删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

柠檬酸浸种引发对低磷胁迫下番茄幼苗生长及生理特性的影响

本站小编 Free考研考试/2022-01-01

靳琇,
陈浩婷,
石玉,
白龙强,
侯雷平,
张毅,
山西农业大学园艺学院/山西省设施蔬菜提质增效协同创新中心 太谷 030801
基金项目: 山西省重点研发计划重点项目201903D211011
山西省重点研发计划重点项目201703D211001

详细信息
作者简介:靳琇, 研究方向为设施蔬菜栽培生理。E-mail: xiaojinyuboer@163.com
通讯作者:张毅, 研究方向为设施园艺。E-mail: harmony1228@163.com
中图分类号:S641.2

计量

文章访问数:151
HTML全文浏览量:44
PDF下载量:24
被引次数:0
出版历程

收稿日期:2020-11-29
录用日期:2021-03-13
刊出日期:2021-07-01

Effect of citric acid seed priming on the growth and physiological characteristics of tomato seedlings under low phosphorus stress

JIN Xiu,
CHEN Haoting,
SHI Yu,
BAI Longqiang,
HOU Leiping,
ZHANG Yi,
College of Horticulture, Shanxi Agricultural University/Collaborative Innovation Center for Improving Quality and Efficiency of Facilities Vegetables, Taigu 030801, China
Funds: the Shanxi Province Key R&D Plan201903D211011
the Shanxi Province Key R&D Plan201703D211001

More Information
Corresponding author:ZHANG Yi, E-mail: harmony1228@163.com


摘要
HTML全文
(5)(3)
参考文献(55)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:本试验以‘中杂9号’番茄为试材,采用砂培法,设置对照(0.66 mmol·L-1)、轻度缺磷(0.44 mmol·L-1)、重度缺磷(0.22 mmol·L-1)和无磷(0 mmol·L-1)4个磷浓度,研究了柠檬酸(7.5 mmol·L-1)浸种对低磷胁迫下番茄种子萌发、幼苗生长及生理特性的影响,旨在阐明柠檬酸浸种缓解番茄低磷胁迫的生理机制。结果表明:与蒸馏水浸种相比,不同浓度柠檬酸浸种引发显著提高了番茄发芽率、发芽势、发芽指数,最佳浓度为7.5 mmol·L-1。与对照相比,低磷胁迫下番茄幼苗生长受到严重抑制,丙二醛(MDA)、活性氧($ $\text{O}_2^{\bar \cdot }$$、H2O2)含量显著升高,超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性显著减低;可溶性蛋白、可溶性糖及甜菜碱含量显著升高,渗透势降低;而柠檬酸浸种引发明显促进了番茄幼苗的生长,增加了生物量的积累;提高了番茄中抗氧化酶活性,降低了MDA和活性氧的积累,减轻了番茄幼苗的氧化胁迫;显著提高了有机酸、可溶性糖等的含量,缓解了渗透势的下降;显著提高了番茄幼苗中的磷含量,缓解了植株的低磷胁迫症状。综上所述,柠檬酸浸种引发通过缓解低磷胁迫对番茄造成的氧化损伤,提高磷素吸收,维持正常生长代谢,从而增强番茄幼苗对低磷胁迫的抵抗能力。
关键词:番茄/
低磷胁迫/
种子引发/
柠檬酸/
抗氧化系统/
渗透调节
Abstract:To explore the effects of seed priming with citric acid on tomato seed germination, seedling growth and physiological characteristics under low phosphorus stress, 'Zhongza 9' was cultured in sand at four phosphorus concentrations: control (0.66 mmol·L-1), mild phosphorus deficiency (0.44 mmol·L-1), severe phosphorus deficiency (0.22 mmol·L-1), and non-phosphorus (0 mmol·L-1). The tomato seeds were soaked in citric acid (7.5 mmol·L-1), and the seed germination, seedlings growth and physiological characteristics were examined. This experiment aimed to clarify the physiological mechanisms of citric acid seed priming in alleviating low phosphorus stress in tomatoes. The results showed that, compared with seed soaking in distilled water, the different concentrations of citric acid seed soaking significantly increased the germination rate, germination potential, and germination index; the optimal concentration was 7.5 mmol·L-1. Compared with the control, tomato seedling growth under low phosphorus stress was severely inhibited; the malondialdehyde (MDA) and reactive oxygen species ($ $\text{O}_2^{\bar \cdot }$$, H2O2) contents significantly increased; and the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities significantly decreased. The soluble protein, soluble sugar, and betaine contents significantly increased, and the osmotic potential was low. The seed priming with citric acid significantly promoted tomato seedling growth, increased biomass accumulation, increased the activities of antioxidant enzymes, reduced the accumulation of MDA and reactive oxygen species, and reduced the oxidative stress in tomato seedlings. It also significantly improved the organic acid and soluble sugar contents, alleviated osmotic potential decline, increased the phosphorus content, and lessened the symptoms of low phosphorus stress. In summary, priming tomato seeds with citric acid alleviated the oxidative damage caused by low phosphorus, improved the absorption efficiency of phosphorus, maintained normal growth and metabolism, and enhanced the resistance of tomato seedlings to low phosphorus stress.
Key words:Tomato/
Low phosphorus stress/
Seed priming/
Citric acid/
Antioxidant system/
Osmotic regulation

