删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

强还原和淹水处理对地黄连作障碍的消减效应

本站小编 Free考研考试/2022-01-01

古力1, 3,,
李烜桢2,
李明杰1, 3,
余志坚1,
林梅桂1,
王建明1,
谢加唯1,
张重义1, 3,,
1.福建农林大学农学院 福州 350002
2.河南农业大学林学院 郑州 450002
3.福建农林大学作物遗传育种与综合利用教育部重点实验室 福州 350002
基金项目: 国家自然科学基金项目82073962
国家自然科学基金项目82073965
国家重点研发计划课题2017YFC1700705
福建省自然科学基金项目2020J01531
福建农林大学****基金Kxjq20010

详细信息
作者简介:古力, 主要研究方向为中药资源可持续利用。E-mail: guli5101@163.com
通讯作者:张重义, 主要研究方向为中药资源可持续利用。E-mail: hauzzy@163.com
中图分类号:R282.2

计量

文章访问数:122
HTML全文浏览量:31
PDF下载量:23
被引次数:0
出版历程

收稿日期:2021-03-05
录用日期:2021-05-08
刊出日期:2021-08-01

Alleviating effect of strong reduction and flooding treatment on continuous cropping obstacles in Rehmannia glutinosa

GU Li1, 3,,
LI Xuanzhen2,
LI Mingjie1, 3,
YU Zhijian1,
LIN Meigui1,
WANG Jianming1,
XIE Jiawei1,
ZHANG Zhongyi1, 3,,
1. College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2. College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
3. Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Funds: the National Natural Science Foundation of China82073962
the National Natural Science Foundation of China82073965
the National Key Research and Development Program of China2017YFC1700705
the Natural Science Foundation of Fujian Province2020J01531
the Distinguished Youth Fund of Fujian Agriculture and Forestry UniversityKxjq20010

More Information
Corresponding author:ZHANG Zhongyi, E-mail: hauzzy@163.com


摘要
HTML全文
(5)(1)
参考文献(42)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:地黄是我国著名的大宗中药材,但是在其栽培过程中存在严重的连作障碍现象,至今尚未得到有效解决。为了开发地黄连作障碍消减技术,本文研究了强还原和淹水处理对连作地黄关键生长指标,连作土壤理化性质、细菌群落结构及其生物学功能的影响。结果表明,强还原和淹水处理提高了连作土壤中瘤胃球菌属和肠球菌属等厌氧异养型细菌的相对丰度,形成了富含Fe2+和有机酸等抑制病原菌的土壤环境;其中,强还原处理后土壤中Fe2+和有机酸含量比连作对照分别提高4.73倍和3.54倍,淹水处理后土壤中Fe2+和有机酸含量比连作对照分别提高1.65倍和1.12倍。同时,假单胞菌属等益生菌群落在处理后的土壤中迅速重建。然而,强还原和淹水处理对土壤理化性质和细菌群落结构的影响存在一定差异,二者对地黄连作障碍的消减效果也有所不同:添加秸秆等有机物的强还原处理后连作土壤的有机质含量、碱解氮、速效磷和速效钾含量均有所提高,而淹水处理效果不明显;淹水处理的细菌香农指数和Chao1指数均有所下降,强还原处理的细菌香农指数有所下降,而Chao1指数有所上升,且细菌群落组成的变化也有所不同。强还原和淹水处理均可有效提高连作地黄的存活率和产量,并且以强还原处理效果较优,其存活率和产量比连作对照分别提高1.94倍和4.04倍。因此,强还原和淹水处理能够改善连作土壤的理化性质及其微生物群落结构,达到消减地黄连作障碍的效果,有效提高连作地黄的存活率和产量。
关键词:地黄/
强还原/
淹水/
土壤Fe2+含量/
土壤有机酸含量/
土壤微生物群落/
连作障碍
Abstract:Rehmannia glutinosa is a popular medicinal herb in China. During R. glutinosa cultivation, serious consecutive monoculture problems are often encountered and have not yet to be effectively resolved. Preliminary studies found that an imbalance in the microbial communities in the rhizosphere soils is the main reason for consecutive monoculture problems; the abundance of pathogenic microorganisms significantly increased, whereas the beneficial microorganisms were inhibited. Therefore, it is important to control and alleviate the consecutive monoculture problem by inhibiting and balancing pathogenic microbes. This study sought to develop critical technology for alleviating the consecutive monoculture problems of R. glutinosa with strong reducing and flooding measures that may effectively inhibit the proliferation of pathogenic microbes. The key indices of treated R. glutinosa were analyzed, including plant growth and development, the physical and chemical properties of continuous cropping soil, the bacterial community structure, and its biological functions. The results indicated that the strong reducing and flooding treatments significantly increased the relative abundance of anaerobic heterotrophic bacteria, including Ruminococcus and Enterococcus, in the continuous cropping soils. This enhanced soil denitrification, creating special soil environments rich in Fe2+ and organic acids that inhibited pathogenic bacteria. Compared with the control soils, in the soils treated with strong reducing, the Fe2+ and organic acid levels increased by 4.73 times and 3.54 times, respectively, and in the soils treated with flooding, the same values increased by 1.65-fold and 1.12-fold, respectively. Concurrently, the beneficial bacteria community, such as Pseudomonas, was rapidly rebuilt in the treated soils; these bacteria have important roles that inhibit the proliferation of pathogens. The two methods, reducing and flooding, have different effects on the soil physical and chemical properties and the bacterial community structure of the consecutive cropping soils. Thus, the two methods have different efficiencies for alleviating the consecutive monoculture problem of R. glutinosa. Due to addition of straws, the strong reducing method increased contents of organic matter, available nitrogen, available phosphorus and available potassium of the consecutive cropping soils, while the flooding method did not show these effects. The Shannon index and Chao1 index under flooding decreased, while Shannon index decreased and Chao 1 index increased under the strong reduction. Both methods effectively increased the survival rate and yield of replanted R. glutinosa. The survival rate and yield of continuous cropping R. glutinosa treated with strong reducing increased by 1.94 times and 4.04 times, respectively, compared with those of the control plants. In contrast, the strong reducing treatment has more optimized effects that alleviate the consecutive monoculture problems of R. glutinosa. Both treatments alleviate the consecutive monoculture problem and improve the survival rate and yield of replanted R. glutinosa via improvements in the physical and chemical properties of the continuous cropping soils and their microbial communities. This study provides an important theoretical basis and technical reference for future studies of the strategies used to alleviate the consecutive monoculture problem during R. glutinosa production.
Key words:Rehmannia glutinosa/
Strong reduction/
Flooding/
Soil Fe2+ content/
Soil organic acid content/
Soil microbial community/
Continuous cropping obstacle

