶片的下表面; US: 冠层上部叶片的上表面。LB: lower surface of leaf from lower canopy; LS: upper surface of leaf from lower canopy; UB: lower surface of leaf from upper canopy; US: upper surface of leaf from upper canopy.


下载: 导出CSV

参考文献(56)
[1]LINDOW S E, BRANDL M T. Microbiology of the phyllosphere[J]. Applied and Environmental Microbiology, 2003, 69(4): 1875-1883 doi: 10.1128/AEM.69.4.1875-1883.2003
[2]CORDIER T, ROBIN C, CAPDEVIELLE X, et al. The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient[J]. New Phytologist, 2012, 196(2): 510-519 doi: 10.1111/j.1469-8137.2012.04284.x
[3]UNTERSEHER M, SIDDIQUE A B, BRACHMANN A, et al. Diversity and composition of the leaf mycobiome of beech (Fagus sylvatica) are affected by local habitat conditions and leaf biochemistry[J]. PLoS One, 2016, 11(4): e0152878 doi: 10.1371/journal.pone.0152878
[4]COPELAND J K, YUAN L J, LAYEGHIFARD M, et al. Seasonal community succession of the phyllosphere microbiome[J]. Molecular Plant-Microbe Interactions, 2015, 28(3): 274-285 doi: 10.1094/MPMI-10-14-0331-FI
[5]REDFORD A J, FIERER N. Bacterial succession on the leaf surface: A novel system for studying successional dynamics[J]. Microbial Ecology, 2009, 58(1): 189-198 doi: 10.1007/s00248-009-9495-y
[6]HUNTER P J, HAND P, PINK D, et al. Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere[J]. Applied and Environmental Microbiology, 2010, 76(24): 8117-8125 doi: 10.1128/AEM.01321-10
[7]OSONO T, MORI A. Distribution of phyllosphere fungi within the canopy of giant dogwood[J]. Mycoscience, 2004, 45(3): 161-168 doi: 10.1007/S10267-003-0167-3
[8]刘波, 郑雪芳, 孙大光, 等. 柑橘黄龙病株不同部位内生细菌群落结构的多样性[J]. 生态学报, 2011, 31(24): 7325-7342 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201124002.htm
LIU B, ZHENG X F, SUN D G, et al. The community structure of endophytic bacteria in different parts of huanglongbing-affected citrus plants[J]. Acta Ecologica Sinica, 2011, 31(24): 7325-7342 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201124002.htm
[9]KRIMM U, ABANDA-NKPWATT D, SCHWAB W, et al. Epiphytic microorganisms on strawberry plants (Fragaria ananassa cv. Elsanta): Identification of bacterial isolates and analysis of their interaction with leaf surfaces[J]. FEMS Microbiology Ecology, 2005, 53(3): 483-492 doi: 10.1016/j.femsec.2005.02.004
[10]ZHOU Z X, JIANG H, YANG C, et al. Microbial community on healthy and diseased leaves of an invasive plant Eupatorium adenophorum in Southwest China[J]. The Journal of Microbiology, 2010, 48(2): 139-145 doi: 10.1007/s12275-010-9185-y
[11]张庆, 朱继熹, 冷怀琼. 苹果叶表附生微生物区系及其有益菌的研究Ⅱ、有益芽孢杆菌的筛选、初步鉴定和电镜观察[J]. 云南农业大学学报, 1997, 12(3): 147-152 https://www.cnki.com.cn/Article/CJFDTOTAL-YNDX703.000.htm
ZHANG Q, ZHU J X, LENG H Q. A preliminary studies on the epiphytic microorganism of the apple phylloplane and the beneficial microorganism Ⅱ. The sift identification, and scanning elemicroscope observation on the beneficial microorganisms[J]. Journal of Yunnan Agricultural University, 1997, 12(3): 147-152 https://www.cnki.com.cn/Article/CJFDTOTAL-YNDX703.000.htm
[12]罗路云, 张卓, 金德才, 等. 南瓜白粉病不同病情等级下叶际细菌群落结构和多样性[J]. 植物病理学报, 2017, 47(5): 688-695 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBL201705016.htm