HTML全文


图1不同浓度柠檬酸浸种引发对番茄种子萌发指标的影响
CK: 蒸馏水浸种。不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure1.Effects of seed priming with different concentrations of citric acid on seeds germination indexes of tomato
CK: soaking seeds in distilled water. Different lowercase letters indicate significant differences among treatments (P < 0.05).


下载: 全尺寸图片幻灯片


图2柠檬酸浸种引发对低磷胁迫下番茄幼苗根系活力的影响
CK: 对照(P浓度为0.66 mmol?L–1); P0: 无磷(P浓度为0 mmol?L–1)处理; P1: 重度缺磷(P浓度为0.22 mmol?L–1)处理; P2: 轻度缺磷(P浓度为0.44 mmol?L–1)处理; A: 7.5 mmol?L–1柠檬酸浸种。不同小写字母表示处理间差异显著(P < 0.05)。
Figure2.Effect of seeds priming with citric acid on root activity of tomato seedlings under low phosphorus stress
CK: control (with P concentration of 0.66 mmol?L–1); P0: non-phosphorus (with P concentration of 0 mmol·L–1); P1: severe phosphorus deficiency (with P concentration of 0.22 mmol·L–1); P2: mild phosphorus deficiency (with P concentration of 0.44 mmol·L–1); A: soaking seed in 7.5 mmol?L–1 citric acid. Different lowercase letters indicate significantly difference (P < 0.05).


下载: 全尺寸图片幻灯片


图3柠檬酸浸种引发对低磷胁迫下番茄幼苗丙二醛(MDA)、超氧化阴离子($\text{O}_2^{\bar \cdot }$)和过氧化氢(H2O2)含量的影响
CK: 对照(P浓度为0.66 mmol?L–1); P0: 无磷(P浓度为0 mmol?L–1)处理; P1: 重度缺磷(P浓度为0.22 mmol?L–1)处理; P2: 轻度缺磷(P浓度为0.44 mmol?L–1)处理; A: 7.5 mmol?L–1柠檬酸浸种。不同小写字母表示处理间差异显著(P < 0.05)。
Figure3.Effect of seeds priming with citric acid on malondialdehyde (MDA), superoxide ion (${\rm{O}}_{\rm{2}}^{\bar \cdot }$), and H2O2 contents of tomato seedlings under low phosphorus stress
CK: control (with P concentration of 0.66 mmol?L–1); P0: non-phosphorus (with P concentration of 0 mmol·L–1); P1: severe phosphorus deficiency (with P concentration of 0.22 mmol·L–1); P2: mild low phosphorus deficiency (with P concentration of 0.44 mmol·L–1); A: soaking seed in 7.5 mmol?L–1 citric acid. Different lowercase letters indicate significantly difference (P < 0.05).


下载: 全尺寸图片幻灯片


图4柠檬酸浸种引发对低磷胁迫下番茄幼苗渗透势及渗透调节物质含量的影响
CK: 对照(P浓度为0.66 mmol?L–1); P0: 无磷(P浓度为0 mmol?L–1)处理; P1: 重度缺磷(P浓度为0.22 mmol?L–1)处理; P2: 轻度缺磷(P浓度为0.44 mmol?L–1)处理; A: 7.5 mmol?L–1柠檬酸浸种。不同小写字母表示处理间差异显著(P < 0.05)。
Figure4.Effect of seeds priming with citric acid on osmotic potential and osmoregulation substances contents of tomato seedlings under low phosphorus stress
CK: control (with P concentration of 0.66 mmol?L–1); P0: non-phosphorus (with P concentration of 0 mmol·L–1); P1: severe phosphorus deficiency (with P concentration of 0.22 mmol·L–1); P2: mild low phosphorus deficiency (with P concentration of 0.44 mmol·L–1); A: soaking seed in 7.5 mmol?L–1 citric acid. Different lowercase letters indicate significantly difference (P < 0.05).


下载: 全尺寸图片幻灯片


图5柠檬酸浸种引发对低磷胁迫下番茄幼苗磷含量的影响
CK: 对照(P浓度为0.66 mmol?L–1); P0: 无磷(P浓度为0 mmol?L–1)处理; P1: 重度缺磷(P浓度为0.22 mmol?L–1)处理; P2: 轻度缺磷(P浓度为0.44 mmol?L–1)处理; A: 7.5 mmol?L–1柠檬酸浸种。不同小写字母表示处理间差异显著(P < 0.05)。
Figure5.Effect of seeds priming with citric acid on phosphorus content of tomato seedlings under low phosphorus stress
CK: control (with P concentration of 0.66 mmol?L–1); P0: non-phosphorus (with P concentration of 0 mmol·L–1); P1: severe phosphorus deficiency (with P concentration of 0.22 mmol·L–1); P2: mild low phosphorus deficiency (with P concentration of 0.44 mmol·L–1); A: soaking seed in 7.5 mmol?L–1 citric acid. Different lowercase letters indicate significantly difference (P < 0.05).