HTML全文


图1强还原和淹水处理对连作地黄存活率、块根鲜重、产量和梓醇含量的影响
CK、FD和SRA分别表示连作对照、连作地淹水处理和连作地强还原处理。图中不同小写字母表示不同处理在P < 0.05水平差异显著。
Figure1.Effects of strong reduction and flooding on survival rate, root fresh weight, yield and catalpol content of the continuously cropped Rehmannia glutinosa
CK, FD and SRA denote continuous cropping control, flooding of continuously cropping soil and strong reduction of continuously cropping soil, respectively. Different lowercase letters indicate significant differences among different treatments at P < 0.05 level.


下载: 全尺寸图片幻灯片


图2强还原和淹水处理对地黄连作土壤细菌群落多样性的影响
CK、FD和SRA分别表示连作对照、连作地淹水处理和连作地强还原处理。图中不同小写字母表示不同处理在P < 0.05水平差异显著。
Figure2.Effects of strong reduction and flooding on bacterial community diversity of continuous cropping soil of Rehmannia glutinosa
CK, FD and SRA denote continuous cropping control, flooding of continuously cropping soil and strong reduction of continuously cropping soil, respectively. Different lowercase letters indicate significant differences among different treatments at P < 0.05 level.


下载: 全尺寸图片幻灯片


图3强还原和淹水处理下地黄连作土壤细菌群落的主成分分析及系统发育树构建
CK、FD和SRA分别表示连作对照、连作地淹水处理和连作地强还原处理。
Figure3.Principal component analysis and phylogenetic tree construction of soil bacterial communities of continuous cropped Rehmannia glutinosa under strong reduction and flooding treatments
CK, FD and SRA denote continuous cropping control, flooding of continuously cropping soil and strong reduction of continuously cropping soil, respectively.


下载: 全尺寸图片幻灯片


图4强还原和淹水处理对地黄连作土壤细菌群落组成的影响
CK、FD和SRA分别表示连作对照、连作地淹水处理和连作地强还原处理。
Figure4.Effects of strong reduction and flooding on the composition of bacterial community of continuous cropping soil of Rehmannia glutinosa
CK, FD and SRA denote continuous cropping control, flooding of continuously cropping soil and strong reduction of continuously cropping soil, respectively.


