删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

有机无机配施体系中有机肥腐熟程度对化肥氮利用率的影响机制

本站小编 Free考研考试/2022-01-01

张勇,
徐智,
王宇蕴,,
邓亚琴,
刘美菊,
尹元萍,
郑魁,
娄义晟,
赵兵
云南农业大学资源与环境学院 昆明 650201
基金项目: 国家自然科学基金项目31760609
中央引导高校发展校杰出人才专项A3012020017013
云南省****青年拔尖人才项目A3012020057

详细信息
作者简介:张勇, 主要研究方向为固体废弃物资源化利用。E-mail: 17808324289@163.com
通讯作者:王宇蕴, 主要研究方向为养分循环利用。E-mail: yuyunwhere@163.com
中图分类号:S141.4;S143.1

计量

文章访问数:81
HTML全文浏览量:34
PDF下载量:34
被引次数:0
出版历程

收稿日期:2020-11-24
录用日期:2021-03-17
网络出版日期:2021-06-22
刊出日期:2021-06-01

Effects of organic fertilizer maturity degree on nitrogen utilization efficiency of chemical fertilizer

ZHANG Yong,
XU Zhi,
WANG Yuyun,,
DENG Yaqin,
LIU Meiju,
YIN Yuanping,
ZHENG Kui,
LOU Yisheng,
ZHAO Bing
College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
Funds: the National Natural Science Foundation of China31760609
the Special Project for the Development of Outstanding Talents in Universities by the Central Government of ChinaA3012020017013
the Young Talents Project of Ten Thousand Talents Program of Yunnan ProvinceA3012020057