下载: 全尺寸图片幻灯片

表1柠檬酸浸种引发对低磷胁迫下番茄幼苗形态指标的影响
Table1.Effects of seeds priming with citric acid on morphological indexes of tomato seedlings under low phosphorus stress
处理
Treatment
单株鲜质量
Fresh weight per plant (g)
单株干质量
Dry weight per plant (g)
株高
Plant height (cm)
茎粗
Stem diameter (mm)
总根长
Total root length (cm)
总根系表面积
Total root surface area (cm2)
地上部Shoots地下部Roots地上部Shoots地下部Roots
CK3.38±0.28b0.38±0.03ab0.22±0.02b0.02±0.01bc22.56±0.23b3.59±0.21b243.06±20.50b73.70±10.13b
CK+A4.58±0.29a0.42±0.04ab0.25±0.02a0.02±0.01f26.61±1.25a4.00±0.08a319.89±14.36a120.72±9.32a
P01.57±0.02e0.22±0.02ab0.13±0.01de0.02±0.01a13.84±0.48e2.60±0.08g138.06±4.87e17.98±2.59ef
P0+A1.73±0.03e0.34±0.04b0.15±0.01d0.01±0.01ef14.34±0.57de2.71±0.06ef159.78±9.31d24.57±0.28de
P12.61±0.18d0.22±0.03ab0.11±0.01e0.02±0.01a15.02±0.34d2.73±0.01ef197.96±6.51c28.46±1.03de
P1+A3.09±0.05c0.28±0.00a0.18±0.02c0.03±0.01b20.51±0.91c3.07±0.09c221.88±18.92b38.55±6.00c
P22.91±0.08c0.24±0.02b0.12±0.02e0.01±0.01de19.60±0.65c2.84±0.08d65.61±3.42f8.28±1.28f
P2+A3.49±0.08b0.34±0.03ab0.2±0.01b0.02±0.01cd22.68±0.48b3.45±0.18b120.34±7.36e16.49±2.32ef
CK: 对照(P浓度为0.66 mmol?L–1); P0: 无磷(P浓度为0 mmol?L–1)处理; P1: 重度缺磷(P浓度为0.22 mmol?L–1)处理; P2: 轻度缺磷(P浓度为0.44 mmol?L–1)处理; A: 7.5 mmol?L–1柠檬酸浸种。同列数据后标不同小写字母表示各处理间差异显著(P < 0.05)。CK: control (with P concentration of 0.66 mmol?L–1); P0: non-phosphorus (with P concentration of 0 mmol·L–1); P1: severe phosphorus deficiency (with P concentration of 0.22 mmol·L–1); P2: mild low phosphorus deficiency (with P concentration of 0.44 mmol·L–1); A: soaking seed in 7.5 mmol?L–1 citric acid. Different lowercase letters in each column indicate significantly difference (P < 0.05).


下载: 导出CSV
表2柠檬酸浸种引发对低磷胁迫下番茄幼苗叶绿素的影响
Table2.Effect of seeds priming with citric acid on chlorophyll contents in tomato seedlings under low phosphorus stress
处理
Treatment
叶绿素a
Chl a (mg·g–1)
叶绿素b
Chl b (mg·g–1)
类胡萝卜素
Carotenoid (mg·g–1)
总叶绿素
Chl a+b (mg·g–1)
叶绿素a/b
Chl a/b
CK16.27±0.08c4.58±0.22b1.43±0.17ab20.85±0.21c3.56±0.18bcd
CK+A18.17±0.15a5.19±0.11a1.53±0.06ab23.37±0.26a3.50±0.05cd
P07.75±0.05h1.75±0.06f0.33±0.04d9.50±0.03h4.42±0.19a
P0+A9.01±0.04g1.96±0.01e0.97±0.02c10.97±0.03g4.60±0.03a
P112.98±0.03f3.61±0.05d1.13±0.02c16.58±0.03f3.60±0.05bc
P1+A14.38±0.1e4.09±0.07c1.46±0.18ab18.47±0.14e3.52±0.06bcd
P215.52±0.04d4.62±0.2b1.39±0.04b20.14±0.2d3.36±0.15d
P2+A17.31±0.05b4.66±0.04b1.58±0.02ab21.96±0.04b3.72±0.04b
CK: 对照(P浓度为0.66 mmol?L–1); P0: 无磷(P浓度为0 mmol?L–1)处理; P1: 重度缺磷(P浓度为0.22 mmol?L–1)处理; P2: 轻度缺磷(P浓度为0.44 mmol?L–1)处理; A: 7.5 mmol?L–1柠檬酸浸种。同列数据后不同小写字母表示各处理间差异显著(P < 0.05)。CK: control (with P concentration of 0.66 mmol?L–1); P0: non-phosphorus (with P concentration of 0 mmol·L–1); P1: severe phosphorus deficiency (with P concentration of 0.22 mmol·L–1); P2: mild low phosphorus deficiency (with P concentration of 0.44 mmol·L–1); A: soaking seed in 7.5 mmol?L–1 citric acid. Different lowercase letters in each column indicate significantly difference (P < 0.05).