LUO L Y, ZHANG Z, JIN D C, et al. Phyllosphere bacterial diversities and community structures on pumkin with different severities of powdery mildew[J]. Acta Phytopathologica Sinica, 2017, 47(5): 688-695 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBL201705016.htm
[13]周凌云, 向芬, 刘红艳, 等. 茶白星病不同病情等级下叶际细菌群落多样性与功能预测[J]. 茶叶通讯, 2019, 46(1): 24-31 https://www.cnki.com.cn/Article/CJFDTOTAL-CYTX201901007.htm
ZHOU L Y, XIANG F, LIU H Y, et al. Function prediction and phyllosphere bacterial diversities on leave with different severities of tea white scab disease[J]. Tea Communication, 2019, 46(1): 24-31 https://www.cnki.com.cn/Article/CJFDTOTAL-CYTX201901007.htm
[14]西山达郎, 秋山文司, 周垂桓. 甲基托布津对桑轮纹病的防治效果[J]. 国外农学蚕业, 1984, (3): 43-44 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCA198403011.htm
XISHAN D L, QIUSHAN W S, ZHOU C H. Preventive effect of thiophanate-methyl on mulberry ringworm[J]. China Sericulture, 1984, (3): 43-44 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCA198403011.htm
[15]章一鸣, 赵雁, 吴庭观, 等. 桑树轮纹病病原菌的分离鉴定及其生物学特性研究[J]. 西部林业科学, 2014, 43(3): 51-56 doi: 10.3969/j.issn.1672-8246.2014.03.011
ZHANG Y M, ZHAO Y, WU T G, et al. Isolation and biological characteristics of pathogenic fungus causing ring rot on mulberry leaves[J]. Journal of West China Forestry Science, 2014, 43(3): 51-56 doi: 10.3969/j.issn.1672-8246.2014.03.011
[16]匡英秋, 叶武光, 卢卫芳, 等. 桑轮纹病的化学防治试验初报[J]. 中国蚕业, 2011, 32(4): 17-19 doi: 10.3969/j.issn.1007-0982.2011.04.007
KUANG Y Q, YE W G, LU W F, et al. Preliminary report on chemical control experiment of ring rot on mulberry leaves[J]. China Sericulture, 2011, 32(4): 17-19 doi: 10.3969/j.issn.1007-0982.2011.04.007
[17]陈田飞, 肖建京, 丰卫忠, 等. 淳安县桑轮斑病发生与防控技术探讨[J]. 中国蚕业, 2015, 36(4): 83-86 doi: 10.3969/j.issn.1007-0982.2015.04.019
CHEN T F, XIAO J J, FENG W Z, et al. Discussion on occurrence, prevention and control technology of ring rot on mulberry leaves in Chun'an County[J]. China Sericulture, 2015, 36(4): 83-86 doi: 10.3969/j.issn.1007-0982.2015.04.019
[18]白景彰, 周顺心, 雷扶生, 等. 百色蚕区发生的桑轮纹病调查初报[J]. 广西蚕业, 1994, (2): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-GXCY402.009.htm
BAI J Z, ZHOU S X, LEI F S, et al. Preliminary report on investigation of mulberry ring rot in Baise silkworm area[J]. Guangxi Sericulture, 1994, (2): 36 https://www.cnki.com.cn/Article/CJFDTOTAL-GXCY402.009.htm
[19]王谢, 唐甜, 张建华. 一种桑轮纹病病叶发病程度的评价指数[J]. 中国蚕业, 2018, 39(4): 19-21 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCA201804012.htm
WANG X, TANG T, ZHANG J H. Evaluation index of disease degree of ring rot on mulberry leaves[J]. China Sericulture, 2018, 39(4): 19-21 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCA201804012.htm
[20]王谢, 张建华. 用桑叶最大重叠度指数和桑树冠层内部透光性指数表征桑树冠层特征[J]. 中国蚕业, 2017, 38(4): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCA201704005.htm
WANG X, ZHANG J H. Characterization of mulberry canopy with mulberry leaf maximum overlap index and mulberry canopy internal transmittance index[J]. China Sericulture, 2017, 38(4): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCA201704005.htm
