李芳兰,
马晓娟,
景盼盼,
罗成科,,
田蕾,
李培富
宁夏大学农学院/宁夏优势特色作物现代分子育种重点实验室 银川 750021
基金项目: 国家自然科学基金项目32060425
国家自然科学基金项目31560297
宁夏自然科学基金项目2020AAC03095
详细信息
作者简介:路旭平, 主要从事水稻抗逆分子生物学研究。E-mail: 577861974@qq.com
通讯作者:罗成科, 主要从事植物抗逆分子生物学研究。E-mail: chkluo2002@163.com
中图分类号:S511;S332计量
文章访问数:120
HTML全文浏览量:28
PDF下载量:20
被引次数:0
出版历程
收稿日期:2020-12-10
录用日期:2021-03-11
刊出日期:2021-07-01
Physiological response strategies of roots of different alkali-tolerant rice varieties to alkali stress
LU Xuping,LI Fanglan,
MA Xiaojuan,
JING Panpan,
LUO Chengke,,
TIAN Lei,
LI Peifu
Agricultural College of Ningxia University/Key Laboratory of Modern Molecular Breeding of Dominant Characteristic Crops in Ningxia, Yinchuan 750021, China
Funds: the National Natural Science Foundation of China32060425
the National Natural Science Foundation of China31560297
the Natural Science Foundation of Ningxia2020AAC03095
More Information
Corresponding author:LUO Chengke, E-mail: chkluo2002@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为明确碱敏感和耐碱水稻品种幼苗根系响应碱胁迫的生理差异和应对策略,本试验以碱敏感水稻品种‘中花11’和耐碱品种‘宁粳52’为材料,将两种碱性盐(NaHCO3和Na2CO3)按照不同摩尔比混合,设3个碱浓度水平(10 mmol·L-1、20 mmol·L-1和30 mmol·L-1)和3个pH水平(8.65、9.55和10.50),模拟出9种碱胁迫环境,研究碱胁迫对供试水稻幼苗根系生长和相关抗逆生理指标的影响;并用逐步回归分析建立最优回归方程,进而筛选出不同胁迫程度下不同水稻品种响应碱胁迫的关键指标。结果表明:1)碱胁迫条件下‘中花11’的根系生长特征(根系总长度、根系总表面积、根系平均直径、根体积)和根系活力降幅大于‘宁粳52’,根系脂氧合酶(LOX)活性、丙二醛(MDA)含量、活性氧(O2·-、H2O2)含量均显著高于‘宁粳52’,而根系渗透调节物质[可溶性糖(SS)、可溶性蛋白(SP)和游离脯氨酸(Pro)]含量、抗氧化酶[超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)]活性、还原型抗坏血酸(ASA)和还原型谷胱甘肽(GSH)含量增幅均低于‘宁粳52’。2)在‘中花11’中,20C(碱浓度为20 mmol·L-1,pH 10.50)处理下根系平均直径、根系活力低于30A(碱浓度为30 mmol·L-1,pH 8.65)处理,MDA含量、LOX活性、O2·-产生速率、H2O2含量显著高于30A处理,即高pH低碱浓度对水稻的伤害大于低pH高碱浓度引起的伤害。3)冗余(RDA)分析表明Na+和pH的增加与供试水稻各生长指标的升高呈负相关,与抗逆生理指标的升高呈正相关。4)逐步回归分析表明,ASA、SS和H2O2含量是‘中花11’响应碱胁迫较为敏感的指标;根系平均直径、根系总表面积、根系活力、Pro、SS、SOD、POD和GSH是‘宁粳52’响应碱胁迫较为敏感的指标。综上,碱浓度和pH胁迫均影响了供试水稻根系生长特征和生理特性,在碱化土壤中栽培水稻需要同时考虑碱分组成和pH的影响,不同水稻品种在抵御碱胁迫时会启动不同的防御策略。
关键词:水稻/
碱胁迫/
pH/
根系/
生长/
生理/
响应策略
Abstract:This study aimed to investigate the physiological differences and coping strategies of the roots of rice varieties with different tolerances to alkali stress. In this experiment, alkali-sensitive rice variety 'Zhonghua 11' and alkali-tolerant rice variety 'Ninggeng 52' were subjected to nine alkali stress using two types of alkaline salts (sodium bicarbonate and sodium carbonate) in three alkali concentration levels (10 mmol·L-1, 20 mmol·L-1, and 30 mmol·L-1) and three pH levels (8.65, 9.55, and 10.50). The effects of alkali stress on the root growth and stress resistance of rice seedlings were examined. Through stepwise regression analysis, the optimal regression equation was established, and the key indices of the response of different rice varieties to alkali stress were screened. The results showed that: 1) the decline of root growth characteristics (total root length, total root surface area, average root diameter, and root volume) and root activity of 'Zhonghua 11' were greater than those of 'Ninggeng 52' (P < 0.05). The lysyl oxidase (LOX), malondialdehyde (MDA), superoxide anion (O2·-) producing rate, and hydrogen peroxide (H2O2) content in the roots of 'Zhonghua 11' were significantly higher than those of 'Ninggeng 52' (P < 0.05). The content of osmotic adjustment substances[soluble sugar (SS), soluble protein (SP), free proline (Pro)], the activities of antioxidant enzymes[superoxide dismutase (SOD), peroxidase (POD), catalase (CAT)], reduced ascorbic acid (ASA), and reduced glutathione (GSH) in the roots of 'Zhonghua 11' were lower than those of 'Ninggeng 52'. 