下载: 导出CSV
表3柠檬酸浸种引发对低磷胁迫下番茄幼苗抗氧化酶活性的影响
Table3.Effect of seed priming with citric acid on antioxidant enzymes activities of tomato seedlings under low phosphorus stress?U·g–1·min–1
处理
Treatment
叶片Leaf根系Root
超氧化物歧化酶
SOD
过氧化氢酶
CAT
过氧化物酶
POD
超氧化物歧化酶
SOD
过氧化氢酶
CAT
过氧化物酶
POD
CK10.80±0.32e35.87±1.47f367.70±5.23f15.49±0.92e13.91±0.86f1929.98±38.16h
CK+A21.09±10.29b78.32±3.82a984.32±27.03a25.55±0.91a55.73±0.77a5674.12±34.27a
P023.24±30.29a67.05±0.89b562.67±2.34c24.81±0.17ab44.24±0.62b5034.89±23.48b
P0+A13.96±30.02d40.86±0.92e423.28±3.86e21.57±0.07c14.91±0.54f2048.31±16.16g
P116.69±60.02c50.89±0.04d501.72±2.47d24.03±0.27b27.61±0.93d3972.91±3.59d
P1+A13.96±30.44d41.64±1.49e560.94±8.84c19.60±0.56d28.53±0.09d3765.95±131.21e
P214.64±0.89d41.45±0.12e429.30±2.41e21.39±0.13c21.36±0.71e3282.32±47.58f
P2+A13.45±30.76d54.01±1.86c640.21±1.35b20.48±0.71cd33.99±1.33c4584.88±104.88c
CK: 对照(P浓度为0.66 mmol?L–1); P0: 无磷(P浓度为0 mmol?L–1)处理; P1: 重度缺磷(P浓度为0.22 mmol?L–1)处理; P2: 轻度缺磷(P浓度为0.44 mmol?L–1)处理; A: 7.5 mmol?L–1柠檬酸浸种。同列数据后标不同小写字母表示各处理间差异显著(P < 0.05)。CK: control (with P concentration of 0.66 mmol?L–1); P0: non-phosphorus (with P concentration of 0 mmol·L–1); P1: severe phosphorus deficiency (with P concentration of 0.22 mmol·L–1); P2: mild low phosphorus deficiency (with P concentration of 0.44 mmol·L–1); A: soaking seed in 7.5 mmol?L–1 citric acid. Different lowercase letters in each column indicate significantly difference (P < 0.05).


