删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

花生与玉米和芝麻间作的产量及经济效益分析

本站小编 Free考研考试/2022-01-01

武岩岩,
汪江涛,
李雪,
孙增光,
郭彬彬,
尹飞,
焦念元,
河南科技大学农学院/河南省旱地农业工程技术研究中心 洛阳 471023
基金项目: 国家自然科学基金项目U1404315
河南省自然科学基金项目182300410014
河南省科技攻关项目182102110180

详细信息
作者简介:武岩岩, 主要从事花生与玉米、芝麻间作生理生态研究。E-mail: 18437957962@163.com
通讯作者:焦念元, 主要从事间套作资源高效利用及生理生态机理研究。E-mail: jiaony1@163.com
中图分类号:S344.2

计量

文章访问数:287
HTML全文浏览量:97
PDF下载量:71
被引次数:0
出版历程

收稿日期:2021-01-28
录用日期:2021-03-26
刊出日期:2021-08-01

Yield and economic benefits of peanut intercropping with maize and sesame

WU Yanyan,
WANG Jiangtao,
LI Xue,
SUN Zengguang,
GUO Binbin,
YIN Fei,
JIAO Nianyuan,
College of Agriculture, Henan University of Science and Technology/Henan Dryland Agricultural Engineering Technology Research Center, Luoyang 471023, China
Funds: the National Natural Science Foundation of ChinaU1404315
the Natural Science Foundation of Henan Province182300410014
the Key Technology Projects of Henan Province182102110180

More Information
Corresponding author:JIAO Nianyuan, E-mail: jiaony1@163.com


摘要
HTML全文
(4)(5)
参考文献(36)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为明确不同间作体系对花生产量形成和经济效益的影响,本试验于2018—2019年,设置玉米‖花生(M‖P)、芝麻‖花生(S‖P)、单作花生(SP)、单作玉米(SM)和单作芝麻(SS)5个种植模式,研究了不同种植模式对花生功能叶光合-光强响应曲线、干物质积累、种间竞争力指数、产量及经济效益的影响。结果表明:1)与玉米‖花生体系中的间作花生相比,芝麻‖花生体系中间作花生的最大净光合速率(Pnmax)、产量和最大干物质积累量分别显著提升了18.0%~20.7%、64.2%~70.0%、26.5%~31.8%(P < 0.05)。2)间作芝麻干物质积累进入缓增期后16~19 d,芝麻‖花生中间作花生仍处于干物质积累快增期,芝麻和花生干物质积累快增期互相错开,而玉米‖花生体系中玉米和花生的干物质积累快增期重叠;成熟期,间作花生相对于芝麻、玉米的竞争力指数分别为-2.31~-2.06和-4.68~-4.34。说明间作花生相对于芝麻的竞争力比相对于玉米的竞争力强。3)芝麻‖花生较玉米‖花生的土地当量比提高3.0%~4.0%,且大于1;经济效益显著提高16.7%~50.8%(P < 0.05),达2.3万~2.4万元·hm-2。研究结果表明芝麻‖花生较玉米‖花生,提高了土地利用率、产量和收益,其机理在于芝麻‖花生较玉米‖花生能错开作物间干物质积累的快增期,降低高、矮两种作物的种间竞争强度,提高间作花生冠层光强和净光合速率。
关键词:芝麻‖花生/
玉米‖花生/
种间竞争力/
产量/
经济效益
Abstract:Peanuts are an important oil crop in China. Intercropping peanuts with maize or sesame improves the field microclimate and the utilization of light and heat resources and increases yield and income. Different high crops in the intercropping systems have different effects on the canopy light intensity, photosynthetic capacity of the functional leaves, dry matter accumulation, and yield of intercropping crops. The purpose of this study was to optimize the peanut intercropping system and to select suitable crops for peanut intercropping. To assess the effects of different intercropping systems on peanut yield and the economic benefits, a field experiment was conducted in 2018 and 2019 with five treatments: maize intercropping with peanut (maize‖peanut, M‖P), sesame intercropping with peanut (sesame‖peanut, S‖P), monocultured peanut (SP), monocultured maize (SM), and monocultured sesame (SS). The different planting patterns were assessed for their effects on the interspecific competition index, dry matter accumulation, photosynthetic rate response curves to light in the functional leaves, yield, and the economic benefits of peanuts. The results showed that: 1) compared with intercropped peanuts in maize‖peanut, the maximum net photosynthetic rate (Pnmax), yield, and maximum dry matter accumulation of intercropped peanuts in sesame‖peanut increased by 18.0%-20.7%, 64.2%-70.0%, and 26.5%-31.8%, respectively. 2) When the dry matter accumulation of intercropped sesame entered the period of 16-19 days after the slow-growing period, the intercropped peanuts in sesame‖peanut were still in the period of rapid dry matter accumulation. The fast growth periods of dry matter accumulation of sesame and peanut in sesame‖peanut intercropping system staggered each other, however, those of maize and peanuts in maize‖peanut intercropping system were overlapped. At the mature stage, the competitiveness index of peanuts against sesame and maize in the intercropping systems was -2.31~-2.06 and -4.68~-4.34, respectively. This indicates that the competitiveness of intercropped peanuts to sesame is stronger than that to maize. 3) The land-equivalent ratio of sesame‖peanut intercropping system increased by 3.0%-4.0% compared with maize‖peanut intercropping system, and those of both systems were greater than 1. The economic benefits of sesame‖peanut intercropping system significantly increased by 16.7%-50.8% compared with maize‖peanut intercropping system, reaching 23 000-24 000 ¥·hm-2. Compared with maize‖peanut intercropping system, sesame‖peanut intercropping system improved the land utilization rate, yield, and income. Sesame‖peanut intercropping system staggered the rapid growth periods of dry matter accumulation of two crops, reduced the intensity of interspecific competition between high and low crops, and improved the canopy light intensity and net photosynthetic rate of intercropped peanuts.
Key words:Sesame‖peanut intercropping/
Maize‖peanut intercropping/
Interspecific competitiveness/
Yield/
Economic benefits

