删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同供钾水平下胡麻木质素代谢及其抗倒伏特性研究

本站小编 Free考研考试/2022-01-01

刘玄1,,
董宏伟1,
高玉红2, 3,
剡斌2, 3,
崔政军2,
李玥4,
吴兵1, 3,,
1.甘肃农业大学生命科学技术学院 兰州 730070
2.甘肃农业大学农学院 兰州 730070
3.甘肃省干旱生境作物学 重点实验室 兰州 730070
4.甘肃农业大学信息科学技术学院 兰州 730070
基金项目: 国家自然科学基金项目31760363
国家自然科学基金项目32060437
现代农业产业技术体系项目CARS-14-1-16
甘肃农业大学伏羲杰出人才培育项目Gaufx-02J05

详细信息
作者简介:刘玄, 研究方向为作物分子生理及营养调控。E-mail: 15029209081@163.com
通讯作者:吴兵, 研究方向为作物生长调控与生理生态研究。E-mail: wub@gsau.edu.cn
中图分类号:S565.9

计量

文章访问数:125
HTML全文浏览量:10
PDF下载量:339
被引次数:0
出版历程

收稿日期:2020-10-13
录用日期:2021-02-01
刊出日期:2021-05-01

Lignin metabolism and lodging resistance characteristics of oil flax at different potassium levels

LIU Xuan1,,
DONG Hongwei1,
GAO Yuhong2, 3,
YAN Bin2, 3,
CUI Zhengjun2,
LI Yue4,
WU Bing1, 3,,
1. College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
2. Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
3. Key Laboratory of Arid Land Crop Science of Gansu Province, Lanzhou 730070, China
4. College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
Funds: the National Natural Science Foundation of China31760363
the National Natural Science Foundation of China32060437
the Modern Agricultural IndustrialTechnology System Project of ChinaCARS-14-1-16
Fuxi Outstanding Talent Cultivation Project of Gansu Agricultural UniversityGaufx-02J05