下载: 导出CSV

参考文献(55)
[1]崔福星, 宋金凤, 朱道光, 等. 养分缺乏下外源有机酸对寒温带兴安落叶松幼苗吸收磷的影响[J]. 国土与自然资源研究, 2015, (5): 94-96 doi: 10.3969/j.issn.1003-7853.2015.05.030
CUI F X, SONG J F, ZHU D G, et al. Effects of exogenous organic acids on phosphorus absorption of Larix gmelinii seedlings under nutrient deficiency[J]. Territory & Natural Resources Study, 2015, (5): 94-96 doi: 10.3969/j.issn.1003-7853.2015.05.030
[2]ZHANG Y T, KIRIIWA Y, NUKAYA A. Influence of nutrient concentration and composition on the growth, uptake patterns of nutrient elements and fruit coloring disorder for tomatoes grown in extremely low-volume substrate[J]. The Horticulture Journal, 2015, 84(1): 37-45 doi: 10.2503/hortj.MI-003
[3]ZHU Q, WANG H, SHAN Y Z, et al. Physiological response of phosphorus-efficient and inefficient soybean genotypes under phosphorus-deficiency[J]. Russian Journal of Plant Physiology, 2020, 67(1): 175-184 doi: 10.1134/S1021443720010276
[4]沈玉芳, 李世清. 施肥深度对不同水分条件下冬小麦根系特征及提水作用的影响[J]. 西北农林科技大学学报: 自然科学版, 2019, 47(4): 65-73 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201904009.htm
SHEN Y F, LI S Q. Effect of fertilization depth on root characteristics and hydraulic lift of winter wheat under different water treatments[J]. Journal of Northwest A & F University: Natural Science Edition, 2019, 47(4): 65-73 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201904009.htm
[5]HUANG J, XU C C, RIDOUTT B G, et al. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China[J]. Journal of Cleaner Production, 2017, 159: 171-179 doi: 10.1016/j.jclepro.2017.05.008
[6]葛永红, 李灿婴, 朱丹实, 等. 采后柠檬酸处理对苹果青霉病的控制及其贮藏品质的影响[J]. 食品科学, 2014, 35(22): 255-259 doi: 10.7506/spkx1002-6630-201422050
GE Y H, LI C Y, ZHU D S, et al. Effect of postharvest citric acid treatment on controlling blue mould and preserving the quality of apple fruits during storage[J]. Food Science, 2014, 35(22): 255-259 doi: 10.7506/spkx1002-6630-201422050
[7]OBURGER E, KIRK G J D, WENZEL W W, et al. Interactive effects of organic acids in the rhizosphere[J]. Soil Biology and Biochemistry, 2009, 41(3): 449-457 doi: 10.1016/j.soilbio.2008.10.034
[8]宋金凤, 李锋, 王亚军, 等. 低温胁迫下外源有机酸对长白落叶松幼苗生理生化特性的影响[J]. 林业科学, 2012, 48(2): 89-95 https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201202014.htm
SONG J F, LI F, WANG Y J, et al. Effects of exogenous organic acids on physiological and biochemical characteristics of Larix olgensis seedlings under low temperature stress[J]. Scientia Silvae Sinicae, 2012, 48(2): 89-95 https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201202014.htm
[9]SINHAL V K, SRIVASTAVA A, SINGH V P. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta)[J]. Journal of Environmental Biology, 2010, 31(3): 255-259 http://europepmc.org/abstract/med/21046992
[10]TAGHIPOUR M, JALALI M. Effect of low-molecular-weight organic acids on kinetics release and fractionation of phosphorus in some calcareous soils of western Iran[J]. Environmental Monitoring and Assessment, 2013, 185(7): 5471-5482 doi: 10.1007/s10661-012-2960-y
[11]HU S X, JIANG F, HSIEH Y L. 1D lignin-based solid acid catalysts for cellulose hydrolysis to glucose and nanocellulose[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(10): 2566-2574 doi: 10.1021/acssuschemeng.5b00780
[12]GAUME A, M?CHLER F, DE LEON C, et al. Low-P tolerance by maize (Zea mays L.) genotypes: Significance of root growth, and organic acids and acid phosphatase root exudation[J]. Plant and Soil, 2001, 228(2): 253-264 doi: 10.1023/A:1004824019289
[13]YOKOSHO K, YAMAJI N, MA J F. An Al-inducible MATE gene is involved in external detoxification of Al in rice[J]. The Plant Journal, 2011, 68(6): 1061-1069 doi: 10.1111/j.1365-313X.2011.04757.x
[14]NEUMANN G, MASSONNEAU A, LANGLADE N, et al. Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.)[J]. Annals of Botany, 2000, 85(6): 909-919 doi: 10.1006/anbo.2000.1135
[15]LIAO H, WAN H Y, SHAFF J, et al. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system[J]. Plant Physiology, 2006, 141(2): 674-684 doi: 10.1104/pp.105.076497
[16]田江, 梁翠月, 陆星, 等. 根系分泌物调控植物适应低磷胁迫的机制[J]. 华南农业大学学报, 2019, 40(5): 175-185 https://www.cnki.com.cn/Article/CJFDTOTAL-HNNB201905023.htm