[21]杨广容, 马燕, 蒋宾, 等. 基于16S rDNA测序对茶园土壤细菌群落多样性的研究[J]. 生态学报, 2019, 39(22): 8452-8461 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201922023.htm
YANG G R, MA Y, JIANG B, et al. Analysis of the bacterial community and diversity in tea plantation soil via 16S rDNA sequencing[J]. Acta Ecologica Sinica, 2019, 39(22): 8452-8461 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201922023.htm
[22]BOKULICH N A, JOSEPH C M L, ALLEN G, et al. Next-generation sequencing reveals significant bacterial diversity of botrytized wine[J]. PLoS One, 2012, 7(5): e36357 doi: 10.1371/journal.pone.0036357
[23]ZHANG J J, KOBERT K, FLOURI T, et al. PEAR: A fast and accurate Illumina Paired-End reAd merger[J]. Bioinformatics, 2014, 30(5): 614-620 doi: 10.1093/bioinformatics/btt593
[24]SCHMIEDER R, EDWARDS R. Quality control and preprocessing of metagenomic datasets[J]. Bioinformatics, 2011, 27(6): 863-864 doi: 10.1093/bioinformatics/btr026
[25]EDGAR R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2460-2461 doi: 10.1093/bioinformatics/btq461
[26]SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541 doi: 10.1128/AEM.01541-09
[27]WANG Q, GARRITY G M, TIEDJE J M, et al. Na?ve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267 doi: 10.1128/AEM.00062-07
[28]PARKS D H, TYSON G W, HUGENHOLTZ P, et al. STAMP: Statistical analysis of taxonomic and functional profiles[J]. Bioinformatics, 2014, 30(21): 3123-3124 doi: 10.1093/bioinformatics/btu494
[29]LANGILLE M G I, ZANEVELD J, CAPORASO J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9): 814-821 doi: 10.1038/nbt.2676
[30]TILMAN D, DOWNING J A. Biodiversity and stability in grasslands[J]. Nature, 1994, 367(6461): 363-365 doi: 10.1038/367363a0
[31]BASKIN Y. Ecosystem function of biodiversity: Regarding ideal levels of species richness, the data are few and unclear[J]. BioScience, 1994, 44(10): 657-660 doi: 10.2307/1312507
[32]JOUANNEAU Y, MICOUD J, MEYER C. Purification and characterization of a three-component salicylate 1-hydroxylase from Sphingomonas sp. strain CHY-1[J]. Applied and Environmental Microbiology, 2007, 73(23): 7515-7521 doi: 10.1128/AEM.01519-07
[33]胡杰, 何晓红, 李大平, 等. 鞘氨醇单胞菌研究进展[J]. 应用与环境生物学报, 2007, 13(3): 431-437 doi: 10.3321/j.issn:1006-687X.2007.03.030
HU J, HE X H, LI D P, et al. Progress in research of Sphingomonas[J]. Chinese Journal of Applied & Environmental Biology, 2007, 13(3): 431-437 doi: 10.3321/j.issn:1006-687X.2007.03.030
[34]BERG G, BALLIN G. Bacterial antagonists to Verticillium dahliae Kleb[J]. Journal of Phytopathology, 1994, 141(1): 99-110 doi: 10.1111/j.1439-0434.1994.tb01449.x
[35]ADHIKARI T B, JOSEPH C M, YANG G P, et al. Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice[J]. Canadian Journal of Microbiology, 2001, 47(10): 916-924 doi: 10.1139/w01-097
[36]CARTER M Q, XUE K, BRANDL M T, et al. Functional metagenomics of Escherichia coli O157: H7 interactions with spinach indigenous microorganisms during biofilm formation[J]. PLoS One, 2012, 7(9): e44186 doi: 10.1371/journal.pone.0044186