HTML全文


图1不同间作体系中花生荚果膨大期冠层光强日变化曲线(2019)
IP(S‖P): 芝麻‖花生体系的间作花生; IP(M‖P): 玉米‖花生体系的间作花生; SP: 单作花生; PPFD: 光量子通量密度。不同小写字母表示差异在P < 0.05水平差异显著。
Figure1.Diurnal variation curves of light intensity of peanut canopy in different intercropping systems at pod enlargement stage of peanut in 2019
IP(S‖P): peanut in sesame‖peanut intercropping system; IP(M‖P): peanut in maize‖peanut intercropping system; SP: monocultured peanut; PPFD: light quantum flux density. Different lowercase letters mean significant differences at P < 0.05 level.


下载: 全尺寸图片幻灯片


图2玉米‖花生、芝麻‖花生对花生、芝麻、玉米功能叶光合-光强响应曲线的影响
IP(S‖P): 芝麻‖花生体系的间作花生; IP(M‖P): 玉米‖花生间作体系内间作花生; SP: 单作花生; SM: 单作玉米; IM: 间作玉米; SS: 单作芝麻; IS: 间作芝麻; Pn: 净光合速率。
Figure2.Effects of maize‖peanut and sesame‖peanut intercropping on the photosynthetic rate response curves to light in the functional leaves of peanut, sesame and maize
IP(S‖P): peanut in sesame‖peanut intercropping system; IP(M‖P): peanut in maize‖peanut intercropping system; SP: monocultured peanut; SM: monocultured maize; IM: intercropped maize; SS: monocultured sesame; IS: intercropped sesame; Pn: net photosynthetic rate.


下载: 全尺寸图片幻灯片


图3玉米‖花生、芝麻‖花生体系中花生干物质量积累曲线
IP(S‖P): 芝麻‖花生体系的间作花生; IP(M‖P): 玉米‖花生体系的间作花生; SP: 单作花生。
Figure3.Logistic curves of dry matter accumulation of peanuts in maize‖peanut and sesame‖peanut intercropping systems
IP(S‖P): peanut in sesame‖peanut intercropping system; IP(M‖P): peanut in maize‖peanut intercropping system; SP: monocultured peanut.


下载: 全尺寸图片幻灯片


图4玉米‖花生、芝麻‖花生体系中芝麻和玉米干物质量积累曲线
SM: 单作玉米; IM: 间作玉米; SS: 单作芝麻; IS: 间作芝麻。
Figure4.Logistic curves of dry matter accumulation of sesame and maize in sesame‖peanut and maize‖peanut intercropping systems
SM: monocultured maize; IM: intercropped maize; SS: monocultured sesame; IS: intercropped sesame.