More Information
Corresponding author:WANG Yuyun, E-mail: yuyunwhere@163.com


摘要
HTML全文
(4)(3)
参考文献(40)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为探究有机肥腐熟度对配施化肥氮利用率的作用机制,利用15N标记技术进行意大利生菜盆栽试验,从堆肥过程中选取不同腐熟度的有机肥[按照种子发芽指数(GI值)为50%、80%和100%进行堆肥的腐熟度区分],研究施15NPK化肥(对照,CK)、15NPK+GI 50%有机肥(GI50)、15NPK+GI 80%有机肥(GI80)、15NPK+GI 100%有机肥(GI100)4个处理对意大利生菜化肥氮的转化、吸收和利用的影响。结果表明,与CK处理相比,添加有机肥处理意大利生菜生物量、15N吸收量与15N利用率分别显著提高30.5%~56.1%、40.0%~91.0%和15.5%~41.8%(P < 0.05),GI80处理较GI50处理生物量、15N吸收量与利用率分别显著提高17.1%、31.8%和35.4%(P < 0.05),GI100处理较GI50处理生物量、15N吸收量与利用率分别显著提高19.6%、15.8%和22.8%(P < 0.05)。试验期间,添加有机肥处理较CK处理土壤15NH4+-N显著提高44.9%~74.2%(P < 0.05),15NO3--N显著降低8.4%~38.1%(P < 0.05),净硝化率显著降低10.8%~24.6%(P < 0.05);GI80处理较GI50处理土壤15NH4+-N提高7.9%~11.5%,15NO3--N显著降低18.5%~50.4%(P < 0.05),净硝化率显著降低15.0%~28.2%(P < 0.05);GI100处理较GI50处理土壤15NH4+-N显著提高11.5%~26.9%(P < 0.05),15NO3--N显著降低15.8%~22.7%(P < 0.05),净硝化率显著降低12.5%~23.9%(P < 0.05)。土壤微生物量氮(MB15N)缓慢上升,添加有机肥处理较CK处理显著提高67.3%~94.1%(P < 0.05),GI80处理较GI50处理提高6.0%~23.8%,GI100处理较GI50处理显著提高6.9%~25.5%(P < 0.05)。各处理MB15N占MBN的54.9%~71.6%(P < 0.05)。相关分析结果表明,MB15N、15NH4+-N与15N吸收量、15N利用率呈现极显著正相关关系,且RDA分析结果说明MB15N是影响化肥15N吸收利用的关键驱动因子。因此,有机无机配施体系中适当增加有机肥的腐熟度(GI≥80%)能够明显增强土壤微生物的固氮能力,提高土壤氮素水平,减缓土壤铵态氮向硝态氮的转化速度,降低土壤净硝化速率,从而提高化肥氮的利用效率。
关键词:有机无机肥配施/
有机肥腐熟度/
化肥氮利用率/
土壤氮含量/
净硝化率/
15N标记技术
Abstract:The application of organic fertilizers promotes efficient chemical fertilizer use, but the effects and mechanisms of organic fertilizers with different maturation degrees are unresolved. To explore the effects of applying organic fertilizer with different maturity degrees on chemical nitrogen utilization efficiency for a practice of combined organic-inorganic fertilizers application, a pot experiment of lettuce (Lactuca sativa var. ramosa Hort.) was conducted using nitrogen-15 (15N) tracer technology. The organic fertilizers with different maturity degrees, which indicated by the germination index of cress (Lepidium sativum L.) (GI), were applied with 15N-labelled chemical fertilizer. A treatment without organic fertilizer application (CK) was set up as the control and following the principle of equal nutrient and carbon input, three treatments with different maturity degrees of organic fertilizer: 15NPK (nitrogen-15, phosphorus, potassium) + 50% GI organic fertilizer (GI50), 15NPK + 80% GI organic fertilizer (GI80), and 15NPK + 100% GI organic fertilizer (GI100) were tested. The results showed that, compared to CK, the GI50, GI80, and GI100 treatments significantly (P < 0.05) increased lettuce biomass, 15N uptake and 15N use efficiency by 30.5%-56.1%, 40.0%-91.0%, and 15.5%-41.8%, respectively. The biomass, 15N uptake, and 15N use efficiency of GI80 significantly (P < 0.05) increased by 17.1%, 31.8%, and 35.4%, respectively; those of GI100 significantly (P < 0.05) increased by 19.6%, 15.8%, and 22.8%, respectively, compared to GI50. Compared to CK, ammonium-nitrogen (15NH4+-N) in GI50, GI80, and GI100 treatments significantly increased by 44.9%-74.2% (P < 0.05), nitrate-nitrogen(15NO3--N) significantly decreased by 8.4%-38.1% (P < 0.05), and net nitrification rate significantly decreased by 10.8%-24.6% (P < 0.05). Compared to GI50, GI80 increased 15NH4+-N by 7.9%-11.5%, significantly decreased 15NO3--N and net nitrification rate by 18.5%-50.4% (P < 0.05) and 15.0%-28.2% (P < 0.05), respectively; GI100 significantly increased 15NH4+-N by 11.5%-26.9% (P < 0.05), significantly decreased 15NO3--N and net nitrification rate by 15.8%-22.7% (P < 0.05) and 12.5%-23.9% (P < 0.05), respectively. The microbial biomass nitrogen (MBN) and MB15N in soil slowly increased. Compared to CK, GI80 and GI100 treatments significantly increased MB15N by 67.3%-94.1% (P < 0.05). Compared to GI50, GI80 and GI100 treatments increased MB15N by 6.0%-23.8% and 6.9%-25.5% (P < 0.05), respectively. The MB15N in each treatment accounted for 54.9%-71.6% (P < 0.05) of the MBN. Correlation analysis showed that MB15N and 15NH4+-N had significant positive correlations with the 15N absorptive amount and 15N utilization rate; and the redundancy analysis showed that MB15N was the key driving factor of the absorption and utilization of 15N in chemical fertilizers. Therefore, an appropriate increase in the maturity of organic fertilizer (GI ≥ 80%) when applying organic and inorganic fertilizers can enhance the nitrogen fixation ability of soil microorganisms, improve soil nitrogen levels, slow the conversion rate of soil 15NH4+-N to 15NO3--N, reduce the net nitrification rate, and inhibit soil nitrification, thereby improving the nitrogen utilization efficiency of chemical fertilizer. The results of this study provide an important basis for understanding the mechanisms of appropriately improving the maturity degree of organic matter to enhance chemical nitrogen use efficiency.
Key words:Combined application of organic and inorganic fertilizers/
Maturity degree of organic fertilizer/
Fertilizer nitrogen use efficiency/
Soil nitrogen content/
Net nitrification rate/
15N tracer technology