More Information
Corresponding author:WU Bing, E-mail: wub@gsau.edu.cn


摘要
HTML全文
(4)(5)
参考文献(50)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为了探讨供钾水平对胡麻抗倒伏特性的调节机理,以‘陇亚11号(V1)’和‘定亚23号(V2)’为材料,设不施钾[K0,0 kg(K2O)·hm-2]、低钾[K1,30 kg(K2O)·hm-2]、中钾[K2,60 kg(K2O)·hm-2]和高钾[K3,90 kg(K2O)·hm-2]4个供钾水平,共8个处理的裂区试验,分析不同供钾水平对胡麻茎秆木质素含量、木质素合成相关酶活性、茎秆力学特性和抗倒伏指数及产量的影响。结果表明,不同供钾水平,植株物理性状与倒伏的关系主要体现在青果期至成熟期,胡麻抗倒伏指数与茎粗呈显著正相关(P < 0.05),与株高和重心高度呈负相关。胡麻茎秆木质素含量随生育时期及供钾量不同而有所差异,苗期至盛花期,施钾后V1和V2木质素含量均在K2处理下较高;青果期至成熟期,K3处理下V1和V2木质素含量较K0处理平均显著增加17.68%和23.25%,其中,青果期不同品种、施钾及二者互作对木质素含量影响均达极显著水平(P < 0.01)。K2处理提高了现蕾期—青果期胡麻茎秆的苯丙氨酸解氨酶(PAL)活性及现蕾期V1品种酪氨酸解氨酶(TAL)活性,而K3处理提高了V2品种TAL活性;钾肥显著影响青果期胡麻茎秆肉桂醇脱氢酶(CAD)活性,2个品种CAD活性施钾较不施钾分别平均增高31.96%和12.09%;V1、V2品种过氧化物酶(POD)活性提升效应的适宜供钾量分别为K2、K1水平。V1品种茎秆抗折力和抗倒伏指数K2和K3处理较K0分别上升45.68%、48.90%和16.86%、31.92%,V2品种则分别上升84.32%、77.50%和1.89%、14.49%。相关分析表明,青果期,4种木质素合成相关酶与木质素和抗倒伏指数存在正相关。施钾后,2个品种均在K3处理下籽粒产量最高,分别较K0增产10.71%和17.77%,V1供钾处理间产量无显著差异,V2产量K2、K3处理较K0分别显著高出12.24%和17.77%。可见,品种是胡麻木质素积累进程中重要的影响因子,钾肥对木质素含量及其代谢相关酶活性具备一定的协同提升效应。在本试验及类似农田生态类型环境下,中、高供钾水平[60~90 kg(K2O)·hm-2]有利于促进胡麻茎秆木质素合成积累,有效地防止胡麻倒伏,为其高产稳产奠定一定基础。
关键词:胡麻/
供钾水平/
木质素/
抗倒伏特性/
籽粒产量
Abstract:To explore the effects of potassium supply on the lodging resistance of oil flax, split-plot experiments were conducted with the cultivars 'Longya No. 11' (V1) and 'Dingya No. 23' (V2) and four potassium (K2O) levels: no potassium[K0, 0 kg(K2O)·hm-2], low potassium[K1, 30 kg(K2O)·hm-2], medium potassium[K2, 60 kg(K2O)·hm-2], and high potassium[K3, 90 kg(K2O)·hm-2]. The lignin content, lignin synthesis-related enzyme activities, stem mechanical properties, lodging resistance index of the stem, and yield of oil flax under different potassium supply levels were analyzed. The results showed that under different potassium levels, the relationships between the plant physical characteristics and lodging were mainly observed from the green fruit stage to the maturation stage. The lodging resistance index of oil flax was significantly positively correlated with culm diameter and negatively correlated with plant height and gravity center height. The lignin content of the oil flax stems changed during the growth period and with the potassium supply. The lignin content of V1 and V2 was higher in K2 treatment after potassium application from the seedling stage to the flower stage. Compared with that under K0 treatment, the lignin content of V1 and V2 under K3 treatment increased by 17.68% and 23.25%, respectively, from the green fruit stage to the maturation stage. The effects of cultivar, potassium application, and their interactions on the lignin content at the green fruit stage reached extreme significance (P < 0.01). The K2 treatment increased the phenylalanine ammonia-lyase (PAL) activity of the stem from the budding stage to the green fruit stage and the tyrosine ammonia-lyase (TAL) activity of the V1 cultivar at the budding stage; the K3 treatment increased the TAL activity of the V2 cultivar. Potassium fertilizer significantly affected the cinnamon alcohol dehydrogenase (CAD) activity of the oil flax stem at the green fruit stage. Compared with that in the no potassium treatment, the CAD activity of two cultivars increased by 31.96% and 12.09% on average, respectively, after potassium application. K2 and K1 are the suitable potassium supply levels for peroxidase activity improvement in the V1 and V2 cultivars, respectively. Compared with the indexes at K0, the snapping resistance and lodging resistance indexes of V1 in the K2 and K3 treatments increased by 45.68% and 48.90%, respectively, and by 16.86% and 31.92%, respectively; V2 snapping resistance increased by 84.32% (K2) and 77.50% (K3), respectively, and the lodging resistance index increased by 1.89% (K2) and 14.49% (K3), respectively. Correlation analysis showed that the four lignin related enzymes were positively correlated with lignin content and lodging resistance index at the green fruit stage. After potassium application, the highest grain yield was observed in the K3 treatment, which increased by 10.71% for V1 and by 17.77% for V2 compared with that in the K0 treatment. There was no significant difference in the yield of V1 among different potassium levels. However, the yields of V2 in the K2 and K3 treatments were significantly higher by 12.24% and 17.77%, respectively compared with that of K0. These results indicate that the cultivar is an important influencing factor of the lignin accumulation process of oil flax and that potassium fertilizer has a synergistic promotional effect on the lignin content and the metabolism-related enzyme activities. In this experiment site and the farmlands with similar ecological environments, the use of medium and high potassium fertilizers[60-90 kg(K2O)·hm-2] promotes the synthesis and accumulation of oil flax stem lignin, prevents oil flax lodging, and establishes a foundation for a high and stable yield.
Key words:Oil flax/
Potassium supply level/
Lignin/
Lodging resistance/
Grain yield

HTML全文


图12018年胡麻生育季降水量(P)及气温(T)变化
E、M和L分别表示每月的上旬、中旬和下旬, 其前的数字为月份。
Figure1.Changes in precipitation (P) and temperature (T) in the oil flax growing season in 2018
E, M and L mean the early, middle and late ten days of each month, data before them are the months.


下载: 全尺寸图片幻灯片


图2不同供钾水平不同胡麻品种不同生育期的木质素含量变化
V1和V2分别为胡麻品种‘陇亚11号’和‘定亚23号’。K0、K1、K2、K3供钾量分别为0 kg(K2O)?hm?2、30 kg(K2O)?hm?2、60 kg(K2O)?hm?2和90 kg(K2O)?hm?2。同一生育期不同小写字母表示在P < 0.05水平差异显著。
Figure2.Stem lignin contents of different cultivars of oil flax at different growth stages with different potassium levels
V1 and V2 are oil flax cultivars ‘Longya No. 11’ and ‘Dingya No. 23’. K0, K1, K2 and K3 are potassium levels of 0 kg(K2O)?hm?2, 30 kg(K2O)?hm?2, 60 kg(K2O)?hm?2 and 90 kg(K2O)?hm?2, respectively. Different lowercase letters in the same growth stage indicate significant differences at P < 0.05 level.