下载: 全尺寸图片幻灯片

表1玉米‖花生、芝麻‖花生对花生功能叶光合-光强响应曲线参数的影响
Table1.Effects of maize‖peanut and sesame‖peanut intercropping on relevant parameters of the photosynthetic rate response curves to light in the functional leaves of peanuts
年份
Year
种植方式
Planting pattern
PnmaxIsatIcRd决定系数
Determination coefficient
2018IP(S‖P)21.571720843.110.9965
IP(M‖P)18.281104643.380.9982
SP25.651544602.640.9957
2019IP(S‖P)22.941488602.670.9993
IP(M‖P)19.011164562.630.9986
SP27.231540563.120.9987
IP(S‖P): 芝麻‖花生体系的间作花生; IP(M‖P): 玉米‖花生间作体系内间作花生; SP: 单作花生。Pnmax: 光饱和时净光合速率; Isat: 光饱和点; Ic: 光补偿点; Rd: 暗呼吸速率。IP(S‖P): peanut in sesame‖peanut intercropping system; IP(M‖P): peanut in maize‖peanut intercropping system; SP: monocultured peanut; Pnmax: net photosynthetic rate at light saturation; Isat: light saturation point; Ic: light compensation point; Rd: dark respiration rate.


下载: 导出CSV
表2玉米‖花生、芝麻‖花生体系中花生干物质积累量Logistic模型参数
Table2.Parameters in Logistic models of dry matter accumulation of peanuts in maize‖peanut and sesame‖peanut intercropping systems
年份
Year
种植方式
Planting pattern
K
(g·plant–1)
abR2vmax (g·d–1)tmax (d)t1 (d)t2 (d)Δt (d)
2018IP(S‖P)75.3377.320.0620.9901.1770499142
IP(M‖P)57.1637.040.0490.9710.70744710154
SP86.27155.780.0760.9901.6466498435
2019IP(S‖P)77.61156.240.0720.9591.4070528837
IP(M‖P)61.3753.140.0540.9540.8374499849
SP83.90420.720.0930.9591.9565517928
IP(S‖P): 芝麻‖花生体系的间作花生; IP(M‖P): 玉米‖花生间作体系内间作花生; SP: 单作花生。K: 最大干物质量; vmax: 干物质量最大积累速率; tmax: 干物质量最大积累速率出现时间; t1: 快增期开始时间; t2: 快增期结束时间; Δt: 快增期持续时间。IP(S‖P): peanut in sesame‖peanut intercropping system; IP(M‖P): peanut in maize‖peanut intercropping system; SP: monocultured peanut; K: maximum dry matter mass; vmax: maximum dry matter accumulation rate; tmax: time to maximum accumulation rate of dry matter mass; t1: start time of the rapid growth period; t2: end time of the rapid growth period; Δt: duration of rapid growth period.


下载: 导出CSV
表3玉米‖花生、芝麻‖花生体系中芝麻和玉米干物质积累量Logistic模型参数
Table3.Parameters of Logistic models of dry matter accumulation of sesame and maize in maize‖peanut and sesame‖peanut intercropping systems
年份
Year
种植方式
Planting pattern
K
(g?plant–1)
abR2vmax (g?d–1)tmax (d)t1 (d)t2 (d)Δt (d)
2018IS95.46837.170.1170.9962.7958466923
SS67.16230.300.0910.9931.5360457429
IM327.4452.400.0570.9954.6769469346
SM298.6458.290.0560.9924.1873499647
2019IS95.211277.350.1250.9972.9857476821
SS69.35539.570.1050.9931.8260477225
IM378.1138.050.0490.9954.63744710154
SM308.4536.430.0490.9763.78734610054
IS: 间作芝麻; SS: 单作芝麻; IM: 间作玉米; SM: 单作玉米; K: 最大干物质量; vmax: 干物质量最大积累速率; tmax: 干物质量最大积累速率出现时间; t1: 快增期开始时间; t2: 快增期结束时间; Δt: 快增期持续时间。IS: intercropped sesame; SS: monocultured sesame; IM: intercropped maize; SM: monocultured maize; K: maximum dry matter mass; vmax: maximum dry matter accumulation rate; tmax: time to maximum accumulation rate of dry matter mass; t1: start time of the rapid growth period; t2: end time of rapid growth period; Δt: duration of rapid growth period.