2) In 'Zhonghua 11', the average root diameter and root activity of the 20C treatment (20 mmol·L-1, pH 10.50) were lower than those of the 30A treatment (30 mmol·L-1, pH 8.65). The MDA content, LOX activity, O2·- production rate, and H2O2 content of the 20C treatment were significantly higher than those of the 30A treatment, and the damage caused by high pH and a low alkali concentration was greater than that of low pH and a high alkali concentration. 3) Redundancy analysis showed that the increase in sodium ions (Na+) and pH was negatively correlated with the increased growth indexes and positively correlated with increases in the physiological indexes for the tested rice varieties. 4) Stepwise regression analysis showed that the ASA, SS, and H2O2 contents were sensitive indicators of alkali stress in 'Zhonghua 11'. The average root diameter, total root surface area, root activity, Pro content, SS content, SOD activity, POD activity, and GSH content were the sensitive indexes of alkali stress for 'Ninggeng 52'. In summary, alkali and pH stress affected the growth and physiological characteristics of rice roots of rice. The effects of alkali composition and pH must be considered when cultivating rice in alkaline soil, as different rice varieties initiate different defense strategies against different alkali stresses.
Key words:Rice/
Alkali stress/
pH/
Root system/
Growth/
Physiological/
Response strategy
HTML全文
图1碱胁迫对水稻根系生长特征的影响
ZH11和NG52分别表示水稻品种‘中花11’和‘宁粳52’。CK: 不加碱对照; 10、20和30分别表示碱浓度10 mmol?L–1、20 mmol?L–1和30?mmol·L–1; A、B和C分别表示pH为8.65、9.55和10.50。不同小写字母表示同一品种在不同处理下差异显著(P < 0.05); *、**和ns分别表示相同胁迫处理不同品种在P < 0.05、P < 0.01水平差异显著和差异不显著。
Figure1.Effects of alkali stress on root growth characteristics of rice
ZH11 and NG52 respectively indicate rice varieties 'Zhonghua11' and 'Ninggeng52'. CK: no-alkali (control); 10, 20 and 30 respectively indicate alkali contentrations of 10 mmol?L–1, 20 mmol?L–1 and 30 mmol?L–1; A, B and C respectively indicate pH levels of 8.65, 9.55 and 10.50. Different lowercase letters indicate significant difference of the same rice variety among different treatments at P < 0.05 level; * and ** indicate significant difference at P < 0.05 and P < 0.01 levels, and "ns" indicate no significant difference, between two rice varieties under the same treatment, respectively.
下载: 全尺寸图片幻灯片
图2碱胁迫对水稻根系活力和渗透调节物质的影响
ZH11和NG52分别表示水稻品种‘中花11’和‘宁粳52’。CK: 不加碱对照; 10、20和30分别表示碱浓度10 mmol?L–1、20 mmol?L–1和30?mmol·L–1; A、B和C分别表示pH为8.65、9.55和10.50。不同小写字母表示同一品种在不同处理下差异显著(P < 0.05); *、**和ns分别表示相同胁迫处理不同品种在P < 0.05、P < 0.01水平差异显著和差异不显著。
Figure2.Effects of alkali stress on root activity and osmotic adjustment substances of rice
ZH11 and NG52 respectively indicate rice varieties 'Zhonghua11' and 'Ninggeng52'. CK: no-alkali (control); 10, 20 and 30 respectively indicate alkali contentrations of 10 mmol?L–1, 20 mmol?L–1 and 30 mmol?L–1; A, B and C respectively indicate pH levels of 8.65, 9.55 and 10.50. Different lowercase letters indicate significant difference of the same rice variety among different treatments at P < 0.05 level; * and ** indicate significant difference at P < 0.05 and P < 0.01 levels, and "ns" indicate no significant difference, between two rice varieties under the same treatment, respectively.