[37]DE MAAYER P, CHAN W Y, RUBAGOTTI E, et al. Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts[J]. BMC Genomics, 2014, 15(1): 404 doi: 10.1186/1471-2164-15-404
[38]顾沁, 张昊, 黄海, 等. 一种玉米新型细菌性褐腐病的病原鉴定[J]. 植物保护, 2016, 42(3): 87-90 doi: 10.3969/j.issn.0529-1542.2016.03.014
GU Q, ZHANG H, HUANG H, et al. Identification of the bacteria causing a new brown stalk rot on maize[J]. Plant Protection, 2016, 42(3): 87-90 doi: 10.3969/j.issn.0529-1542.2016.03.014
[39]AZAD H R, HOLMES G J, COOKSEY D A. A new leaf blotch disease of sudangrass caused by Pantoea ananas and Pantoea stewarii[J]. Plant Disease, 2000, 84(9): 973-979 doi: 10.1094/PDIS.2000.84.9.973
[40]MORALES-VALENZUELA G, SILVA-ROJAS H V, OCHOA-MARTINEZ D, et al. First report of Pantoea agglomerans causing leaf blight and vascular wilt in maize and sorghum in Mexico[J]. Plant Disease, 2007, 91(10): 1365 http://europepmc.org/abstract/AGR/IND44034840
[41]曹慧英. 玉米新病害——细菌干茎腐病的研究[D]. 北京: 中国农业科学院, 2010
CAO H Y. Bacterial dry stalk rot in maize, a new disease[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010
[42]刘雅琴, 任毓忠, 李国英, 等. 新疆棉花细菌性烂铃病病原菌鉴定[J]. 植物病理学报, 2008, 38(3): 238-243 doi: 10.3321/j.issn:0412-0914.2008.03.003
LIU Y Q, REN Y Z, LI G Y, et al. Identification of causal agent of bacterial boll rot in cotton from Xinjiang[J]. Acta Phytopathologica Sinica, 2008, 38(3): 238-243 doi: 10.3321/j.issn:0412-0914.2008.03.003
[43]严玉宁, 何红, 叶艺俊, 等. 香蕉叶鞘腐败病病原鉴定[J]. 植物病理学报, 2011, 41(2): 124-130 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBL201102004.htm
YAN Y N, HE H, YE Y J, et al. Identification of the pathogen causing banana sheath rot disease[J]. Acta Phytopathologica Sinica, 2011, 41(2): 124-130 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBL201102004.htm
[44]陈杰, 白文文, 陈洁, 等. 桑叶穿孔病病叶表面的微生物分离鉴定和微型害虫调查[J]. 蚕业科学, 2016, 42(6): 979-987 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201606007.htm
CHEN J, BAI W W, CHEN J, et al. Isolation and identification of microorganisms on mulberry leaf surface with shot-hole disease and investigation of the tiny pests[J]. Acta Sericologica Sinica, 2016, 42(6): 979-987 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201606007.htm
[45]戴凡炜, 罗国庆, 王振江, 等. 华南蚕区桑枯萎病病原菌的分离与分子鉴定[J]. 蚕业科学, 2012, 38(6): 981-987 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201206005.htm
DAI F W, LUO G Q, WANG Z J, et al. Isolation and molecular identification of the pathogen causing mulberry wilt disease in southern sericultural areas of China[J]. Acta Sericologica Sinica, 2012, 38(6): 981-987 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201206005.htm
[46]任慧爽, 徐伟芳, 王爱印, 等. 桑树内生细菌多样性及内生拮抗活性菌群的研究[J]. 西南大学学报(自然科学版), 2017, 39(1): 36-45 https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201701007.htm
REN H S, XU W F, WANG A Y, et al. Research on biodiversity of endophytic bacteria and the antagonistic endophytes in mulberry[J]. Journal of Southwest University (Natural Science Edition), 2017, 39(1): 36-45 https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201701007.htm
[47]PéREZ-GARCíA A, ROMERO D, DE VICENTE A. Plant protection and growth stimulation by microorganisms: Biotechnological applications of Bacilli in agriculture[J]. Current opinion in biotechnology, 2011, 22(2): 187-193 doi: 10.1016/j.copbio.2010.12.003