HTML全文


图1不同腐熟度有机肥配施无机肥处理下土壤矿质态氮和标记态矿质态氮的含量变化
CK: 15NPK; GI50: 15NPK+GI 50%有机肥; GI80: 15NPK+ GI 80%有机肥; GI100: 15NPK+GI 100%有机肥。图中不同小写字母表示同一时间不同处理间在P < 0.05水平差异显著, 不同大写字母表示同一处理不同时间在P < 0.05水平差异显著。CK: 15NPK; GI50: 15NPK+GI (germination rate of cress) 50% organic fertilizer; GI80: 15NPK+GI 80% organic fertilizer; GI100: 15NPK+GI 100% organic fertilizer. Different lowercase letters indicate significant differences among treatments in the same time at P < 0.05 level. Different capital letters indicate significant differences among times for the same treatment at P < 0.05 level.
Figure1.Changes in contents of soil mineral nitrogen and labeled mineral nitrogen under different treatments of combined application of chemical fertilizer and organic fertilizers with different maturity degrees


下载: 全尺寸图片幻灯片


图2不同腐熟度有机肥配施无机肥处理下土壤净硝化速率变化
CK: 15NPK; GI50: 15NPK+GI 50%有机肥; GI80: 15NPK+ GI 80%有机肥; GI100: 15NPK+GI 100%有机肥。图中不同小写字母表示同一时间不同处理间在P < 0.05水平差异显著, 不同大写字母表示同一处理不同时间在P < 0.05水平差异显著。CK: 15NPK; GI50: 15NPK+GI (germination rate of cress) 50% organic fertilizer; GI80: 15NPK+GI 80% organic fertilizer; GI100: 15NPK+GI 100% organic fertilizer. Different lowercase letters indicate significant differences among treatments in the same time at P < 0.05 level. Different capital letters indicate significant differences among times for the same treatment at P < 0.05 level.
Figure2.Changes of soil net nitrification rate under different treatments of combined application of chemical fertilizer and organic fertilizers with different maturity degrees


下载: 全尺寸图片幻灯片


图3不同腐熟度有机肥配施无机肥处理下土壤微生物生物量氮(MBN, MB15N)含量变化
CK: 15NPK; GI50: 15NPK+GI 50%有机肥; GI80: 15NPK+ GI 80%有机肥; GI100: 15NPK+GI 100%有机肥。图中不同小写字母表示同一时间不同处理间在P < 0.05水平差异显著, 不同大写字母表示同一处理不同时间在P < 0.05水平差异显著。CK: 15NPK; GI50: 15NPK+GI (germination rate of cress) 50% organic fertilizer; GI80: 15NPK+GI 80% organic fertilizer; GI100: 15NPK+GI 100% organic fertilizer. Different lowercase letters indicate significant differences among treatments in the same time at P < 0.05 level. Different capital letters indicate significant differences among times for the same treatment at P < 0.05 level.
Figure3.Changes in soil microbial biomass nitrogen (MBN, MB15N) contents under different treatments of combined application of chemical fertilizer and organic fertilizers with different maturity degrees


下载: 全尺寸图片幻灯片


图4标记态矿质态氮、微生物量氮及净硝化率与15N吸收利用的RDA分析
CK: 15NPK; GI50: 15NPK+GI 50%有机肥; GI80: 15NPK+ GI 80%有机肥; GI100: 15NPK+ GI 100%有机肥。MBN: 土壤微生物生物量氮。CK: 15NPK; GI50: 15NPK+GI 50% (germination rate of cress) organic fertilizer; GI80: 15NPK+ GI 80% organic fertilizer; GI100: 15NPK+ GI 100% organic fertilizer. MBN: soil microbial biomass nitrogen.
Figure4.RDA analysis of labeled mineral nitrogen, microbial biomass nitrogen, net nitrification rate and 15N absorption and utilization


下载: 全尺寸图片幻灯片

表1不同腐熟度有机肥的养分含量
Table1.Nutrients contents of organic fertilizers with different maturity degrees
腐熟度
Maturity degree (%)
全氮
Total nitrogen (g?kg?1)
全磷
Total phosphorus [g(P2O5)?kg?1]
全钾
Total potassium [g(K2O)?kg?1]
5010.3026.632.06
8010.7428.502.77
10011.7229.332.88
腐熟度用西芹的发芽率表示。The maturity degree is indicated by the germination rate of cress (Lepidium sativum L.).