下载: 全尺寸图片幻灯片
图3碱胁迫对水稻根系脂质过氧化[丙二醛(MDA)含量和脂氧合酶(LOX)活性]和活性氧含量($\text{O}_2^{ \cdot - }$产生速率和H2O2含量)的影响
ZH11和NG52分别表示水稻品种‘中花11’和‘宁粳52’。CK: 不加碱对照; 10、20和30分别表示碱浓度10 mmol?L–1、20 mmol?L–1和30?mmol·L–1; A、B和C分别表示pH为8.65、9.55和10.50。不同小写字母表示同一品种在不同处理下差异显著(P < 0.05); *、**和ns分别表示相同胁迫处理不同品种在P < 0.05、P < 0.01水平差异显著和差异不显著。
Figure3.Effects of alkali stress on malonaldehyde (MDA) content, lipoxygenase (LOX) activity, ${\rm{O}}_{\rm{2}}^{ \cdot - }$ producing rate and H2O2 content in rice roots
ZH11 and NG52 respectively indicate rice varieties 'Zhonghua11' and 'Ninggeng52'. CK: no-alkali (control); 10, 20 and 30 respectively indicate alkali contentrations of 10 mmol?L–1, 20 mmol?L–1 and 30 mmol?L–1; A, B and C respectively indicate pH levels of 8.65, 9.55 and 10.50. Different lowercase letters indicate significant difference of the same rice variety among different treatments at P < 0.05 level; * and ** indicate significant difference at P < 0.05 and P < 0.01 levels, and "ns" indicate no significant difference, between two rice varieties under the same treatment, respectively.
下载: 全尺寸图片幻灯片
图4碱胁迫水稻根系抗氧化酶[超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)]活性的影响
ZH11和NG52分别表示水稻品种‘中花11’和‘宁粳52’。CK: 不加碱对照; 10、20和30分别表示碱浓度10 mmol?L–1、20 mmol?L–1和30?mmol·L–1; A、B和C分别表示pH为8.65、9.55和10.50。不同小写字母表示同一品种在不同处理下差异显著(P < 0.05); *、**和ns分别表示相同胁迫处理不同品种在P < 0.05、P < 0.01水平差异显著和差异不显著。
Figure4.Effects of alkali stress on antioxidant enzymes (superoxide dismutase, SOD; peroxidase, POD; catalase, CAT) activities of rice roots
ZH11 and NG52 respectively indicate rice varieties 'Zhonghua11' and 'Ninggeng52'. CK: no-alkali (control); 10, 20 and 30 respectively indicate alkali contentrations of 10 mmol?L–1, 20 mmol?L–1 and 30 mmol?L–1; A, B and C respectively indicate pH levels of 8.65, 9.55 and 10.50. Different lowercase letters indicate significant difference of the same rice variety among different treatments at P < 0.05 level; * and ** indicate significant difference at P < 0.05 and P < 0.01 levels, and "ns" indicate no significant difference, between two rice varieties under the same treatment, respectively.
下载: 全尺寸图片幻灯片
图5碱胁迫对水稻根系还原型抗坏血酸含量(ASA)和还原型谷胱甘肽(GSH)含量的影响
ZH11和NG52分别表示水稻品种‘中花11’和‘宁粳52’。CK: 不加碱对照; 10、20和30分别表示碱浓度10 mmol?L–1、20 mmol?L–1和30?mmol·L–1; A、B和C分别表示pH为8.65、9.55和10.50。不同小写字母表示同一品种在不同处理下差异显著(P < 0.05); *、**和ns分别表示相同胁迫处理不同品种在P < 0.05、P < 0.01水平差异显著和差异不显著。
Figure5.Effects of alkali stress on reduced ascorbic acid (ASA) and glutathione (GSH) contents in rice roots
ZH11 and NG52 respectively indicate rice varieties 'Zhonghua11' and 'Ninggeng52'. CK: no-alkali (control); 10, 20 and 30 respectively indicate alkali contentrations of 10 mmol?L–1, 20 mmol?L–1 and 30 mmol?L–1; A, B and C respectively indicate pH levels of 8.65, 9.55 and 10.50. Different lowercase letters indicate significant difference of the same rice variety among different treatments at P < 0.05 level; * and ** indicate significant difference at P < 0.05 and P < 0.01 levels, and "ns" indicate no significant difference, between two rice varieties under the same treatment, respectively.