下载: 全尺寸图片幻灯片


图5强还原和淹水处理对地黄连作土壤细菌群落功能的影响
CK、FD和SRA分别表示连作对照、连作地淹水处理和连作地强还原处理。
Figure5.Effects of strong reduction and flooding on the function of bacterial community of continuous cropping soil of Rehmannia glutinosa
CK, FD and SRA denote continuous cropping control, flooding of continuously cropping soil and strong reduction of continuously cropping soil, respectively.


下载: 全尺寸图片幻灯片

表1强还原和淹水处理对地黄连作土壤化学性质的影响
Table1.Effects of strong reduction and flooding on chemical properties of continuous cropping soil of Rehmannia glutinosa
指标Indicator 连作对照
Continuous cropping
淹水处理
Flooding of continuously cropping soil
强还原处理
Strong reduction of continuously cropping soil
有机质含量Organic matter content (g·kg–1) 20.33±1.84b 23.87±6.52ab 32.50±5.01a
碱解氮含量Alkaline hydrolysis nitrogen content (g·kg–1) 0.25±0.04b 0.26±0.05b 0.39±0.04a
速效磷含量Available phosphorus content (mg·kg–1) 23.93±6.66b 13.70±1.65c 27.60±4.62a
速效钾含量Available potassium content (mg·kg–1) 152±16.50ab 134±3.46b 193±20.70a
Fe2+含量Fe2+ content (cmol·kg–1) 0.32±0.05c 0.85±0.12b 1.83±0.23a
有机酸含量Organic acid content (cmol·kg–1) 0.36±0.05c 0.76±0.21b 1.64±0.26a
同行不同小写字母表示不同处理在P < 0.05水平差异显著。Different lowercase letters in the same line indicate significant differences among different treatments at P < 0.05 level.