下载: 导出CSV
表4芝麻‖花生、玉米‖花生体系中花生的种间竞争力
Table4.Interspecific competitiveness of peanut to maize and sesame in maize‖peanut and sesame‖peanut intercropping systems
年份
Year
种植方式
Planting pattern
生物产量Biological yield (kg?hm–2)花生竞争力指数
Competitiveness index of peanut
花生Peanut芝麻Sesame玉米Maize
2018芝麻‖花生体系Sesame‖peanut intercropping5382±15b11 837±169a–2.31
玉米‖花生体系Maize‖peanut intercropping3714±32c37 134±524a–4.34
单作Monoculture6598±28ab8067±46b17 590±316b
2019芝麻‖花生体系Sesame‖peanut intercropping5776±221b12 059±49a–2.06
玉米‖花生体系Maize‖peanut intercropping4085±26c39 493±585a–4.68
单作Monoculture6540±90b8531±142b17 252±124b


下载: 导出CSV
表5玉米‖花生、芝麻‖花生体系的产量、土地当量比和经济效益
Table5.Yield, land equivalent ratio, and economic benefits of maize‖peanut and sesame‖peanut intercropping systems
年份
Year
种植方式
Planting pattern
产量
Yield (kg·hm-2)
偏土地当量比
Partial land equivalent ratio
土地当量比
Land equivalent ratio
收益
Revenue (×104 ¥·hm-2)
花生
Peanut
芝麻
Sesame
玉米
Maize
花生
Peanut
芝麻
Sesame
玉米
Maize
2018 S‖P 1917±110b 1175±40b 0.49 0.60 1.09 2.87
M‖P 1125±13c 5867±17b 0.29 0.74 1.03 1.90
SP 3917±83a 2.74
SS 1969±78a 2.56
SM 7896±177a 1.50
2019 S‖P 1683±28b 1038±31b 0.45 0.61 1.06 2.32
M‖P 1025±34c 7067±54b 0.27 0.77 1.04 1.99
SP 3764±159a 2.26
SS 1688±39a 2.13
SM 9206±4a 1.79
S‖P: 芝麻‖花生; M‖P: 玉米‖花生; 2018年和2019年花生价格分别为7.00元?kg–1和6.00元?kg–1, 芝麻价格分别为13.00元?kg–1和2.60元?kg–1, 玉米价格分别为1.90元?kg–1和1.94元?kg–1 (数据来源惠农网)。S‖P: sesame‖peanut intercropping system; M‖P: maize‖peanut intercropping system. In 2018 and 2019, the prices of peanut were 7.00 and 6.00 ¥?kg–1, the prices of sesame were 13.00 and 12.60 ¥?kg–1, and the prices of maize were 1.90 and 1.94 ¥?kg–1, respectively (data from https://www.cnhnb.com/).