TIAN J, LIANG C Y, LU X, et al. Mechanism of root exudates regulating plant responses to phosphorus deficiency[J]. Journal of South China Agricultural University, 2019, 40(5): 175-185 https://www.cnki.com.cn/Article/CJFDTOTAL-HNNB201905023.htm
[17]洪常青, 聂艳丽. 根系分泌物及其在植物营养中的作用[J]. 生态环境, 2003, 12(4): 508-511 doi: 10.3969/j.issn.1674-5906.2003.04.033
HONG C Q, NIE Y L. Effects of root exudates on plant nutrition[J]. Ecology and Environmnet, 2003, 12(4): 508-511 doi: 10.3969/j.issn.1674-5906.2003.04.033
[18]房福力. 柠檬酸对温室番茄土壤磷有效性的影响[D]. 北京: 中国农业科学院, 2012
FANG F L. Effects of citric acid on phosphorus availability in greenhouse soil[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012
[19]宋超, 王跃华, 赵钢, 等. 不同酸处理对苦荞种子萌发和幼苗生长的影响[J]. 种子, 2015, 34(8): 79-82 https://www.cnki.com.cn/Article/CJFDTOTAL-ZHZI201508022.htm
SONG C, WANG Y H, ZHAO G, et al. Effect of soaking with different acid on seed germination and seedling growth of Tartary buckwheat[J]. Seed, 2015, 34(8): 79-82 https://www.cnki.com.cn/Article/CJFDTOTAL-ZHZI201508022.htm
[20]王志颖. 有机酸和抑制剂对铝胁迫下油菜(Brassica napus L.)生长、生理和根系分泌物的调控研究[D]. 金华: 浙江师范大学, 2011
WANG Z Y. The regulation of organic acids and inhibitors to the growth, physiology and root exudates of rape (Brassica napus L.) under aluminum stress[D]. Jinhua: Zhejiang Normal University, 2011
[21]KALAJI H M, OUKARROUM A, ALEXANDROV V, et al. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements[J]. Plant Physiology and Biochemistry, 2014, 81: 16-25 doi: 10.1016/j.plaphy.2014.03.029
[22]杨小环, 马金虎, 郭数进, 等. 种子引发对盐胁迫下高粱种子萌发及幼苗生长的影响[J]. 中国生态农业学报, 2011, 19(1): 103-109 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201101022.htm
YANG X H, MA J H, GUO S J, et al. Effect of seed priming on Sorghum (Sorghum bicolor L.) seed germination and seedling growth under salt stress[J]. Chinese Journal of Eco-Agriculture, 2011, 19(1): 103-109 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201101022.htm
[23]牛晓雪, 牟萌, 李保华, 等. FeSO4引发提高秦艽种子萌发的生理机制[J]. 中国生态农业学报, 2018, 26(12): 1828-1835 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201812009.htm
NIU X X, MU M, LI B H, et al. Physiological mechanism of FeSO4 priming improvement of seed germination performances of Gentiana macrophylla[J]. Chinese Journal of Eco-Agriculture, 2018, 26(12): 1828-1835 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201812009.htm
[24]王学奎. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006
WANG X K. Priniciples and Techniques of Plant Physiological and Biochemical Experiments[M]. Beijing: Higher Education Press, 2006
[25]GONG H J, ZHU X Y, CHEN K M, et al. Silicon alleviates oxidative damage of wheat plants in pots under drought[J]. Plant Science, 2005, 169(2): 313-321 doi: 10.1016/j.plantsci.2005.02.023
[26]石玉. 外源硅对番茄幼苗水分胁迫伤害的缓解效应及机理研究[D]. 杨凌: 西北农林科技大学, 2014
SHI Y. Study on alleviative effects of exogenous silicon on water stress-induced injury and the underlying mechanisms in tomato seedlings[D]. Yangling: Northwest A & F University, 2014
[27]NOCTOR G, MHAMDI A, FOYER C H. Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation[J]. Plant, Cell & Environment, 2016, 39(5): 1140-1160 doi: 10.1111/pce.12726
[28]邢静. 低钾胁迫对大豆生理代谢及根系衰老的影响[D]. 沈阳: 沈阳农业大学, 2017
XING J. Effects of low potassium stress on soybean physiological metabolism and root senescence[D]. Shenyang: Shenyang Agricultural University, 2017
[29]YIN L N, WANG S W, LI J Y, et al. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor[J]. Acta Physiologiae Plantarum, 2013, 35(11): 3099-3107 doi: 10.1007/s11738-013-1343-5
[30]苍晶. 植物生理学实验教程[M]. 北京: 高等教育出版社, 2010
CANG J. Experimental Course in Plant Physiology[M]. Beijing: Higher Education Press, 2010
[31]ALOMO L, CLAASSEN N, JONES D L. Differential mobilization of P in the maize rhizosphere by citric acid and potassium citrate[J]. Soil Biology and Biochemistry, 2006, 38(4): 683-692 doi: 10.1016/j.soilbio.2005.06.019
[32]李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望[J]. 中国生态农业学报, 2016, 24(4): 403-415 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201604001.htm
LI L. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403-415 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201604001.htm