下载: 全尺寸图片幻灯片


图3不同供钾水平下不同胡麻品种不同生育期的茎秆4种木质素代谢关键酶活性变化
PAL: 苯丙氨酸解氨酶; TAL: 酪氨酸解氨酶; CAD: 肉桂醇脱氢酶; POD: 过氧化物酶。V1和V2分别为胡麻品种‘陇亚11号’和‘定亚23号’。K0、K1、K2、K3供钾量分别为0 kg(K2O)?hm?2、30 kg(K2O)?hm?2、60 kg(K2O)?hm?2和90 kg(K2O)?hm?2
Figure3.Variations of activities of four key enzymes of lignin metabolism of stems of different oil flax cultivars at different growth stages under different potassium levels
PAL: phenylalanine ammonia-lyase; TAL: tyrosine ammoni-lyase; CAD: cinnamon-alcohol dehydrogenase; POD: peroxidase. V1 and V2 are oil flax cultivars ‘Longya No. 11’ and ‘Dingya No. 23’. K0, K1, K2 and K3 are potassium levels of 0 kg(K2O)?hm?2, 30 kg(K2O)?hm?2, 60 kg(K2O)?hm?2 and 90 kg(K2O)?hm?2, respectively.


下载: 全尺寸图片幻灯片


图4不同供钾水平下不同胡麻品种产量变化
V1和V2分别为胡麻品种‘陇亚11号’和‘定亚23号’。K0、K1、K2、K3供钾量分别为0 kg(K2O)?hm?2、30 kg(K2O)?hm?2、60 kg(K2O)?hm?2和90 kg(K2O)?hm?2。同一品种不同小写字母表示在P < 0.05水平差异显著。
Figure4.Yield variations of different oil flax cultivars under different potassium levels
V1 and V2 are oil flax cultivars ‘Longya No. 11’ and ‘Dingya No. 23’. K0, K1, K2 and K3 are potassium levels of 0 kg(K2O)?hm?2, 30 kg(K2O)?hm?2, 60 kg(K2O)?hm?2 and 90 kg(K2O)?hm?2, respectively. Different lowercase letters for the same cultivar indicate significant differences at P < 0.05 level.


下载: 全尺寸图片幻灯片

表1不同供钾水平不同胡麻品种不同生育期茎秆抗折力和抗倒伏指数变化
Table1.Effects of potassium levels on snapping resistances and lodging resistance indexes of different cultivars of oil flax at different growth stages
品种Cultivar处理Treatment茎秆抗折力Snapping resistance (N)抗倒伏指数Lodging resistance index
现蕾期Budding stage盛花期Flowerstage青果期Green fruit stage成熟期Maturationstage现蕾期Budding stage盛花期Flowerstage青果期Green fruit stage成熟期Maturationstage
V1K02.74±0.05c6.68±0.17c5.59±0.25b9.28±0.33d1.79±0.06b2.48±0.07b2.28±0.15b10.85±0.74b
K14.38±0.02b8.07±0.26a6.32±0.21b14.84±0.25c3.71±0.05a3.77±0.38a2.73±0.11ab9.08±0.18b
K25.09±0.10a7.38±0.18b5.90±0.46b18.49±0.29a3.89±0.03a2.90±0.18b3.04±0.22a10.91±0.42b
K34.15±0.10b7.75±0.07ab7.49±0.44a16.38±0.43b3.85±0.07a2.37±0.04b2.42±0.12b14.14±0.69a
V2K04.14±0.37ab2.84±0.11c2.81±0.08c5.48±0.25b4.57±0.14a2.18±0.19b2.10±0.08c7.83±0.49c
K13.65±0.35b3.98±0.29b3.51±0.07b15.07±0.91a3.57±0.11a1.77±0.11b3.02±0.19b23.46±0.52a
K25.25±0.25a3.92±0.10b4.08±0.06a14.35±0.61a4.87±0.05a1.72±0.05b3.79±0.18a15.87±1.59b
K34.91±0.40a4.70±0.27a4.06±0.07a13.89±0.29a4.35±0.17a3.22±0.17a3.15±0.07b14.38±1.01b
V1和V2分别为胡麻品种‘陇亚11号’和‘定亚23号’。K0、K1、K2、K3供钾量分别为0 kg(K2O)?hm?2、30 kg(K2O)?hm?2、60 kg(K2O)?hm?2和90 kg(K2O)?hm?2。同一品种中不同小写字母表示处理间在P < 0.05水平差异显著。V1 and V2 are oil flax cultivars ‘Longya No. 11’ and ‘Dingya No. 23’. K0, K1, K2 and K3 are potassium levels of 0 kg(K2O)?hm?2, 30 kg(K2O)?hm?2, 60 kg(K2O)?hm?2 and 90 kg(K2O)?hm?2, respectively. Values of the same cultivar within the same line followed by different lowercase letters are significantly different at P < 0.05 level.