[48]GOND S K, BERGEN M S, TORRES M S, et al. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize[J]. Microbiological Research, 2015, 172: 79-87 doi: 10.1016/j.micres.2014.11.004
[49]王坚, 刁治民, 徐广, 等. 植物内生菌的研究概况及其应用[J]. 青海草业, 2008, 17(1): 24-28 https://www.cnki.com.cn/Article/CJFDTOTAL-QHCY200801005.htm
WANG J, DIAO Z M, XU G, et al. Study and application on endophyt[J]. Qinghai Prataculture, 2008, 17(1): 24-28 https://www.cnki.com.cn/Article/CJFDTOTAL-QHCY200801005.htm
[50]STEIN T. Bacillus subtilis antibiotics: Structures, syntheses and specific functions[J]. Molecular Microbiology, 2005, 56(4): 845-857 doi: 10.1111/j.1365-2958.2005.04587.x
[51]王若琳, 徐伟芳, 王飞, 等. 桑树内生拮抗菌的分离鉴定及其对桑断枝烂叶病的生防初探[J]. 微生物学报, 2019, 59(11): 2130-2143 https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201911009.htm
WANG R L, XU W F, WANG F, et al. Isolation and identification of an antagonistic endophytic bacterium from mulberry for biocontrol against Boeremia exigua[J]. Acta Microbiologica Sinica, 2019, 59(11): 2130-2143 https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201911009.htm
[52]王彪, 潘英豪, 侯佳蓝, 等. 一种桑树细菌性病原内生拮抗细菌的筛选、鉴定及其生防活性[J]. 微生物前沿, 2019, 8(3): 110-120 http://www.hanspub.org/journal/paperinformation.aspx?paperid=32077
WANG B, PAN Y H, HOU J L, et al. Screening, identification of an antagonistic endophyte to pathogens of mulberry bacterial diseases from mulberry leaves and its biocontrol activity[J]. Advances in Microbiology, 2019, 8(3): 110-120 http://www.hanspub.org/journal/paperinformation.aspx?paperid=32077
[53]谢洁, 任慧爽, 唐翠明, 等. 一株桑树内生细菌的鉴定和对桑椹核地杖菌的拮抗作用[J]. 蚕业科学, 2015, 41(5): 815-824 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201505007.htm
XIE J, REN H S, TANG C M, et al. Identification of a mulberry endophytic bacterium and its antagonistic activity on Scleromitula shiraiana[J]. Acta Sericologica Sinica, 2015, 41(5): 815-824 https://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201505007.htm
[54]方翔, 徐伟芳, 牛娜, 等. 一株桑树内生拮抗菌的分离、鉴定及发酵条件优化[J]. 微生物学报, 2018, 58(12): 2147-2160 https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201812012.htm
FANG X, XU W F, NIU N, et al. Screening, identification and optimization of fermentation conditions of an antagonistic endophytic bacterium from mulberry[J]. Acta Microbiologica Sinica, 2018, 58(12): 2147-2160 https://www.cnki.com.cn/Article/CJFDTOTAL-WSXB201812012.htm
[55]朱志贤, 于翠, 李勇, 等. 一株桑椹菌核病生防菌分离鉴定及其拮抗作用分析[J]. 中国森林病虫, 2019, 38(5): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-SLBC201905001.htm
ZHU Z X, YU C, LI Y, et al. Isolation and identification of an antagonistic bacterium against mulberry fruit sclerotiniosis and analysis of its antagonistic effects[J]. Forest Pest and Disease, 2019, 38(5): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-SLBC201905001.htm
[56]TAYLOR D L, WALTERS W A, LENNON N J, et al. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for illumina amplicon sequencing[J]. Applied and Environmental Microbiology, 2016, 82(24): 7217-7226 http://europepmc.org/articles/PMC5118932

相关话题/鉴定 微生物 序列 生物 科学