[33]谷端银, 王秀峰, 杨凤娟, 等. 纯化腐植酸对低氮胁迫下黄瓜幼苗生长及养分吸收的影响[J]. 应用生态学报, 2016, 27(8): 2535-2542 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201608019.htm
GU D Y, WANG X F, YANG F J, et al. Effects of purified humic acid on growth and nutrient absorption of cucumber (Cucumis sativus) seedlings under low nitrogen stress[J]. Chinese Journal of Applied Ecology, 2016, 27(8): 2535-2542 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201608019.htm
[34]邓小红, 姬拉拉, 王锐洁, 等. 红豆和白扁豆种子萌发和生长对盐胁迫的响应及其生理机制[J]. 中国生态农业学报(中英文), 2019, 27(8): 1218-1225 doi: 10.13930/j.cnki.cjea.190227
DENG X H, JI L L, WANG R J, et al. Response of seed germination and physiological mechanism of Vigna angularis and Dolichos lablab to salt stress[J]. Chinese Journal of Eco-Agriculture, 2019, 27(8): 1218-1225 doi: 10.13930/j.cnki.cjea.190227
[35]庄正, 李艳娟, 刘青青, 等. 外源低分子有机酸对杉木种子萌发及幼苗抗氧化特性的影响[J]. 江西农业大学学报, 2017, 39(2): 302-311 https://www.cnki.com.cn/Article/CJFDTOTAL-JXND201702013.htm
ZHUANG Z, LI Y J, LIU Q Q, et al. Effect of exogenous low-molecular-weight organic acids on the seed germination and seedling antioxidant properties of Cunninghamia lanceolata[J]. Acta Agriculturae Universitatis Jiangxiensis, 2017, 39(2): 302-311 https://www.cnki.com.cn/Article/CJFDTOTAL-JXND201702013.htm
[36]黄玉婷, 王栋麟, 张卫红, 等. 铝胁迫下柠檬酸对多年生黑麦草种子萌发和幼苗生理特性的影响[J]. 草原与草坪, 2019, 39(1): 54-59 doi: 10.3969/j.issn.1009-5500.2019.01.008
HUANG Y T, WANG D L, ZHANG W H, et al. Effects of citric acid on germination and seedling physiological characteristics of perennial ryegrass under aluminum stress[J]. Grassland and Turf, 2019, 39(1): 54-59 doi: 10.3969/j.issn.1009-5500.2019.01.008
[37]LóPEZ-ARREDONDO D L, LEYVA-GONZáLEZ M A, GONZáLEZ-MORALES S I, et al. Phosphate nutrition: improving low-phosphate tolerance in crops[J]. Annual Review of Plant Biology, 2014, 65(1): 95-123 doi: 10.1146/annurev-arplant-050213-035949
[38]WANG Y L, ALMVIK M, CLARKE N, et al. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits[J]. AoB PLANTS, 2015, 7(10.1093): aobpla http://www.ncbi.nlm.nih.gov/pubmed/26286222
[39]李寿田, 韩建国, 毛培胜, 等. 水培修剪条件下渗透胁迫和磷对草地早熟禾生长的影响[J]. 西北农业学报, 2014, 23(1): 138-144 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201401028.htm
LI S T, HAN J G, MAO P S, et al. Effects of osmotic stress and phosphorus on growth of Kentucky bluegrass under hydroponic culture and mowing conditions[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(1): 138-144 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201401028.htm
[40]李琳琳, 刘建国, 燕鹏, 等. 不同外源酚酸化感物质组合对棉花种子萌发和幼苗生长的化感效应[J]. 生态科学, 2019, 38(6): 115-119 https://www.cnki.com.cn/Article/CJFDTOTAL-STKX201906016.htm
LI L L, LIU J G, YAN P, et al. Allelopathic effects of different combinations of phenolic acid allelochemicals on cotton seed germination and seedling growth[J]. Ecological Science, 2019, 38(6): 115-119 https://www.cnki.com.cn/Article/CJFDTOTAL-STKX201906016.htm
[41]马乐元, 陈年来, 韩国君, 等. 外源水杨酸对干旱胁迫下小冠花种子萌发及幼芽生理特性的影响[J]. 应用生态学报, 2017, 28(10): 3274-3280 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201710021.htm
MA L Y, CHEN N L, HAN G J, et al. Effects of exogenous salicylic acid on seed germination and physiological characteristics of Coronilla varia under drought stress[J]. Chinese Journal of Applied Ecology, 2017, 28(10): 3274-3280 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201710021.htm
[42]樊卫国, 龚芳芳. 外源草酸对钙质黄壤营养环境和刺梨苗生长及生理特性的影响[J]. 贵州大学学报: 自然科学版, 2019, 36(3): 1-8, 14 https://www.cnki.com.cn/Article/CJFDTOTAL-GZDI201903001.htm
FAN W G, GONG F F. Effects of exogenous oxalic acid on the nutrient environment of calcareous yellow soil and the growth, physiological characteristics of Rosa roxburghii seedlings[J]. Journal of Guizhou University: Natural Sciences, 2019, 36(3): 1-8, 14 https://www.cnki.com.cn/Article/CJFDTOTAL-GZDI201903001.htm
[43]龚芳芳, 樊卫国. 外源柠檬酸对石灰性黄壤养分活化及刺梨实生苗养分吸收与生长的影响[J]. 中国农业科学, 2018, 51(11): 2164-2177 doi: 10.3864/j.issn.0578-1752.2018.11.014
GONG F F, FAN W G. Effects of exogenous citric acids on nutrient activation of calcareous yellow soil and promotion effects of nutrient absorption and growth of Rosa roxburghii seedlings[J]. Scientia Agricultura Sinica, 2018, 51(11): 2164-2177 doi: 10.3864/j.issn.0578-1752.2018.11.014