下载: 导出CSV
表2不同腐熟度有机肥配施无机肥处理下生菜生物量、15N吸收量及利用率的变化
Table2.Changes of lettuce biomass, 15N absorption and utilization rate under different treatments of combined application of chemical fertilizer and organic fertilizers with different maturity degrees
处理
Treatment
生物量
Biomass (g?plant?1)
15N吸收量
15N absorption (mg?plant?1)
15N利用率
15N utilization (%)
CK28.29±0.57c36.75±0.28c35.71±0.35d
GI5036.93±1.04b51.83±0.32b41.24±0.26c
GI8043.25±0.76a68.32±0.56a47.75±0.43b
GI10044.16±0.86a70.18±0.32a50.63±0.65a
CK: 15NPK; GI50: 15NPK+GI 50%有机肥; GI80: 15NPK+ GI 80%有机肥; GI100: 15NPK+GI 100%有机肥。同列不同小写字母表示不同处理间在P < 0.05水平差异显著。CK: 15NPK; GI50: 15NPK+GI (germination rate of cress) 50% organic fertilizer; GI80: 15NPK+GI 80% organic fertilizer; GI100: 15NPK+GI 100% organic fertilizer. Different lowercase letters in the same column indicate significant differences among different treatments at P < 0.05 level.


下载: 导出CSV
表3各指标之间的相关关系
Table3.Correlation between various indicators
土壤指标Soil index生菜指标Lettuce index
${\rm{NH}}_4^ + {\rm{ - N}}$$^{15}{\rm{NH}}_4^ + {\rm{ - N}}$${\rm{NO}}_3^ - {\rm{ - N}}$$^{15}{\rm{NO}}_3^ - {\rm{ - N}}$MBNMB15N生物量
Biomass
15N吸收量
15N absorption
15N利用率
15N utilization
土壤
指标
Soil index
$^{15}{\rm{NH}}_4^ + {\rm{ - N}}$0.942**1.000
${\rm{NO}}_3^ - {\rm{ - N}}$?0.962**?0.961**1.000
$^{15}{\rm{NO}}_3^ - {\rm{ - N}}$?0.888**?0.784**0.900**1.000
MBN0.952**0.891**?0.953**?0.911**1.000
MB15N0.967**0.981**?0.991**?0.878**0.941**1.000
生菜
指标Lettuce index
生物量
Biomass
0.954**0.953**?0.972**?0.941**0.951**0.979**1.000
15N吸收量
15N absorption
0.961**0.912**?0.973**?0.959**0.969**0.966**0.990**1.000
15N利用率
15N utilization
0.955**0.907**?0.953**?0.922**0.976**0.953**0.973**0.989**1.000
净硝化率
Net nitrification rate
?0.895**?0.832**0.895**0.848**?0.931**?0.865**?0.870**?0.884**?0.875**
MBN: 土壤微生物生物量氮。*和**分别表示P < 0.05和P < 0.01水平显著相关。MBN: soil microbial biomass nitrogen. * and ** represent significant correlation at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV

参考文献(40)
[1]DUAN Y H, XU M G, GAO S D, et al. Nitrogen use efficiency in a wheat-corn cropping system from 15 years of manure and fertilizer applications[J]. Field Crops Research, 2014, 157: 47-56 doi: 10.1016/j.fcr.2013.12.012
[2]LIU X J, ZHANG Y, HAN W X, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459-462 doi: 10.1038/nature11917
[3]GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010 doi: 10.1126/science.1182570
[4]WU C L, SHEN Q R, MAO J D, et al. Fate of 15N after combined application of rabbit manure and inorganic N fertilizers in a rice-wheat rotation system[J]. Biology and Fertility of Soils, 2010, 46(2): 127-137 doi: 10.1007/s00374-009-0420-9
[5]FANDIKA I R, KADYAMPAKENI D, BOTTOMANI C, et al. Comparative response of varied irrigated maize to organic and inorganic fertilizer application[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(15/16/17/18): 1107-1116 http://www.sciencedirect.com/science/article/pii/S1474706507001106
[6]BANDYOPADHYAY K K, MISRA A K, GHOSH P K, et al. Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean[J]. Soil and Tillage Research, 2010, 110(1): 115-125 doi: 10.1016/j.still.2010.07.007
[7]LIU M Q, HU F, CHEN X Y, et al. Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: The influence of quantity, type and application time of organic amendments[J]. Applied Soil Ecology, 2009, 42(2): 166-175 doi: 10.1016/j.apsoil.2009.03.006
[8]SUGIHARA S, FUNAKAWA S, KILASARA M, et al. Dynamics of microbial biomass nitrogen in relation to plant nitrogen uptake during the crop growth period in a dry tropical cropland in Tanzania[J]. Soil Science and Plant Nutrition, 2010, 56(1): 105-114 doi: 10.1111/j.1747-0765.2009.00428.x
[9]JOHNSON D W, CHENG W, BURKE I C. Biotic and abiotic nitrogen retention in a variety of forest soils[J]. Soil Science Society of America Journal, 2000, 64(4): 1503-1514 doi: 10.2136/sssaj2000.6441503x
[10]HERRMANN A M, WITTER E. Predictors of gross N mineralization and immobilization during decomposition of stabilized organic matter in agricultural soil[J]. European Journal of Soil Science, 2008, 59(4): 653-664 doi: 10.1111/j.1365-2389.2008.01023.x
[11]LONG G Q, JIANG Y J, SUN B. Seasonal and inter-annual variation of leaching of dissolved organic carbon and nitrogen under long-term manure application in an acidic clay soil in subtropical China[J]. Soil and Tillage Research, 2015, 146: 270-278 doi: 10.1016/j.still.2014.09.020
[12]LOU Y, XU M, WANG W, et al. Soil organic carbon fractions and management index after 20 yr of manure and fertilizer application for greenhouse vegetables[J]. Soil Use and Management, 2011, 27(2): 163-169 doi: 10.1111/j.1475-2743.2010.00325.x
[13]张瑞, 张贵龙, 姬艳艳, 等. 不同施肥措施对土壤活性有机碳的影响[J]. 环境科学, 2013, 34(1): 277-282 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201301045.htm
ZHANG R, ZHANG G L, JI Y Y, et al. Effects of different fertilizer application on soil active organic carbon[J]. Environmental Science, 2013, 34(1): 277-282 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201301045.htm
[14]陆强, 王继琛, 李静, 等. 秸秆还田与有机无机肥配施在稻麦轮作体系下对籽粒产量及氮素利用的影响[J]. 南京农业大学学报, 2014, 37(6): 66-74 https://www.cnki.com.cn/Article/CJFDTOTAL-NJNY201406010.htm
LU Q, WANG J C, LI J, et al. Effect of straw returning and combined applications of organic fertilizer and inorganic fertilizer on grain yield and nitrogen utilization under rice-wheat rotation system[J]. Journal of Nanjing Agricultural University, 2014, 37(6): 66-74 https://www.cnki.com.cn/Article/CJFDTOTAL-NJNY201406010.htm
[15]杨兴明, 徐阳春, 黄启为, 等. 有机(类)肥料与农业可持续发展和生态环境保护[J]. 土壤学报, 2008, 45(5): 925-932 doi: 10.3321/j.issn:0564-3929.2008.05.019
YANG X M, XU Y C, HUANG Q W, et al. Organic-like fertilizers and its relation to sustainable development of agriculture and protection of eco-environment[J]. Acta Pedologica Sinica, 2008, 45(5): 925-932 doi: 10.3321/j.issn:0564-3929.2008.05.019
[16]彭佩钦, 仇少君, 侯红波, 等. 15N交叉标记有机与无机肥料氮的转化与残留[J]. 生态学报, 2011, 31(3): 858-865 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201103031.htm