下载: 导出CSV

参考文献(36)
[1]张向前, 黄国勤, 卞新民, 等. 间作对玉米品质、产量及土壤微生物数量和酶活性的影响[J]. 生态学报, 2012, 32(22): 7082-7090 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201222020.htm
ZHANG X Q, HUANG G Q, BIAN X M, et al. Effects of intercropping on quality and yield of maize grain, microorganism quantity, and enzyme activities in soils[J]. Acta Ecologica Sinica, 2012, 32(22): 7082-7090 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201222020.htm
[2]LI Q S, CHEN J, WU L K, et al. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems[J]. International Journal of Molecular Sciences, 2018, 19(2): E622 doi: 10.3390/ijms19020622
[3]王林, 王琦, 张恩和, 等. 间作与施氮对秸秆覆盖作物生产力和水分利用效率的影响[J]. 中国生态农业学报, 2014, 22(8): 955-964 doi: 10.13930/j.cnki.cjea.131251
WANG L, WANG Q, ZHANG E H, et al. Effect of nitrogen application on productivity and water use efficiency of wheat/maize intercropping system under straw mulching[J]. Chinese Journal of Eco-Agriculture, 2014, 22(8): 955-964 doi: 10.13930/j.cnki.cjea.131251
[4]VANDERMEER J H. The Ecology of Intercropping[M]. Cambridge: Cambridge University Press, 1989
[5]XIONG H C, SHEN H Y, ZHANG L X, et al. Comparative proteomic analysis for assessment of the ecological significance of maize and peanut intercropping[J]. Journal of Proteomics, 2013, 78: 447-460 doi: 10.1016/j.jprot.2012.10.013
[6]张德, 龙会英. 种间相互作用对牧草间作体系生产力的影响[J]. 干旱地区农业研究, 2017, 35(2): 234-239 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201702039.htm
ZHANG D, LONG H Y. Effects of interspecific interactions on productivity of the intercropping system of intercropping Stylosanthes guianensis/Paspalum atratum[J]. Agricultural Research in the Arid Areas, 2017, 35(2): 234-239 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201702039.htm
[7]姚远, 刘兆新, 刘妍, 等. 花生、玉米不同间作方式对花生生理性状以及产量的影响[J]. 花生学报, 2017, 46(1): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-PEAN201701001.htm
YAO Y, LIU Z X, LIU Y, et al. Effect of different peanut-maize intercropping patterns on peanut growth and yield[J]. Journal of Peanut Science, 2017, 46(1): 1-7 https://www.cnki.com.cn/Article/CJFDTOTAL-PEAN201701001.htm
[8]WANG Q, WU Y H, ZHAO L, et al. Research on efficiency improving technology for intercropping sesame (Sesamum indicum) and peanut (Arachis hypogaea)[J]. Agricultural Science & Technology, 2012, 13(2): 324-329 http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNNT201202022.htm
[9]林松明, 孟维伟, 南镇武, 等. 玉米间作花生冠层微环境变化及其与荚果产量的相关性研究[J]. 中国生态农业学报(中英文), 2020, 28(1): 31-41 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202001004.htm
LIN S M, MENG W W, NAN Z W, et al. Canopy microenvironment change of peanut intercropped with maize and its correlation with pod yield[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1): 31-41 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202001004.htm
[10]王飞, 刘领, 武岩岩, 等. 玉米花生间作改善花生铁营养提高其光合特性的机理[J]. 植物营养与肥料学报, 2020, 26(5): 901-913 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202005011.htm
WANG F, LIU L, WU Y Y, et al. Mechanism of maize intercropping peanut improving iron nutrition to increase photosynthetic performance of peanut[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 901-913 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202005011.htm
[11]相云秋, 张甜, 邹晓霞, 等. 玉米花生间作对花生植株生长动态影响的研究[J]. 农业科学, 2018, 8(1): 69-75 doi: 10.3969/j.issn.0488-5368.2018.01.022
XIANG Y Q, ZHANG T, ZOU X X, et al. Effect of maize-peanut intercropping on peanut growth dynamics[J]. Hans Journal of Agricultural Sciences, 2018, 8(1): 69-75 doi: 10.3969/j.issn.0488-5368.2018.01.022
[12]姚远. 花生、玉米不同间作方式对连作花生生理特性及产量品质的影响[D]. 泰安: 山东农业大学, 2017
YAO Y. Effect of different peanut-maize intercropping patterns on the physiological characteristics, yield and quality in continuous cropping peanut[D]. Tai'an: Shandong Agricultural University, 2017
[13]朱启林, 向蕊, 汤利, 等. 间作条件下施氮量对马铃薯光合特性的调控作用[J]. 生态学杂志, 2018, 37(5): 1391-1397 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201805013.htm