下载: 导出CSV
表2不同供钾水平不同胡麻品种不同生育期的植株形态变化
Table2.Plant morphology changes of different cultivars of oil flax at different growth stages with different potassium levels
品种Cultivar处理Treatment株高Plant height (cm)茎粗Culm diameter (mm)
现蕾期Budding stage盛花期Flowerstage青果期Green fruit stage成熟期Maturationstage现蕾期Budding stage盛花期Flowerstage青果期Green fruitstage成熟期Maturationstage
V1K064.02±0.26a78.01±0.77a73.47±0.4a68.1±2.78a2.21±0.09c2.53±0.05b2.56±0.01c2.19±0.01c
K157.86±0.53d74.11±0.58b69.45±0.21b71.27±4.21a2.31±0.12bc2.73±0.05ab2.9±0.01ab2.25±0.09bc
K260.5±0.27c70.37±0.65c70.41±1.39b61.98±2.88a2.76±0.16a2.91±0.1a3.05±0.10a2.42±0.05ab
K362.01±0.04b72.64±0.58b74.41±1.13a66.95±1.91a2.65±0.09ab2.82±0.12ab2.83±0.03b2.48±0.04a
V2K061.03±0.51a63.91±0.34a60.18±0.42b60.88±0.28a2.25±0.06b2.16±0.05b2.36±0.18a1.88±0.09b
K153.65±0.01c64.42±0.23a63.09±0.36a59.77±0.67a2.3±0.07b2.21±0.06b2.77±0.08a2.23±0.12a
K258.64±0.49b61.5±0.28a59.14±0.34b60.01±0.35a2.64±0.06a2.29±0.05ab2.89±0.11a2.03±0.03ab
K358.33±0.6b62.67±1.76a59.62±0.54b60.85±0.51a2.36±0.03b2.42±0.03a2.69±0.22a2.17±0.04a
V1和V2分别为胡麻品种‘陇亚11号’和‘定亚23号’。K0、K1、K2、K3供钾量分别为0 kg(K2O)?hm?2、30 kg(K2O)?hm?2、60 kg(K2O)?hm?2和90 kg(K2O)?hm?2。同一品种中不同小写字母表示处理间在P < 0.05水平差异显著。V1 and V2 are oil flax cultivars ‘Longya No. 11’ and ‘Dingya No. 23’. K0, K1, K2 and K3 are potassium levels of 0 kg(K2O)?hm?2, 30 kg(K2O)?hm?2, 60 kg(K2O)?hm?2 and 90 kg(K2O)?hm?2, respectively. Values of the same cultivar within the same line followed by different lowercase letters are significantly different at P < 0.05 level.


下载: 导出CSV
表3不同胡麻品种不同生育期植株形态与茎秆抗倒伏指数的相关分析
Table3.Correlation analysis of plant morphology and lodging index of stem of different cultivars of oil flax at different growth stages
V1V2
现蕾期Budding stage盛花期Flowerstage青果期Greenfruit stage成熟期Maturationstage现蕾期Budding stage盛花期Flower stage青果期Greenfruit stage成熟期Maturationstage
株高Plant height?0.693*?0.155?0.761**?0.2110.504?0.186?0.188?0.455
重心高度Gravity center height?0.101?0.786**?0.405?0.740**0.374?0.644*0.4120.307
茎粗Culm diameter0.635*0.2210.602*0.602*0.4670.632*0.589*0.630*
**与*分别表示在P < 0.01与P < 0.05水平显著相关。** and * indicate significant correlation at P < 0.01 and P < 0.05 levels, respectively.


下载: 导出CSV
表4不同生育期胡麻品种及供钾量对茎秆木质素影响的显著性分析(F值)
Table4.Significance analysis (F value) of effects of cultivar and potassium supply and their interaction on lignin content of stem of oil flax at different growth stages
因素Factor苗期Seedling stage现蕾期Budding stage盛花期Flower stage青果期Green fruit stage成熟期Maturation stage
品种Cultivar (C)2.29519.811**1.60632.760**17.380**
供钾量Potassium supply level (K)7.614**1.07224.673**12.578**8.893**
C×K6.106**2.4928.920**6.777**1.987
**与*分别表示在P < 0.01与P < 0.05水平影响差异。** and * indicate significant effects at P < 0.01 and P < 0.05 levels, respectively.