下载: 导出CSV

参考文献(42)
[1]ZHANG B, LI X Z, WANG F Q, et al. Assaying the potential autotoxins and microbial community associated with Rehmannia glutinosa replant problems based on its 'autotoxic circle'[J]. Plant and Soil, 2016, 407(1/2): 307-322 doi: 10.1007/s11104-016-2885-2
[2]CHEN A G, GU L, LI M J, et al. Identification of Rehmannia glutinosa L. NB-ARC family proteins and their typical changes under consecutive monoculture stress[J]. Acta Physiologiae Plantarum, 2018, 40(5): 95 doi: 10.1007/s11738-018-2672-1
[3]张重义, 李明杰, 陈新建, 等. 地黄连作障碍机制的研究进展与消减策略[J]. 中国现代中药, 2013, 15(1): 38-44 doi: 10.3969/j.issn.1673-4890.2013.01.009
ZHANG Z Y, LI M J, CHEN X J, et al. Research advancement and control strategy of consecutive monoculture problem of Rehmannia glutinosa L. [J]. Modern Chinese Medicine, 2013, 15(1): 38-44 doi: 10.3969/j.issn.1673-4890.2013.01.009
[4]陈爱国, 李明杰, 张宝, 等. 连作介导的药用植物及其根际微生态灾变机制研究展望[J]. 中国现代中药, 2016, 18(2): 239-245 https://www.cnki.com.cn/Article/CJFDTOTAL-YJXX201602026.htm
CHEN A G, LI M J, ZHANG B, et al. Review on catastrophe mechanism of medicinal plant and its rhizosphere microecosystem mediated by consecutive monoculture[J]. Modern Chinese Medicine, 2016, 18(2): 239-245 https://www.cnki.com.cn/Article/CJFDTOTAL-YJXX201602026.htm
[5]郭兰萍, 周良云, 莫歌, 等. 中药生态农业——中药材GAP的未来[J]. 中国中药杂志, 2015, 40(17): 3360-3366 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201517009.htm
GUO L P, ZHOU L Y, MO G, et al. Ecological agriculture: future of Good Agriculture Practice of Chinese materia medica[J]. China Journal of Chinese Materia Medica, 2015, 40(17): 3360-3366 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201517009.htm
[6]雷锋杰, 张爱华, 张秋菊, 等. 人参、西洋参化感作用研究进展[J]. 中国中药杂志, 2010, 35(17): 2221-2226 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201017000.htm
LEI F J, ZHANG A H, ZHANG Q J, et al. Advances in research on allelopathy of ginseng and American ginseng[J]. China Journal of Chinese Materia Medica, 2010, 35(17): 2221-2226 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201017000.htm
[7]焦晓林, 杜静, 高微微. 西洋参根残体对自身生长的双重作用[J]. 生态学报, 2012, 32(10): 3128-3135 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201210019.htm
JIAO X L, DU J, GAO W W. Autotoxicity and promoting: dual effects of root litter on American ginseng growth[J]. Acta Ecologica Sinica, 2012, 32(10): 3128-3135 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201210019.htm
[8]孙雪婷, 李磊, 龙光强, 等. 三七连作障碍研究进展[J]. 生态学杂志, 2015, 34(3): 885-893 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201503039.htm
SUN X T, LI L, LONG G Q, et al. The progress and prospect on consecutive monoculture problems of Panax notoginseng[J]. Chinese Journal of Ecology, 2015, 34(3): 885-893 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201503039.htm
[9]杨莉, 任晶, 韩梅, 等. 人参根系分泌物中酸性物质的化感活性与互作效应[J]. 吉林农业大学学报, 2017, 39(5): 570-574 https://www.cnki.com.cn/Article/CJFDTOTAL-JLNY201705011.htm
YANG L, REN J, HAN M, et al. Allelopathy and interaction of acidic materials in ginseng root exudates[J]. Journal of Jilin Agricultural University, 2017, 39(5): 570-574 https://www.cnki.com.cn/Article/CJFDTOTAL-JLNY201705011.htm
[10]XIN A Y, LI X Z, JIN H, et al. The accumulation of reactive oxygen species in root tips caused by autotoxic allelochemicals-A significant factor for replant problem of Angelica sinensis (Oliv. ) Diels[J]. Industrial Crops and Products, 2019, 138: 111432 doi: 10.1016/j.indcrop.2019.05.081
[11]BULGARELLI D, ROTT M, SCHLAEPPI K, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota[J]. Nature, 2012, 488(7409): 91-95 doi: 10.1038/nature11336
[12]LAPIN D, VAN DEN ACKERVEKEN G. Susceptibility to plant disease: more than a failure of host immunity[J]. Trends in Plant Science, 2013, 18(10): 546-554 doi: 10.1016/j.tplants.2013.05.005
[13]HAICHAR F E Z, SANTAELLA C, HEULIN T, et al. Root exudates mediated interactions belowground[J]. Soil Biology and Biochemistry, 2014, 77: 69-80 doi: 10.1016/j.soilbio.2014.06.017
[14]CHEN A G, GU L, XU N, et al. NB-LRRs not responding consecutively to Fusarium oxysporum proliferation caused replant disease formation of Rehmannia glutinosa[J]. International Journal of Molecular Sciences, 2019, 20(13): E3203 doi: 10.3390/ijms20133203