下载: 全尺寸图片幻灯片
图6水稻根系生长及生理指标与胁迫因子间的RDA分析(A为‘中花11’, B为‘宁粳52’)
Pro: 游离脯氨酸含量; SS: 可溶性糖含量; SP: 可溶性蛋白含量; MDA: 丙二醛含量; LOX: 脂氧合酶活性; ${\rm{O}}_{\rm{2}}^{ \cdot - }$: ${\rm{O}}_{\rm{2}}^{ \cdot - }$产生速率; H2O2: H2O2含量; SOD: 超氧化物歧化酶活性; POD: 过氧化物酶活性; CAT: 过氧化氢酶活性; ASA: 还原型抗坏血酸含量; GSH: 还原型谷胱甘肽含量。
Figure6.RDA analysis between root growth and physiological indexes of rice and stress factors (A: Zhonghua11; B: Ninggeng52)
Pro: proline content; SS: soluble sugar content; SP: soluble protein content; MDA: malondialdehyde content; LOX: lipoxygenase activity; ${\rm{O}}_{\rm{2}}^{ \cdot - }$: ${\rm{O}}_{\rm{2}}^{ \cdot - }$ producing rate; H2O2: H2O2 content; SOD: superoxide dismutase activity; POD: peroxidased activity; CAT: catalase activity; ASA: reduced ascorbic acid content; GSH: glutathione content.
下载: 全尺寸图片幻灯片
表1各处理碱组成和pH
Table1.Alkali composition and pH of each treatment
处理 Treatment | 总碱浓度 Total alkali concentration (mmol?L–1) | pH | 碱浓度 Alkali concentration (mmol?L–1) | |
NaHCO3 | Na2CO3 | |||
CK | 0 | 5.50±0.05 | 0 | 0 |
10A | 10 | 8.65±0.05 | 9 | 1 |
10B | 10 | 9.55±0.05 | 5 | 5 |
10C | 10 | 10.50±0.05 | 1 | 9 |
20A | 20 | 8.65±0.05 | 18 | 2 |
20B | 20 | 9.55±0.05 | 10 | 10 |
20C | 20 | 10.50±0.05 | 2 | 18 |
30A | 30 | 8.65±0.05 | 27 | 3 |
30B | 30 | 9.55±0.05 | 15 | 15 |
30C | 30 | 10.50±0.05 | 3 | 27 |
下载: 导出CSV
表2不同耐碱性水稻品种生长及生理指标与胁迫程度的逐步回归分析
Table2.Stepwise regression analysis of growth and physiological indexes of different rice varieties with degree of alkali stress
胁迫程度 The degree of stress | 品种 Variety | 最优线性回归方程 Best multiple linear regressing equation | |
轻度(碱浓度为10 mmol?L–1, pH为8.65、9.55和10.50) Light (10 mmol?L–1 alkaline concentration with pH 8.65, 9.55 and 10.50) | 中花11 ZH11 | Y=?3.613+0.594X16 | (R2=0.963, F=183.909**) |
宁粳52 NG52 | Y=85.413+0.260X6?279.923X3?0.021X14 | (R2=0.995, F=516.403**) | |
中度(碱浓度为20 mmol?L–1, pH为8.65、9.55; 碱浓度为30 mmol?L–1, pH为8.65) Mild (20 mmol?L–1 alkaline concentration wiht pH 8.65, 9.55; 30 mmol?L–1 alkaline concentration wiht pH 8.65) | 中花11 ZH11 | Y=?37.443+4.270X7 | (R2=0.922, F=82.607**) |
宁粳52 NG52 | Y=73.434?257.696X3+0.042X13?2.323X2+0.969X7?71.776X5 | (R2=1.000, F=16 025.683**) | |
重度(碱浓度为20 mmol?L–1, pH为10.50; 碱浓度为30 mmol?L–1, pH为9.55和10.50) Sever (20 mmol?L–1 alkaline concentration wiht pH 10.50; 30 mmol?L–1 alkaline concentration wiht pH 9.55 and 10.50) | 中花11 ZH11 | Y=?35.018+13.051X12+0.549X16 | (R2=0.925, F=50.276**) |
宁粳52 NG52 | Y=?59.631+0.383X17+8.619X12+0.24X5 | (R2=0.998, F=859.791**) | |
Y为胁迫程度; X为根系生长及生理参数, 包括根系总长度(X1)、根系总表面积(X2)、根系平均直径(X3)、根体积(X4)、根系活力(X5)、游离脯氨酸含量(X6)、可溶性糖含量(X7)、可溶性蛋白含量(X8)、丙二醛含量(X9)、脂氧合酶活性(X10)、O2·–产生速率(X11)、H2O2含量(X12)、超氧化物歧化酶活性(X13)、过氧化物酶活性(X14)、过氧化氢酶活性(X15)、还原型抗坏血酸含量(X16)、还原型谷胱甘肽含量(X17)。**表示P < 0.01水平显著相关。Y is alkali stress degree. X is growth and physiological parameters of roots, including total root length (X1), total root surface area (X2), average root diameter (X3), root volume (X4), root activity (X5), proline content (X6), soluble sugar content (X7), soluble protein content (X8), malondialdehyde (MDA) content (X9), lipoxygenase (LOX) activity (X10), ${\rm{O}}_{\rm{2}}^{ \cdot - }$ producing rate (X11), H2O2 content (X12), superoxide dismutase (SOD) activity (X13), peroxidased (POD) activity (X14), catalase (CAT) activity (X15), reduced ascorbic acid (ASA) content (X16), glutathione (GSH) content (X17). ** represents significant correlation at P < 0.01. |
下载: 导出CSV
参考文献