下载: 导出CSV
表5不同胡麻品种生育后期木质素含量及相关酶活性与抗倒伏指数的分析
Table5.Correlation analysis of lignin content, related enzymes activities and lodging index of different oil flax cultivars at late growth stage
品种Cultivar项目Item木质素含量Lignin content酶活性Enzyme activity
PALCADTALPOD
V1木质素含量Lignin content0.613*0.5500.712**0.716**
抗折力Snapping resistance0.2590.5130.0350.4820.271
抗倒伏指数Lodging resistance index0.5410.766**0.761**0.3500.521
V2木质素含量Lignin content0.0440.790**0.647*0.608*
抗折力Snapping resistance0.668*0.1390.3110.3420.028
抗倒伏指数Lodging resistance index0.631*0.3340.2780.4390.026
PAL: 苯丙氨酸解氨酶; TAL: 酪氨酸解氨酶; CAD: 肉桂醇脱氢酶; POD: 过氧化物酶。V1和V2分别为胡麻品种‘陇亚11号’和‘定亚23号’。*和**分别表示P < 0.05和P < 0.01水平显著相关。PAL: phenylalnine ammonialyase; TAL: tyrosine ammonilyase; CAD: cinnamyl-alcohol dehydrogenase; POD: peroxidase. V1 and V2 are oil flax cultivars ‘Longya No. 11’ and ‘Dingya No. 23’. * and ** indicate significant correlation at P < 0.05 and P < 0.01 levels, respectively.