ZHU Q L, XIANG R, TANG L, et al. The effects of nitrogen application rate on photosynthetic characteristics of potato under intercropping[J]. Chinese Journal of Ecology, 2018, 37(5): 1391-1397 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201805013.htm
[14]沈其荣, 褚贵新, 曹金留, 等. 从氮素营养的角度分析旱作水稻与花生间作系统的产量优势[J]. 中国农业科学, 2004, 37(8): 1177-1182 doi: 10.3321/j.issn:0578-1752.2004.08.016
SHEN Q R, CHU G X, CAO J L, et al. Yield advantage of groundnut intercropped with rice cultivated in aerobic soil from the viewpoint of plant nitrogen nutrition[J]. Scientia Agricultura Sinica, 2004, 37(8): 1177-1182 doi: 10.3321/j.issn:0578-1752.2004.08.016
[15]焦念元, 李亚辉, 李法鹏, 等. 间作玉米穗位叶的光合和荧光特性[J]. 植物生理学报, 2015, 51(7): 1029-1037 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201507007.htm
JIAO N Y, LI Y H, LI F P, et al. Photosynthesis and chlorophyll fluorescence characteristics in ear leaves of intercropped maize[J]. Plant Physiology Journal, 2015, 51(7): 1029-1037 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201507007.htm
[16]叶子飘, 李进省. 光合作用对光响应的直角双曲线修正模型和非直角双曲线模型的对比研究[J]. 井冈山大学学报: 自然科学版, 2010, 31(3): 38-44 https://www.cnki.com.cn/Article/CJFDTOTAL-JGSS201003010.htm
YE Z P, LI J S. Comparative investigation light response of photosynthesis on non-rectangular Hyperbola model and modified model of rectangular Hyperbola[J]. Journal of Jinggangshan University: Natural Science, 2010, 31(3): 38-44 https://www.cnki.com.cn/Article/CJFDTOTAL-JGSS201003010.htm
[17]WEST G B, BROWN J H, ENQUIST B J. A general model for ontogenetic growth[J]. Nature, 2001, 413(6856): 628-631 doi: 10.1038/35098076
[18]WU R L, MA C X, LITTELL R C, et al. A logistic mixture model for characterizing genetic determinants causing differentiation in growth trajectories[J]. Genetical Research, 2002, 79(3): 235-245 doi: 10.1017/S0016672302005633
[19]崔党群. Logistic曲线方程的解析与拟合优度测验[J]. 数理统计与管理, 2005, 24(1): 112-115 doi: 10.3969/j.issn.1002-1566.2005.01.021
CUI D Q. Analysis and making good fitting degree test for logistic curve regression equation[J]. Application of Statistics and Management, 2005, 24(1): 112-115 doi: 10.3969/j.issn.1002-1566.2005.01.021
[20]WILLEY R W. Intercropping: its importance and research needs. Part 2, agronomy and research approaches[EB/OL]. (1979-01-01). https://www.researchgate.net/publication/284790670_Intercropping_its_Importance_and_Research_Needs_Part_2_Agronomy_and_Research_Approaches
[21]MEAD R, WILLEY R W. The concept of a 'land equivalent ratio' and advantages in yields from intercropping[J]. Experimental Agriculture, 1980, 16(3): 217-228 doi: 10.1017/S0014479700010978
[22]张磊, 刘维正, 辛国胜, 等. 3种专用型甘薯光合光响应曲线及其模型拟合研究[J]. 中国农学通报, 2015, 31(15): 71-77 doi: 10.11924/j.issn.1000-6850.casb14110037
ZHANG L, LIU W Z, XIN G S, et al. Photosynthesis light response curves of three sweet-potato varieties and model fitting[J]. Chinese Agricultural Science Bulletin, 2015, 31(15): 71-77 doi: 10.11924/j.issn.1000-6850.casb14110037
[23]LI Y H, SHI D Y, LI G H, et al. Maize/peanut intercropping increases photosynthetic characteristics, 13C-photosynthate distribution, and grain yield of summer maize[J]. Journal of Integrative Agriculture, 2019, 18(10): 2219-2229 doi: 10.1016/S2095-3119(19)62616-X
[24]周玉霞, 巨天珍, 王引弟, 等. 4种光响应曲线模型对3种高寒草甸植物的实用性分析[J]. 草地学报, 2018, 26(2): 488-496 https://www.cnki.com.cn/Article/CJFDTOTAL-CDXU201802031.htm
ZHOU Y X, JU T Z, WANG Y D, et al. Four light response curve models applied to the analysis of three species of alpine meadow plants[J]. Acta Agrestia Sinica, 2018, 26(2): 488-496 https://www.cnki.com.cn/Article/CJFDTOTAL-CDXU201802031.htm
[25]王小春, 杨文钰, 邓小燕, 等. 玉米/大豆和玉米/甘薯模式下玉米干物质积累与分配差异及氮肥的调控效应[J]. 植物营养与肥料学报, 2015, 21(1): 46-57 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201501006.htm