[1] | MORTON M J L, AWLIA M, AL-TAMIMI N, et al. Salt stress under the scalpel-dissecting the genetics of salt tolerance[J]. The Plant Journal, 2019, 97(1): 148-163 doi: 10.1111/tpj.14189 |
[2] | 王佳丽, 黄贤金, 钟太洋, 等. 盐碱地可持续利用研究综述[J]. 地理学报, 2011, 66(5): 673-684 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201105013.htm WANG J L, HUANG X J, ZHONG T Y, et al. Review on sustainable utilization of salt-affected land[J]. Acta Geographica Sinica, 2011, 66(5): 673-684 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201105013.htm |
[3] | 郜少敏, 耿玉清, 丛日春, 等. 碱胁迫对碱蓬种子萌发及幼苗生长的影响[J]. 中国水土保持科学, 2019, 17(6): 126-131 https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201906016.htm GAO S M, GENG Y Q, CONG R C, et al. Effects of alkaline stress on seed germination and seedling growth of Suaeda salsa[J]. Science of Soil and Water Conservation, 2019, 17(6): 126-131 https://www.cnki.com.cn/Article/CJFDTOTAL-STBC201906016.htm |
[4] | 金梦野, 李小华, 李昉泽, 等. 盐碱复合胁迫对水稻种子发芽的影响[J]. 中国生态农业学报(中英文), 2020, 28(4): 566-574 doi: 10.13930/j.cnki.cjea.190750 JIN M Y, LI X H, LI F Z, et al. Effects of mixed saline-alkali stress on germination of rice[J]. Chinese Journal of Eco-Agriculture, 2020, 28(4): 566-574 doi: 10.13930/j.cnki.cjea.190750 |
[5] | 王佺珍, 刘倩, 高娅妮, 等. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报, 2017, 37(16): 5565-5577 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201716033.htm WANG Q Z, LIU Q, GAO Y N, et al. Review on the mechanisms of the response to salinity-alkalinity stress in plants[J]. Acta Ecologica Sinica, 2017, 37(16): 5565-5577 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201716033.htm |
[6] | 徐宁, 陈冰嬬, 王明海, 等. 绿豆品种资源萌发期耐碱性鉴定[J]. 作物学报, 2017, 43(1): 112-121 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201701012.htm XU N, CHEN B R, WANG M H, et al. Identification of alkali tolerance of mungbean germplasm resources during germination[J]. Acta Agronomica Sinica, 2017, 43(1): 112-121 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201701012.htm |
[7] | 郭瑞, 周际, 杨帆, 等. 碱胁迫对小麦(Triticum aestivum L)叶片代谢过程的影响[J]. 中国农业科学, 2017, 50(2): 250-259 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201702005.htm GUO R, ZHOU J, YANG F, et al. Effects of alkaline stress on metabonomic responses of wheat (Triticum aestivum linn) leaves[J]. Scientia Agricultura Sinica, 2017, 50(2): 250-259 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201702005.htm |
[8] | LIU L, XIA W L, LI H X, et al. Salinity inhibits rice seed germination by reducing α-amylase activity via decreased bioactive gibberellin content[J]. Frontiers in Plant Science, 2018, 9: 275 doi: 10.3389/fpls.2018.00275 |
[9] | FLOWERS T J, COLMER T D. Salinity tolerance in halophytes[J]. The New Phytologist, 2008, 179(4): 945-963 doi: 10.1111/j.1469-8137.2008.02531.x |
[10] | 穆阳杰, 詹玉洁, 许卫锋, 等. 高pH胁迫下拟南芥根转录组学与网络应答[J]. 土壤学报, 2020, 57(3): 691-701 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB202003016.htm MU Y J, ZHAN Y J, XU W F, et al. Transcriptome and network response of Arabidopsis root under high pH stress[J]. Acta Pedologica Sinica, 2020, 57(3): 691-701 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB202003016.htm |
[11] | NIU L, LU J M, WU D M, et al. Changes in the vascular cylinder of wild soybean roots under alkaline stress[J]. Journal of Integrative Agriculture, 2014, 13(10): 2164-2169 doi: 10.1016/S2095-3119(13)60645-0 |