下载: 导出CSV

参考文献(50)
[1]田保明, 杨光圣, 曹刚强, 等. 农作物倒伏及其影响因素分析[J]. 中国农学通报, 2006, 22(4): 163-167 doi: 10.3969/j.issn.1000-6850.2006.04.043
TIAN B M, YANG G S, CAO G Q, et al. The performance of lodging and root cause analysis for lodging resistance in crops[J]. Chinese Agricultural Science Bulletin, 2006, 22(4): 163-167 doi: 10.3969/j.issn.1000-6850.2006.04.043
[2]TRIPATHI S C, SAYRE K D, KAUL J N, et al. Lodging behavior and yield potential of spring wheat (Triticum aestivum L. ): effects of ethephon and genotypes[J]. Field Crops Research, 2004, 87(2/3): 207-220
[3]刘杰. 水稻倒伏的原因及减轻危害的对策[J]. 中国农药, 2013, 9(10): 43-44
LIU J. Causes of rice lodging and countermeasures to reduce damage[J]. Chinese Pesticide, 2013, 9(10): 43-44
[4]王秀凤, 景希强, 葛立胜, 等. 玉米抗倒性研究进展[J]. 杂粮作物, 2009, 29(6): 383-385 doi: 10.3969/j.issn.2095-0896.2009.06.008
WANG X F, JING X Q, GE L S, et al. The research progress in lodging resistance of maize[J]. Rain Fed Crops, 2009, 29(6): 383-385 doi: 10.3969/j.issn.2095-0896.2009.06.008
[5]张建, 陈金城, 唐章林, 等. 油菜茎秆理化性质与倒伏关系的研究[J]. 西南农业大学学报: 自然科学版, 2006, 28(5): 763-765 doi: 10.3969/j.issn.1673-9868.2006.05.016
ZHANG J, CHEN J C, TANG Z L, et al. Study on the physico-chemical properties of stem as related to lodging in rape[J]. Journal of Southwest Agricultural University, 2006, 28(5): 763-765 doi: 10.3969/j.issn.1673-9868.2006.05.016
[6]朱新开, 王祥菊, 郭凯泉, 等. 小麦倒伏的茎秆特征及对产量与品质的影响[J]. 麦类作物学报, 2006, 26(1): 87-92 doi: 10.3969/j.issn.1009-1041.2006.01.020
ZHU X K, WANG X J, GUO K Q, et al. Stem characteristics of wheat with stem lodging and effects of lodging on grain yield and quality[J]. Journal of Triticeae Crops, 2006, 26(1): 87-92 doi: 10.3969/j.issn.1009-1041.2006.01.020
[7]曹庆军, 曹铁华, 杨粉团, 等. 灌浆期风灾倒伏对玉米籽粒灌浆特性及品质的影响[J]. 中国生态农业学报, 2013, 21(9): 1107-1113 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201309012.htm
CAO Q J, CAO T H, YANG F T, et al. Effect of wind damage on grain-filling characteristics, grain quality and yield of spring maize (Zea mays L. )[J]. Chinese Journal of Eco-Agriculture, 2013, 21(9): 1107-1113 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201309012.htm
[8]刘唐兴, 官春云, 肖君泽, 等. 甘蓝型油菜主茎理化特性与倒伏的关系及抗倒性评价[J]. 河南农业科学, 2007, 36(12): 40-42 doi: 10.3969/j.issn.1004-3268.2007.12.010
LIU T X, GUAN C Y, XIAO J Z, et al. Relation between physico-chemical properties of stem and lodging and evaluation of lodging resistance in rapeseed (Brassica napus L. )[J]. Journal of Henan Agricultural Sciences, 2007, 36(12): 40-42 doi: 10.3969/j.issn.1004-3268.2007.12.010
[9]陈晓光, 石玉华, 王成雨, 等. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系[J]. 中国农业科学, 2011, 44(17): 3529-3536 doi: 10.3864/j.issn.0578-1752.2011.17.005
CHEN X G, SHI Y H, WANG C Y, et al. Effects of nitrogen and PP333 application on the lignin synthesis of stem in relation to lodging resistance of wheat[J]. Scientia Agricultura Sinica, 2011, 44(17): 3529-3536 doi: 10.3864/j.issn.0578-1752.2011.17.005
[10]李波, 张吉旺, 崔海岩, 等. 施钾量对高产夏玉米抗倒伏能力的影响[J]. 作物学报, 2012, 38(11): 2093-2099 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201211021.htm
LI B, ZHANG J W, CUI H Y, et al. Effects of potassium application rate on stem lodging resistance of summer maize under high yield conditions[J]. Acta Agronomica Sinica, 2012, 38(11): 2093-2099 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201211021.htm
[11]JONES L, ENNOS A R, TURNER S R. Cloning and characterization of irregular xylem4(irx4): a severely lignin-deficient mutant of Arabidopsis[J]. The Plant Journal, 2001, 26(2): 205-216 doi: 10.1046/j.1365-313x.2001.01021.x
[12]高原, 陈信波, 张志扬. 木质素生物合成途径及其基因调控的研究进展[J]. 生物技术通报, 2007, (2): 47-51 doi: 10.3969/j.issn.1002-5464.2007.02.011
GAO Y, CHEN X B, ZHANG Z Y. Advances in research on lignin biosynthesis and its molecular regulation[J]. Biotechnology Bulletin, 2007, (2): 47-51 doi: 10.3969/j.issn.1002-5464.2007.02.011
[13]李文珍. 旱地胡麻配方施肥试验[J]. 甘肃农业科技, 2011, (2): 39-40 doi: 10.3969/j.issn.1001-1463.2011.02.016
LI W Z. Test of formula fertilization on dryland oilseed flax[J]. Gansu Agricultural Science and Technology, 2011, (2): 39-40 doi: 10.3969/j.issn.1001-1463.2011.02.016
[14]YOU F M, DUGUID S D, THAMBUGALA D, et al. Statistical analysis and field evaluation of the type 2 modified augmented design (MAD) in phenotyping of flax (Linum usitatissimum) germplasm in multiple environments[J]. Australian Journal of Crop Science, 2013, 7(11): 1789-1800
[15]郭玉明, 袁红梅, 阴妍, 等. 茎秆作物抗倒伏生物力学评价研究及关联分析[J]. 农业工程学报, 2007, 23(7): 14-18 doi: 10.3321/j.issn:1002-6819.2007.07.003
GUO Y M, YUAN H M, YIN Y, et al. Biomechanical evaluation and grey relational analysis of lodging resistance of stalk crops[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(7): 14-18 doi: 10.3321/j.issn:1002-6819.2007.07.003