WANG X C, YANG W Y, DENG X Y, et al. Differences of dry matter accumulation and distribution of maize and their responses to nitrogen fertilization in maize/soybean and maize/sweet potato relay intercropping systems[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 46-57 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201501006.htm
[26]肖永成. 大豆干物质积累分配与产量的关系研究[J]. 现代农业科技, 2020, (1): 4-6 doi: 10.3969/j.issn.1007-5739.2020.01.002
XIAO Y C. Relationship between dry matter accumulation distribution and yield of soybean[J]. Modern Agricultural Science and Technology, 2020, (1): 4-6 doi: 10.3969/j.issn.1007-5739.2020.01.002
[27]赵德强, 李彤, 侯玉婷, 等. 玉米大豆间作模式下干物质积累和产量的边际效应及其系统效益[J]. 中国农业科学, 2020, 53(10): 1971-1985 doi: 10.3864/j.issn.0578-1752.2020.10.005
ZHAO D Q, LI T, HOU Y T, et al. Benefits and marginal effect of dry matter accumulation and yield in maize and soybean intercropping patterns[J]. Scientia Agricultura Sinica, 2020, 53(10): 1971-1985 doi: 10.3864/j.issn.0578-1752.2020.10.005
[28]赵建华, 孙建好, 李伟绮. 玉米播期对大豆/玉米间作产量及种间竞争力的影响[J]. 中国生态农业学报, 2018, 26(11): 1634-1642 doi: 10.13930/j.cnki.cjea.180132
ZHAO J H, SUN J H, LI W Q. Effect of maize sowing date on yield and interspecific competition in soybean/maize intercropping system[J]. Chinese Journal of Eco-Agriculture, 2018, 26(11): 1634-1642 doi: 10.13930/j.cnki.cjea.180132
[29]WAHID P A. Radioisotope studies of root activity and root-level interactions in tree-based production systems: a review[J]. Applied Radiation and Isotopes, 2001, 54(5): 715-736 doi: 10.1016/S0969-8043(00)00347-X
[30]肖璞, 刘虎虎, 王翀, 等. 植物高光效研究进展[J]. 生物学杂志, 2020, 37(2): 88-91 doi: 10.3969/j.issn.2095-1736.2020.02.088
XIAO P, LIU H H, WANG C, et al. Advances on the high photosynthetic efficiency in plants[J]. Journal of Biology, 2020, 37(2): 88-91 doi: 10.3969/j.issn.2095-1736.2020.02.088
[31]陈宗培, 薛佳欣, 李奔, 等. 玉米光合特性和冠层微环境对密度和行株距配置的响应[J]. 作物杂志, 2020, (1): 179-186 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ202001030.htm
CHEN Z P, XUE J X, LI B, et al. Response of photosynthetic characteristics and canopy micro-environment to planting density and row spacing of maize (Zea mays L. )[J]. Crops, 2020, (1): 179-186 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZZ202001030.htm
[32]魏珊珊, 王祥宇, 董树亭. 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响[J]. 应用生态学报, 2014, 25(2): 441-450 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201402020.htm
WEI S S, WANG X Y, DONG S T. Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maize[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 441-450 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201402020.htm
[33]杨宗渠, 李长看, 徐芳芳, 等. 不同品种芝麻冠层结构及其光合特性[J]. 西北农业学报, 2017, 26(7): 1020-1025 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201707010.htm
YANG Z Q, LI C K, XU F F, et al. Canopy structure and photosynthetic characteristics of different sesame cultivars[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(7): 1020-1025 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201707010.htm
[34]GIL J. Multiple cropping systems[J]. Nature Food, 2020, 1(10): 593 doi: 10.1038/s43016-020-00177-6
[35]吴小丽, 江日东, 陈傲, 等. 不同玉米花生间作模式对系统产量及土地当量比的影响分析[J]. 中国农业文摘: 农业工程, 2020, 32(6): 44-45 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNWG202006017.htm
WU X L, JIANG R D, CHEN A, et al. Effects of different maize and peanut intercropping patterns on system yield and land equivalent ratio[J]. Agricultural Science and Engineering in China, 2020, 32(6): 44-45 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNWG202006017.htm
[36]梁满, 徐杰, 汪宝卿, 等. 不同等带宽间作模式对芝麻花生产量和效益的影响[J]. 花生学报, 2020, 49(1): 79-82 https://www.cnki.com.cn/Article/CJFDTOTAL-PEAN202001012.htm
LIANG M, XU J, WANG B Q, et al. Effects of different intercropping system with equal band width on yield and economic benefit of sesame and peanut[J]. Journal of Peanut Science, 2020, 49(1): 79-82 https://www.cnki.com.cn/Article/CJFDTOTAL-PEAN202001012.htm

相关话题/物质 花生 土地 植物 生理