[12] | 郭瑞, 周际, 杨帆, 等. 小麦根系在碱胁迫下的生理代谢反应[J]. 植物生态学报, 2017, 41(6): 683-692 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201706009.htm GUO R, ZHOU J, YANG F, et al. Metabolic responses of wheat roots to alkaline stress[J]. Chinese Journal of Plant Ecology, 2017, 41(6): 683-692 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201706009.htm |
[13] | ZHANG K H, TANG J R, WANG Y, et al. The tolerance to saline-alkaline stress was dependent on the roots in wheat[J]. Physiology and Molecular Biology of Plants, 2020, 26(5): 947-954 doi: 10.1007/s12298-020-00799-x |
[14] | 于天一, 王春晓, 孙学武, 等. 碱胁迫对花生幼苗根系形态及干物质累积的影响[J]. 中国油料作物学报, 2017, 39(2): 190-196 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201702008.htm YU T Y, WANG C X, SUN X W, et al. Effects of alkaline stress on root morphology and dry matter accumulation characteristics of peanut seedling[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(2): 190-196 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201702008.htm |
[15] | ZHANG H, LIU X L, ZHANG R X, et al. Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice (Oryza sativa L. )[J]. Frontiers in Plant Science, 2017, 8: 1580 doi: 10.3389/fpls.2017.01580 |
[16] | WANG H, WU Z H, HAN J Y, et al. Comparison of ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants[J]. PLoS One, 2012, 7(5): e37817 doi: 10.1371/journal.pone.0037817 |
[17] | WANG H, AHAN J, WU Z H, et al. Alteration of nitrogen metabolism in rice variety 'Nipponbare' induced by alkali stress[J]. Plant and Soil, 2012, 355(1/2): 131-147 http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1007/s11104-011-1086-2 |
[18] | GANIE S A, MOLLA K A, HENRY R J, et al. Advances in understanding salt tolerance in rice[J]. Theoretical and Applied Genetics, 2019, 132(4): 851-870 doi: 10.1007/s00122-019-03301-8 |
[19] | JAISWAL S, GAUTAM R K, SINGH R K, et al. Harmonizing technological advances in phenomics and genomics for enhanced salt tolerance in rice from a practical perspective[J]. Rice: New York, N Y, 2019, 12(1): 89 doi: 10.1186/s12284-019-0347-1 |
[20] | WANG H, LIN X, CAO S, et al. Alkali tolerance in rice (Oryza sativa L. ): growth, photosynthesis, nitrogen metabolism, and ion homeostasis[J]. Photosynthetica, 2015, 53(1): 55-65 |
[21] | ZHANG Y H, LIN X Y, OU X F, et al. Transcriptome alteration in a rice introgression line with enhanced alkali tolerance[J]. Plant Physiology and Biochemistry, 2013, 68: 111-117 doi: 10.1016/j.plaphy.2013.04.012 |
[22] | 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000 ZOU Q. Plant Physiology Experiment Guidance[M]. Beijing: China Agriculture Press, 2000 |
[23] | HUANG F C, STUDART-WITKOWSKI C, SCHWAB W. Overexpression of hydroperoxide lyase gene in Nicotiana benthamiana using a viral vector system[J]. Plant Biotechnology Journal, 2010, 8(7): 783-795 doi: 10.1111/j.1467-7652.2010.00508.x |
[24] | NIU K J, MA X, LIANG G L, et al. 5-Aminolevulinic acid modulates antioxidant defense systems and mitigates drought-induced damage in Kentucky bluegrass seedlings[J]. Protoplasma, 2017, 254(6): 2083-2094 doi: 10.1007/s00709-017-1101-4 |
[25] | WANG P, SUN X, LI C, et al. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple[J]. Journal of Pineal Research, 2013, 54(3): 292-302 doi: 10.1111/jpi.12017 |
[26] | 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响[J]. 中国农业科学, 2018, 51(5): 868-882 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201805006.htm ZHANG C M, SHI S L, WU F. Effects of drought stress on root and physiological responses of different drought-tolerant alfalfa varieties[J]. Scientia Agricultura Sinica, 2018, 51(5): 868-882 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201805006.htm |