[16]姚玉璧, 王润元, 杨金虎, 等. 黄土高原半干旱区气候变暖对胡麻生育和水分利用效率的影响[J]. 应用生态学报, 2011, 22(10): 2635-2642 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201110023.htm
YAO Y B, WANG R Y, YANG J H, et al. Effects of climate warming on oil flax growth and water use efficiency in semi-arid region of Loess Plateau, Northwest China[J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2635-2642 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201110023.htm
[17]陈双恩, 杜汉强. 亚麻抗倒伏性状分析及培土对亚麻抗倒伏的影响[J]. 中国油料作物学报, 2010, 32(1): 83-88 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201001017.htm
CHEN S E, DU H Q. Lodging resistance in flax and the effect of ridge plowing on lodging resistance[J]. Chinese Journal of Oil Crop Sciences, 2010, 32(1): 83-88 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201001017.htm
[18]叶春雷, 石有太, 罗俊杰, 等. 种植密度对旱地胡麻产量及品质的影响[J]. 甘肃农业科技, 2014, (4): 11-13 doi: 10.3969/j.issn.1001-1463.2014.04.004
YE C L, SHI Y T, LUO J J, et al. Effect of planting density on yield and quality of dryland oil flax[J]. Gansu Agricultural Science and Technology, 2014, (4): 11-13 doi: 10.3969/j.issn.1001-1463.2014.04.004
[19]郭媛, 邱财生, 龙松华, 等. 多效唑对亚麻农艺性状及抗倒伏性的影响[J]. 南方农业学报, 2015, 46(10): 1780-1785 doi: 10.3969/j:issn.2095-1191.2015.10.1780
GUO Y, QIU C S, LONG S H, et al. Effects of paclobutrazol on agronomic characters and lodging resistance of flax (Linum usitatissimum)[J]. Journal of Southern Agriculture, 2015, 46(10): 1780-1785 doi: 10.3969/j:issn.2095-1191.2015.10.1780
[20]朱新开, 王祥菊, 郭凯泉, 等. 小麦倒伏的茎秆特征及对产量与品质的影响[J]. 麦类作物学报, 2006, 26(1): 87-92 doi: 10.3969/j.issn.1009-1041.2006.01.020
ZHU X K, WANG X J, GUO K Q, et al. Stem characteristics of wheat with stem lodging and effects of lodging on grain yield and quality[J]. Journal of Triticeae Crops, 2006, 26(1): 87-92 doi: 10.3969/j.issn.1009-1041.2006.01.020
[21]袁志华, 李英俊. 小麦茎秆弯曲特性与密度间的关系研究[J]. 安徽农业科学, 2009, 37(32): 15775+15868 https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY200932052.htm
YUAN Z H, LI Y J. Study on relationship between bending property and density of wheat stem[J]. Journal of Anhui Agricultural Sciences, 2009, 37(32): 15775+15868 https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY200932052.htm
[22]李金才, 尹钧, 魏凤珍. 播种密度对冬小麦茎秆形态特征和抗倒指数的影响[J]. 作物学报, 2005, 31(5): 662-666 doi: 10.3321/j.issn:0496-3490.2005.05.023
LI J C, YIN J, WEI F Z. Effects of planting density on characters of culm and culm lodging resistant index in winter wheat[J]. Acta Agronomica Sinica, 2005, 31(5): 662-666 doi: 10.3321/j.issn:0496-3490.2005.05.023
[23]高珍妮, 赵利, 郭丽琢, 等. 灌溉量和施氮量对油用亚麻茎秆抗倒性能及产量的影响[J]. 中国生态农业学报, 2015, 23(5): 544-553 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201505003.htm
GAO Z N, ZHAO L, GUO L Z, et al. Effects of irrigation and nitrogen fertilizer rates on oilseed flax stem lodging resistance and yield[J]. Chinese Journal of Eco-Agriculture, 2015, 23(5): 544-553 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201505003.htm
[24]高珍妮, 郭丽琢, 李丽, 等. 氮肥对胡麻茎秆木质素合成酶活性及其抗倒性的影响[J]. 中国油料作物学报, 2014, 36(5): 610-615 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201405010.htm
GAO Z N, GUO L Z, LI L, et al. Effects of nitrogen on oilseed flax stem lignin and relative enzyme and lodging resistance[J]. Chinese Journal of Oil Crop Sciences, 2014, 36(5): 610-615 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201405010.htm
[25]王群瑛, 胡昌浩. 玉米茎秆抗倒特性的解剖研究[J]. 作物学报, 1991, 17(1): 70-75 doi: 10.3321/j.issn:0496-3490.1991.01.011
WANG Q Y, HU C H. Studies on the anatomical structures of the stalks of maize with different resistance to lodging[J]. Acta Agronomica Sinica, 1991, 17(1): 70-75 doi: 10.3321/j.issn:0496-3490.1991.01.011
[26]李文娟, 何萍, 金继运. 钾素对玉米茎髓和幼根超微结构的影响及其与茎腐病抗性的关系[J]. 中国农业科学, 2010, 43(4): 729-736 doi: 10.3864/j.issn.0578-1752.2010.04.009
LI W J, HE P, JIN J Y. Effect of potassium on ultrastructure of maize stalk pith and young root and their relation to resistance to stalk rot[J]. Scientia Agricultura Sinica, 2010, 43(4): 729-736 doi: 10.3864/j.issn.0578-1752.2010.04.009
[27]姚金保, 马鸿翔, 姚国才, 等. 小麦抗倒性研究进展[J]. 植物遗传资源学报, 2013, 14(2): 208-213 doi: 10.3969/j.issn.1672-1810.2013.02.003
[28]郝艳淑. 棉花钾素高效的生理机制及其施肥效应[D]. 武汉: 华中农业大学, 2015
HAO Y S. Physiological mechanisms of high potassium efficiency and fertilization effects of cotton[D]. Wuhan: Huazhong Agricultural University, 2015
[29]李刘杰, 汪强, 韩燕来, 等. 钾水平对小麦酚类物质、木质素代谢和接种蚜虫群体动态的影响[J]. 中国农学通报, 2009, 25(17): 143-148 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200917031.htm