[15]SCHMIDT J E, BOWLES T M, GAUDIN A C M. Using ancient traits to convert soil health into crop yield: impact of selection on maize root and rhizosphere function[J]. Frontiers in Plant Science, 2016, 7: 373 http://www.ncbi.nlm.nih.gov/pubmed/27066028?utm_source=research-news&utm_medium=referral&utm_campaign=research-news
[16]SASSE J, MARTINOIA E, NORTHEN T. Feed your friends: do plant exudates shape the root microbiome?[J]. Trends in Plant Science, 2018, 23(1): 25-41 doi: 10.1016/j.tplants.2017.09.003
[17]蔡祖聪, 张金波, 黄新琦, 等. 强还原土壤灭菌防控作物土传病的应用研究[J]. 土壤学报, 2015, 52(3): 469-476 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201503001.htm
CAI Z C, ZHANG J B, HUANG X Q, et al. Application of reductive soil disinfestation to suppress soil-borne pathogens[J]. Acta Pedologica Sinica, 2015, 52(3): 469-476 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201503001.htm
[18]MOMMA N, KOBARA Y, UEMATSU S, et al. Development of biological soil disinfestations in Japan[J]. Applied Microbiology and Biotechnology, 2013, 97(9): 3801-3809 doi: 10.1007/s00253-013-4826-9
[19]李云龙, 王宝英, 常亚锋, 等. 土壤强还原处理对三七连作障碍因子及再植三七生长的影响[J]. 土壤学报, 2019, 56(3): 703-715 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201903019.htm
LI Y L, WANG B Y, CHANG Y F, et al. Effects of reductive soil disinfestation on obstacles and growth of replant seedlings in Sanqi ginseng mono-cropped soils[J]. Acta Pedologica Sinica, 2019, 56(3): 703-715 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201903019.htm
[20]顾志光, 马艳, 安霞, 等. 麦秸淹水处理对连作土壤性状和辣椒疫病田间防控效果的影响[J]. 农业环境科学学报, 2014, 33(9): 1762-1769 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201409015.htm
GU Z G, MA Y, AN X, et al. Effects of wheat straw with flooding on soil properties and Phytophthora blight control in continuous chili pepper cropping field[J]. Journal of Agro-Environment Science, 2014, 33(9): 1762-1769 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201409015.htm
[21]耿建建, 赵艳, 王蓓蓓, 等. 稻秆淹水处理对高发病香蕉园土壤理化性状及病原菌的影响[J]. 江苏农业科学, 2017, 45(3): 87-90 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201703024.htm
GENG J J, ZHAO Y, WANG B B, et al. Effect of rice straw flooding on soil physical and chemical properties and pathogenic bacteria in high-incidence banana garden[J]. Jiangsu Agricultural Sciences, 2017, 45(3): 87-90 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201703024.htm
[22]王太霞, 李景原, 胡正海. 怀地黄营养器官中梓醇的积累动态[J]. 中草药, 2004, 35(2): 208-209 doi: 10.3321/j.issn:0253-2670.2004.02.038
WANG T X, LI J Y, HU Z H. Accumulation trends of catalpol in vegetative organs of Rehmannia glutinosa var. huechingensis[J]. Chinese Traditional and Herbal Drugs, 2004, 35(2): 208-209 doi: 10.3321/j.issn:0253-2670.2004.02.038
[23]王鑫. 河南省特色农产品四大怀药的出口现状、存在问题与对策[J]. 江苏农业科学, 2013, 41(7): 400-402 doi: 10.3969/j.issn.1002-1302.2013.07.144
WANG X. Status, existing problems and countermeasures of export of the four major Huai medicines of Henan Province[J]. Jiangsu Agricultural Sciences, 2013, 41(7): 400-402 doi: 10.3969/j.issn.1002-1302.2013.07.144
[24]李明杰, 冯法节, 张宝, 等. 多元组学背景下地黄连作障碍形成的分子机制研究进展[J]. 中国中药杂志, 2017, 42(3): 413-419 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201703002.htm
LI M J, FENG F J, ZHANG B, et al. Advances on molecular mechanisms of Rehmannia glutinosa consecutive monoculture problem formation in multi-omics era[J]. China Journal of Chinese Materia Medica, 2017, 42(3): 413-419 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201703002.htm
[25]LI M J, YANG Y H, FENG F J, et al. Differential proteomic analysis of replanted Rehmannia glutinosa roots by iTRAQ reveals molecular mechanisms for formation of replant disease[J]. BMC Plant Biology, 2017, 17(1): 1-21 doi: 10.1186/s12870-016-0951-9
[26]XIE Z M, YANG C Y, CHEN A G, et al. Identification and expression analysis of leucine-rich repeat receptor-like kinase family reveals the roles of resistance proteins during formation of replant disease in Rehmannia glutinosa Libosch[J]. International Journal of Agriculture and Biology, 2019, 22(3): 487-496 http://www.sciencedirect.com/science/article/pii/S0147651318309989
[27]GU L, WU Y F, LIN M G, et al. Identification of mapk cascade genes response to consecutive monoculture stress in Rehmannia glutinosa[J]. International Journal of Agriculture and Biology, 2020, 24: 591-602