PENG P Q, QIU S J, HOU H B, et al. Nitrogen transformation and its residue in pot experiments amended with organic and inorganic 15N cross labeled fertilizers[J]. Acta Ecologica Sinica, 2011, 31(3): 858-865 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201103031.htm
[17]李鹏程, 郑苍松, 孙淼, 等. 利用15N示踪研究不同肥力土壤棉花氮肥减施的产量与环境效应[J]. 植物营养与肥料学报, 2017, 23(5): 1199-1206 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201705008.htm
LI P C, ZHENG C S, SUN M, et al. Using 15N tracing technique to study the yield and environmental effect of decreasing N fertilization on cotton in different fertility fields[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(5): 1199-1206 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201705008.htm
[18]王前登, 刘雪艳, 何雪菲, 等. 基于15N示踪的库尔勒香梨园氮素去向研究[J]. 植物营养与肥料学报, 2019, 25(9): 1523-1531 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201909009.htm
WANG Q D, LIU X Y, HE X F, et al. Fertilizer nitrogen fate in Korla fragrant pear orchard using 15N tracing method[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(9): 1523-1531 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201909009.htm
[19]李鹏程, 董合林, 刘爱忠, 等. 应用15N研究氮肥运筹对棉花氮素吸收利用及产量的影响[J]. 植物营养与肥料学报, 2015, 21(3): 590-599 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201503005.htm
LI P C, DONG H L, LIU A Z, et al. Effects of nitrogen fertilizer application strategy on N uptake, utilization and yield of cotton using 15N trace technique[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 590-599 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201503005.htm
[20]李燕青, 温延臣, 林治安, 等. 不同有机肥与化肥配施对氮素利用率和土壤肥力的影响[J]. 植物营养与肥料学报, 2019, 25(10): 1669-1678 doi: 10.11674/zwyf.18417
LI Y Q, WEN Y C, LIN Z A, et al. Effect of different organic manures combined with chemical fertilizer on nitrogen use efficiency and soil fertility[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1669-1678 doi: 10.11674/zwyf.18417
[21]哈丽哈什·依巴提, 张丽, 陆强, 等. 猪粪堆肥与化肥不同配施方式对水稻产量和养分累积的影响[J]. 南京农业大学学报, 2013, 36(5): 77-82 https://www.cnki.com.cn/Article/CJFDTOTAL-NJNY201305015.htm
HALIHASHI·YIBATI, ZHANG L, LU Q, et al. Effects of different combined applications of pig manure compost and inorganic fertilizers on rice yield and nutrients accumulation[J]. Journal of Nanjing Agricultural University, 2013, 36(5): 77-82 https://www.cnki.com.cn/Article/CJFDTOTAL-NJNY201305015.htm
[22]解开治, 徐培智, 蒋瑞萍, 等. 有机无机肥配施提升冷浸田土壤氮转化相关微生物丰度和水稻产量[J]. 植物营养与肥料学报, 2016, 22(5): 1267-1277 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201605014.htm
XIE K Z, XU P Z, JIANG R P, et al. Combined application of inorganic and organic fertilizers improve rice yield and the abundance of soil nitrogen-cycling microbes in cold waterlogged paddy fields[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1267-1277 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201605014.htm
[23]CHEN Y, WANG Y Y, XU Z, et al. Enhanced humification of maize straw and canola residue during composting by inoculating Phanerochaete chrysosporium in the cooling period[J]. Bioresource Technology, 2019, 293: 122075 doi: 10.1016/j.biortech.2019.122075
[24]JOERGENSEN R G, BROOKES P C. Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 m K2SO4 soil extracts[J]. Soil Biology and Biochemistry, 1990, 22(8): 1023-1027 doi: 10.1016/0038-0717(90)90027-W
[25]PERSSON T, WIRéN A. Nitrogen mineralization and potential nitrification at different depths in acid forest soils[J]. Plant and Soil, 1995, 168(1): 55-65 doi: 10.1007/BF00029313
[26]朱菜红, 董彩霞, 沈其荣, 等. 配施有机肥提高化肥氮利用效率的微生物作用机制研究[J]. 植物营养与肥料学报, 2010, 16(2): 282-288 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201002005.htm
ZHU C H, DONG C X, SHEN Q R, et al. Microbial mechanism on enhancement of inorganic fertilizer-N use efficiency for combined use of inorganic and organic fertilizers[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 282-288 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201002005.htm
[27]李银坤, 郝卫平, 龚道枝, 等. 减氮配施有机肥对夏玉米-冬小麦土壤硝态氮及氮肥利用的影响[J]. 土壤通报, 2019, 50(2): 348-354 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201902014.htm