[27] | CHEN C W, YANG Y W, LUR H S, et al. A novel function of abscisic acid in the regulation of rice (Oryza sativa L. ) root growth and development[J]. Plant and Cell Physiology, 2006, 47(1): 1-13 doi: 10.1093/pcp/pci216 |
[28] | ABBAS G, CHEN Y L, KHAN F, et al. Salinity and low phosphorus differentially affect shoot and root traits in two wheat cultivars with contrasting tolerance to salt[J]. Agronomy, 2018, 8(8): 155 doi: 10.3390/agronomy8080155 |
[29] | 刘建新, 王鑫, 王瑞娟, 等. 碱胁迫对黑麦草幼苗根系活性氧代谢和渗透溶质积累的影响[J]. 植物研究, 2011, 31(6): 674-679 https://www.cnki.com.cn/Article/CJFDTOTAL-MBZW201106007.htm LIU J X, WANG X, WANG R J, et al. Effects of alkaline stress on the metabolism of reactive oxygen species and osmotica accumulation in ryegrass seedling roots[J]. Bulletin of Botanical Research, 2011, 31(6): 674-679 https://www.cnki.com.cn/Article/CJFDTOTAL-MBZW201106007.htm |
[30] | LYU B S, LI X W, MA H Y, et al. Differences in growth and physiology of rice in response to different saline-alkaline stress factors[J]. Agronomy Journal, 2013, 105(6): 1889 doi: 10.2134/agronj2013.0017er |
[31] | SONG X, WANG S M, JIANG Y W. Genotypic variations in plant growth and nutritional elements of perennial ryegrass accessions under salinity stress[J]. Journal of the American Society for Horticultural Science, 2017, 142(6): 476-483 doi: 10.21273/JASHS04258-17 |
[32] | COUéE I, SULMON C, GOUESBET G, et al. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants[J]. Journal of Experimental Botany, 2006, 57(3): 449-459 doi: 10.1093/jxb/erj027 |
[33] | YE T T, WANG Y P, FENG Y Q, et al. Physiological and metabolomic responses of bermudagrass (Cynodon dactylon) to alkali stress[J]. Physiologia Plantarum, 2021, 171(1): 22-33 doi: 10.1111/ppl.13209 |
[34] | SUN J K, HE L, LI T. Response of seedling growth and physiology of Sorghum bicolor (L. ) Moench to saline-alkali stress[J]. PLoS One, 2019, 14(7): e0220340 doi: 10.1371/journal.pone.0220340 |
[35] | HU H R, LIU H, DU G H, et al. Fiber and seed type of hemp (Cannabis sativa L. ) responded differently to salt-alkali stress in seedling growth and physiological indices[J]. Industrial Crops and Products, 2019, 129: 624-630 doi: 10.1016/j.indcrop.2018.12.028 |
[36] | 牛最荣, 赵霞, 张芮, 等. 水分胁迫对日光温室葡萄叶片生理变化及果实发育的影响[J]. 中国生态农业学报(中英文), 2020, 28(2): 265-271 doi: 10.13930/j.cnki.cjea.190734 NIU Z R, ZHAO X, ZHANG R, et al. Effects of water stress at different growth stages on leaf physiological changes and fruit development of grape in greenhouse[J]. Chinese Journal of Eco-Agriculture, 2020, 28(2): 265-271 doi: 10.13930/j.cnki.cjea.190734 |
[37] | BAXTER A, MITTLER R, SUZUKI N. ROS as key players in plant stress signalling[J]. Journal of Experimental Botany, 2014, 65(5): 1229-1240 doi: 10.1093/jxb/ert375 |
[38] | DODERER A, KOKKELINK I, VAN DER VEEN S, et al. Purification and characterization of two lipoxygenase isoenzymes from germinating barley[J]. Biochimica et Biophysica Acta: BBA-Protein Structure and Molecular Enzymology, 1992, 1120(1): 97-104 http://www.ncbi.nlm.nih.gov/pubmed/1554746 |