[28]茹瑞红, 李烜桢, 黄晓书, 等. 食用菌菌渣缓解地黄连作障碍的研究[J]. 中国中药杂志, 2014, 39(16): 3036-3041 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201416008.htm
RU R H, LI X Z, HUNAG X S, et al. Effect of substrate of edible mushroom on continuously cropping obstacle of Rehmannia glutinosa[J]. China Journal of Chinese Materia Medica, 2014, 39(16): 3036-3041 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201416008.htm
[29]胡展育, 游春梅, 张铁. 三七连作障碍的探讨[J]. 文山学院学报, 2011, 24(3): 6-11 https://www.cnki.com.cn/Article/CJFDTOTAL-WSSZ201103004.htm
HU Z Y, YOU C M, ZHANG T. Discussing the obstacles caused by continuous notoginseng cropping[J]. Journal of Wenshan University, 2011, 24(3): 6-11 https://www.cnki.com.cn/Article/CJFDTOTAL-WSSZ201103004.htm
[30]古力, 牛苗苗, 郑红艳, 等. 连作地黄的植株形态生理效应研究[J]. 中药材, 2013, 36(5): 691-695 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYCA201305003.htm
GU L, NIU M M, ZHENG H Y, et al. Effect of continuous cropping of Rehmannia on its morphological and physiological characteristics[J]. Journal of Chinese Medicinal Materials, 2013, 36(5): 691-695 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYCA201305003.htm
[31]MOMMA N, KOBARA Y, MOMMA M. Fe2+ and Mn2+, potential agents to induce suppression of Fusarium oxysporum for biological soil disinfestation[J]. Journal of General Plant Pathology, 2011, 77(6): 331-335 doi: 10.1007/s10327-011-0336-8
[32]HUANG X Q, WEN T, ZHANG J B, et al. Toxic organic acids produced in biological soil disinfestation mainly caused the suppression of Fusarium oxysporum f. sp. cubense[J]. BioControl, 2015, 60(1): 113-124 doi: 10.1007/s10526-014-9623-6
[33]李振方, 杨燕秋, 吴林坤, 等. 地黄强致病型病原菌的分离及其专化型鉴定[J]. 中国生态农业学报, 2013, 21(11): 1426-1433 doi: 10.3724/SP.J.1011.2013.30313
LI Z F, YANG Y Q, WU L K, et al. Isolation of highly pathogenic pathogens and identification of formae speciales of Rehmannia glutinosa L. [J]. Chinese Journal of Eco-Agriculture, 2013, 21(11): 1426-1433 doi: 10.3724/SP.J.1011.2013.30313
[34]BAKKER M G, MANTER D K, SHEFLIN A M, et al. Harnessing the rhizosphere microbiome through plant breeding and agricultural management[J]. Plant and Soil, 2012, 360(1/2): 1-13 doi: 10.1007/s11104-012-1361-x
[35]METCALF J L, XU Z Z, WEISS S, et al. Microbial community assembly and metabolic function during mammalian corpse decomposition[J]. Science, 2016, 351(6269): 158-162 doi: 10.1126/science.aad2646
[36]OLANREWAJU O S, AYANGBENRO A S, GLICK B R, et al. Plant health: feedback effect of root exudates-rhizobiome interactions[J]. Applied Microbiology and Biotechnology, 2019, 103(3): 1155-1166 doi: 10.1007/s00253-018-9556-6
[37]金相灿, 崔哲, 王圣瑞. 连续淹水培养条件下沉积物和土壤的氮素矿化过程[J]. 土壤通报, 2006, 37(5): 909-915 doi: 10.3321/j.issn:0564-3945.2006.05.018
JIN X C, CUI Z, WANG S R. Nitrogen mineralization processes of sediments and soil under continuously waterlogged incubation conditions[J]. Chinese Journal of Soil Science, 2006, 37(5): 909-915 doi: 10.3321/j.issn:0564-3945.2006.05.018
[38]杨敏芳, 朱利群, 韩新忠, 等. 耕作措施与秸秆还田对稻麦两熟制农田土壤养分、微生物生物量及酶活性的影响[J]. 水土保持学报, 2013, 27(2): 272-275, 281 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201302054.htm
YANG M F, ZHU L Q, HAN X Z, et al. Effects of tillage and crop residues incorporation on soil nutrient, microbial biomass and enzyme activity under rice-wheat rotation[J]. Journal of Soil and Water Conservation, 2013, 27(2): 272-275, 281 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201302054.htm
[39]MOWLICK S, INOUE T, TAKEHARA T, et al. Changes and recovery of soil bacterial communities influenced by biological soil disinfestation as compared with chloropicrin-treatment[J]. AMB Express, 2013, 3(1): 1-12 doi: 10.1186/2191-0855-3-1
[40]LATHAM M J, WOLIN M J. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium[J]. Applied and Environmental Microbiology, 1977, 34(3): 297-301 doi: 10.1128/aem.34.3.297-301.1977
[41]HOLDEMAN L V, MOORE W E C. New genus, Coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces[J]. International Journal of Systematic Bacteriology, 1974, 24(2): 260-277 doi: 10.1099/00207713-24-2-260
[42]BERGSMA-VLAMI M, PRINS M E, RAAIJMAKERS J M. Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp[J]. FEMS Microbiology Ecology, 2005, 52(1): 59-69 doi: 10.1016/j.femsec.2004.10.007

相关话题/土壤 中药 连作 图片 微生物