LI Y K, HAO W P, GONG D Z, et al. Effects of nitrogen reduction and combined application with organic fertilizer on soil nitrate nitrogen and nitrogen fertilizer utilization efficiency in summer maize and winter wheat systems[J]. Chinese Journal of Soil Science, 2019, 50(2): 348-354 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201902014.htm
[28]HUANG T, YANG H, HUANG C C, et al. Effect of fertilizer N rates and straw management on yield-scaled nitrous oxide emissions in a maize-wheat double cropping system[J]. Field Crops Research, 2017, 204: 1-11 doi: 10.1016/j.fcr.2017.01.004
[29]唐海明, 李超, 肖小平, 等. 有机肥氮投入比例对双季稻田根际土壤微生物生物量碳、氮和微生物熵的影响[J]. 应用生态学报, 2019, 30(4): 1335-1343 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201904031.htm
TANG H M, LI C, XIAO X P, et al. Effects of different manure nitrogen input ratio on rhizosphere soil microbial biomass carbon, nitrogen and microbial quotient in double-cropping rice field[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1335-1343 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201904031.htm
[30]WANG J, ZHU B, ZHANG J B, et al. Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China[J]. Soil Biology and Biochemistry, 2015, 91: 222-231 doi: 10.1016/j.soilbio.2015.08.039
[31]宋震震, 李絮花, 李娟, 等. 有机肥和化肥长期施用对土壤活性有机氮组分及酶活性的影响[J]. 植物营养与肥料学报, 2014, 20(3): 525-533 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201403002.htm
SONG Z Z, LI X H, LI J, et al. Long-term effects of mineral versus organic fertilizers on soil labile nitrogen fractions and soil enzyme activities in agricultural soil[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(3): 525-533 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201403002.htm
[32]LUXH?I J, ELSGAARD L, THOMSEN I K, et al. Effects of long-term annual inputs of straw and organic manure on plant N uptake and soil N fluxes[J]. Soil Use and Management, 2007, 23(4): 368-373 doi: 10.1111/j.1475-2743.2007.00126.x
[33]HE J Z, SHEN J P, ZHANG L M, et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices[J]. Environmental Microbiology, 2007, 9(9): 2364-2374 doi: 10.1111/j.1462-2920.2007.01358.x
[34]SHANG F Z, REN S M, YANG P L, et al. Effects of different fertilizer and irrigation water types, and dissolved organic matter on soil C and N mineralization in crop rotation farmland[J]. Water, Air, & Soil Pollution, 2015, 226(12): 1-25
[35]崔敏, 冉炜, 沈其荣. 水溶性有机质对土壤硝化作用过程的影响[J]. 生态与农村环境学报, 2006, 22(3): 45-50 doi: 10.3969/j.issn.1673-4831.2006.03.013
CUI M, RAN W, SHEN Q R. Effects of dissolved organic matter on nitrification in soil[J]. Journal of Ecology and Rural Environment, 2006, 22(3): 45-50 doi: 10.3969/j.issn.1673-4831.2006.03.013
[36]ZHANG L, LI A M, LU Y F, et al. Characterization and removal of dissolved organic matter (DOM) from landfill leachate rejected by nanofiltration[J]. Waste Management, 2009, 29(3): 1035-1040 doi: 10.1016/j.wasman.2008.08.020
[37]SONG C H, LI M X, XI B D, et al. Characterisation of dissolved organic matter extracted from the bio-oxidative phase of co-composting of biogas residues and livestock manure using spectroscopic techniques[J]. International Biodeterioration & Biodegradation, 2015, 103: 38-50 http://www.cabdirect.org/abstracts/20153339438.html;jsessionid=FB3AA50E75FE4A974A8B211AFC5F65C3
[38]TANG Z, YU G H, LIU D Y, et al. Different analysis techniques for fluorescence excitation-emission matrix spectroscopy to assess compost maturity[J]. Chemosphere, 2011, 82(8): 1202-1208 doi: 10.1016/j.chemosphere.2010.11.032
[39]WANG K, LI W G, GONG X J, et al. Spectral study of dissolved organic matter in biosolid during the composting process using inorganic bulking agent: UV-vis, GPC, FTIR and EEM[J]. International Biodeterioration & Biodegradation, 2013, 85: 617-623 http://www.sciencedirect.com/science/article/pii/S0964830513001303
[40]YU G H, WU M J, LUO Y H, et al. Fluorescence excitation-emission spectroscopy with regional integration analysis for assessment of compost maturity[J]. Waste Management, 2011, 31(8): 1729-1736 http://www.sciencedirect.com/science/article/pii/S0956053X11001619

相关话题/土壤 微生物 植物 营养 指标