[44]王帅. 长期不同施肥对玉米叶片光合作用及光系统功能的影响[D]. 沈阳: 沈阳农业大学, 2014
WANG S. Effects of long-term different fertilization on photosynthesis and photosystem function in maize leaves[D]. Shenyang: Shenyang Agricultural University, 2014
[45]李迟园. 低磷土壤施用有机酸和根外施磷对玉米磷吸收及生长的影响[D]. 杨凌: 西北农林科技大学, 2011
LI C Y. Effects of exogenous orangic acids and foliar spraying on phosphorus uptake and delveopment of maize (Zea mays L.) under P-limiting soil[D]. Yangling: Northwest A & F University, 2011
[46]曹艳玲, 曹嘉雯, 裴红宾. 硝酸镧浸种对低磷胁迫下红小豆幼苗生长的影响[J]. 种子, 2019, 38(5): 23-27 doi: 10.3969/j.issn.1005-2690.2019.05.020
CAO Y L, CAO J W, PEI H B. Effects of seed soaking with lanthanum nitrate on growth of red adzuki bean seedling under low phosphorus stress[J]. Seed, 2019, 38(5): 23-27 doi: 10.3969/j.issn.1005-2690.2019.05.020
[47]郭天荣, 姚鹏程, 张子栋, 等. 铝毒和低磷胁迫下水稻幼苗抗氧化系统的响应[J]. 中国水稻科学, 2013, 27(6): 653-657 doi: 10.3969/j.issn.1001-7216.2013.06.013
GUO T R, YAO P C, ZHANG Z D, et al. Involvement of antioxidative defense system in rice seedlings exposed to aluminum toxicity and phosphorus deficiency[J]. Chinese Journal of Rice Science, 2013, 27(6): 653-657 doi: 10.3969/j.issn.1001-7216.2013.06.013
[48]梁颖, 石玉, 靳琇, 等. 低磷胁迫下光质对番茄幼苗生长及生理抗性的影响[J]. 中国农学通报, 2020, 36(1): 56-61 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202001010.htm
LIANG Y, SHI Y, JIN X, et al. Effects of light quality on the growth and physiological resistance of tomato seedlings under low-phosphate stress[J]. Chinese Agricultural Science Bulletin, 2020, 36(1): 56-61 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB202001010.htm
[49]郑金凤, 董少鸣, 李成璞, 等. 低磷胁迫对小麦代换系保护酶活性和丙二醛含量的影响及染色体效应[J]. 植物营养与肥料学报, 2010, 16(6): 1366-1372 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201006011.htm
ZHENG J F, DONG S M, LI C P, et al. Effects of phosphorus deficiency stress on protective enzyme activities, MDA content and chromosome of wheat substitution lines[J]. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1366-1372 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201006011.htm
[50]米少艳, 路斌, 张颖, 等. 小麦代换系幼苗根系对低磷胁迫的生理响应暗示的染色体效应[J]. 植物营养与肥料学报, 2016, 22(5): 1204-1211 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201605007.htm
MI S Y, LU B, ZHANG Y, et al. Chromosome control implied by the physiological responses of root in wheat substitution lines seedlings under phosphorus deficiency stress[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1204-1211 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201605007.htm
[51]龚丝雨, 梁喜欢, 杨帅强, 等. 低磷胁迫对不同磷效率基因型烟草苗期生长及生理特征的影响[J]. 核农学报, 2019, 33(6): 1217-1224 https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201906020.htm
GONG S Y, LIANG X H, YANG S Q, et al. Effect on growth and physiological characteristics of tobacco genotypes with different P-efficiency at seedling stage under low-phosphorus stress[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(6): 1217-1224 https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201906020.htm
[52]YAO H Y, ZHANG S N, ZHOU W Y, et al. The effects of exogenous malic acid in relieving aluminum toxicity in Pinus massoniana[J]. International Journal of Phytoremediation, 2020, 22(6): 669-678 doi: 10.1080/15226514.2019.1707162
[53]鄢盛尧, 王月平, 王志颖, 等. 铝胁迫下外源有机酸对油菜根系分泌物特性的影响[J]. 广东农业科学, 2013, 40(11): 16-20 doi: 10.3969/j.issn.1004-874X.2013.11.006
YAN S Y, WANG Y P, WANG Z Y, et al. Effects of the exogenous organic acids on rape root exudates characteristics under aluminum stress[J]. Guangdong Agricultural Sciences, 2013, 40(11): 16-20 doi: 10.3969/j.issn.1004-874X.2013.11.006
[54]CUI Y N, XIA Z R, MA Q, et al. The synergistic effects of sodium and potassium on the xerophyte Apocynum venetum in response to drought stress[J]. Plant Physiology and Biochemistry, 2019, 135: 489-498 doi: 10.1016/j.plaphy.2018.11.011
[55]郭妮, 刘亚敏, 周文颖, 等. 外源草酸缓解马尾松根系铝毒[J]. 浙江农业学报, 2019, 31(7): 1086-1095 doi: 10.3969/j.issn.1004-1524.2019.07.08
GUO N, LIU Y M, ZHOU W Y, et al. Alleviation of aluminum stress by exogenous oxalic acid in root system of Pinus massoniana Lamb[J]. Acta Agriculturae Zhejiangensis, 2019, 31(7): 1086-1095 doi: 10.3969/j.issn.1004-1524.2019.07.08

相关话题/种子 生理 植物 图片 科学