[39] | 刘建新, 王金成, 贾海燕. 燕麦幼苗对盐胁迫和碱胁迫的生理响应差异[J]. 水土保持学报, 2015, 29(5): 331-336 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201505060.htm LIU J X, WANG J C, JIA H Y. Differences between physiological responses of Avena nuda seedlings to salt and alkali stresses[J]. Journal of Soil and Water Conservation, 2015, 29(5): 331-336 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201505060.htm |
[40] | 郭慧娟, 胡涛, 傅金民. 苏打碱胁迫对多年生黑麦草的生理影响[J]. 草业学报, 2012, 21(1): 118-125 https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB201201016.htm GUO H J, HU T, FU J M. Effects of saline sodic stress on growth and physiological responses of Lolium perenne[J]. Acta Prataculturae Sinica, 2012, 21(1): 118-125 https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB201201016.htm |
[41] | KUMAR S, LI G J, YANG J J, et al. Investigation of an antioxidative system for salinity tolerance in Oenanthe javanica[J]. Antioxidants, 2020, 9(10): 940 doi: 10.3390/antiox9100940 |
[42] | WANG X, FANG G, YANG J, et al. A thioredoxin-dependent glutathione peroxidase (OsGPX5) is required for rice normal development and salt stress tolerance[J]. Plant Molecular Biology Reporter, 2017, 35(3): 333-342 doi: 10.1007/s11105-017-1026-2 |
[43] | HE Y H, WU Z S, WANG W F, et al. Different responses of Capsicum annuum L. root and shoot to salt stress with Pseudomonas putida rs-198 inoculation[J]. Journal of Plant Growth Regulation, 2019, 38(3): 799-811 doi: 10.1007/s00344-018-9891-y |
[44] | JIA X, WANG H, SVETLA S, et al. Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali and saline-alkali stress[J]. Scientia Horticulturae, 2019, 245: 154-162 doi: 10.1016/j.scienta.2018.10.017 |
[45] | QIN Y, BAI J, WANG Y, et al. Comparative effects of salt and alkali stress on photosynthesis and root physiology of oat at anthesis[J]. Archives of BiologicalI Sciences, 2018, 70(2): 329-338 doi: 10.2298/ABS171124050Q |
[46] | CHEN Y Y, LI Y Y, SUN P, et al. Interactive effects of salt and alkali stresses on growth, physiological responses and nutrient (N, P) removal performance of Ruppia maritima[J]. Ecological Engineering, 2017, 104: 177-183 doi: 10.1016/j.ecoleng.2017.04.029 |
[47] | WANG Y Y, ZHAO H, QIN H, et al. The synthesis of ascorbic acid in rice roots plays an important role in the salt tolerance of rice by scavenging ROS[J]. International Journal of Molecular Sciences, 2018, 19(11): 3347 doi: 10.3390/ijms19113347 |
[48] | TURNER A J, ARZOLA C I, NUNEZ G H. High pH stress affects root morphology and nutritional status of hydroponically grown Rhododendron (Rhododendron spp. )[J]. Plants, 2020, 9(8): 1019 doi: 10.3390/plants9081019 |
[49] | ZHANG H H, LI X, CHE Y H, et al. A study on the effects of salinity and pH on PSⅡ function in mulberry seedling leaves under saline-alkali mixed stress[J]. Trees, 2020, 34(3): 693-706 doi: 10.1007/s00468-019-01949-9 |
[50] | GUO R, YANG Z Z, LI F, et al. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress[J]. BMC Plant Biology, 2015, 15: 170 doi: 10.1186/s12870-015-0546-x |
[51] | HU L X, ZHANG P P, JIANG Y, et al. Metabolomic analysis revealed differential adaptation to salinity and alkalinity stress in Kentucky bluegrass (Poa pratensis)[J]. Plant Molecular Biology Reporter, 2015, 33(1): 56-68 doi: 10.1007/s11105-014-0722-4 |
[52] | 安玉艳, 梁宗锁. 植物应对干旱胁迫的阶段性策略[J]. 应用生态学报, 2012, 23(10): 2907-2915 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201210041.htm AN Y Y, LIANG Z S. Staged strategy of plants in response to drought stress[J]. Chinese Journal of Applied Ecology, 2012, 23(10): 2907-2915 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201210041.htm |