LI L J, WANG Q, HAN Y L, et al. Study of effects of potassium levels on phenolic and lignin metabolism of wheat and dynamic of aphid population[J]. Chinese Agricultural Science Bulletin, 2009, 25(17): 143-148 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200917031.htm
[30]向达兵, 郭凯, 雷婷, 等. 磷钾营养对套作大豆茎秆形态和抗倒性的影响[J]. 中国油料作物学报, 2010, 32(3): 395-402 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201003013.htm
XIANG D B, GUO K, LEI T, et al. Effects of phosphorus and potassium on stem characteristics and lodging resistance of relay cropping soybean[J]. Chinese Journal of Oil Crop Sciences, 2010, 32(3): 395-402 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201003013.htm
[31]MIN Z, LI R Y, CHEN L, et al. Alleviation of drought stress in grapevine by foliar-applied strigolactones[J]. Plant Physiology and Biochemistry, 2019, 135: 99-110 doi: 10.1016/j.plaphy.2018.11.037
[32]孙哲, 史春余, 刘桂玲, 等. 干旱胁迫与正常供水钾肥影响甘薯光合特性及块根产量的差异[J]. 植物营养与肥料学报, 2016, 22(4): 1071-1078 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201604025.htm
SUN Z, SHI C Y, LIU G L, et al. Effect difference of potassium fertilizer on leaf photosynthetic characteristics and storage root yield of sweet potato under drought stress and normal water condition[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 1071-1078 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201604025.htm
[33]陈晓光, 史春余, 尹燕枰, 等. 小麦茎秆木质素代谢及其与抗倒性的关系[J]. 作物学报, 2011, 37(9): 1616-1622 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201109016.htm
CHEN X G, SHI C Y, YIN Y P, et al. Relationship between lignin metabolism and lodging resistance in wheat[J]. Acta Agronomica Sinica, 2011, 37(9): 1616-1622 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201109016.htm
[34]ⅡYAMA K, WALLIS A F A. An improved acetyl bromide procedure for determining lignin in woods and wood pulps[J]. Wood Science and Technology, 1988, 22(3): 271-280 doi: 10.1007/BF00386022
[35]周蓉, 王贤智, 陈海峰, 等. 大豆倒伏性及其相关性状的QTL分析[J]. 作物学报, 2009, 35(1): 57-65 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200901009.htm
ZHOU R, WANG X Z, CHEN H F, et al. QTL analysis of lodging and related traits in soybean[J]. Acta Agronomica Sinica, 2009, 35(1): 57-65 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200901009.htm
[36]熊明彪, 雷孝章, 田应兵, 等. 钾素对小麦茎、叶解剖结构的影响[J]. 麦类作物学报, 2003, 23(3): 53-57 doi: 10.3969/j.issn.1009-1041.2003.03.014
XIONG M B, LEI X Z, TIAN Y B, et al. Effects of potassium on wheat stem-leaf anatomical structure[J]. Acta Tritical Crops, 2003, 23(3): 53-57 doi: 10.3969/j.issn.1009-1041.2003.03.014
[37]王柱明. 不同钾肥用量对水浇地食用向日葵产量的影响[J]. 现代农业科技, 2013(23): 100-101 doi: 10.3969/j.issn.1007-5739.2013.23.059
WANG Z M. Effect of different potassium fertilizer amount on the yield of edible sunflower in irrigated field[J]. Modern Agricultural Science and Technology, 2013(23): 100-101 doi: 10.3969/j.issn.1007-5739.2013.23.059
[38]马青美, 许莹莹, 赵美爱, 等. 玉米茎秆抗倒伏相关生理生化指标及关键酶基因的表达分析[J]. 植物生理学报, 2019, 55(8): 1123-1132 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201908008.htm
MA Q M, XU Y Y, ZHAO M A, et al. Physiological and biochemical indexes related to lodging resistance of maize stalk and expression analysis of key enzyme genes[J]. Plant Physiology Journal, 2019, 55(8): 1123-1132 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201908008.htm
[39]SUN Q, LIU X G, YANG J, et al. MicroRNA528 affects lodging resistance of maize by regulating lignin biosynthesis under nitrogen-luxury conditions[J]. Molecular Plant, 2018, 11(6): 806-814 doi: 10.1016/j.molp.2018.03.013
[40]杨长明, 杨林章, 颜廷梅, 等. 不同养分和水分管理模式对水稻抗倒伏能力的影响[J]. 应用生态学报, 2004, 15(4): 646-650 doi: 10.3321/j.issn:1001-9332.2004.04.021
YANG C M, YANG L Z, YAN T M, et al. Effects of nutrient and water regimes on lodging resistance of rice[J]. Chinese Journal of Applied Ecology, 2004, 15(4): 646-650 doi: 10.3321/j.issn:1001-9332.2004.04.021
[41]张丰转, 金正勋, 马国辉, 等. 水稻抗倒性与茎秆形态性状和化学成分含量间相关分析[J]. 作物杂志, 2010, (4): 15-19 doi: 10.3969/j.issn.1001-7283.2010.04.004
ZHANG F Z, JIN Z X, MA G H, et al. Correlation analysis between lodging resistance and morphological characters of physical and chemical components in rice's culms[J]. Crops, 2010, (4): 15-19 doi: 10.3969/j.issn.1001-7283.2010.04.004
[42]DIXON R A. Natural products and plant disease resistance[J]. Nature, 2001, 411(6839): 843-847 doi: 10.1038/35081178
[43]黄杰恒, 李威, 曲存民, 等. 甘蓝型油菜不同抗倒性材料中木质素代谢途径关键基因表达特点[J]. 作物学报, 2013, 39(8): 1339-1344 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201308003.htm
HUANG J H, LI W, QU C M, et al. Expression characteristics of key genes in lignin pathway among different lodging resistance lines of Brassica napus L. [J]. Acta Agronomica Sinica, 2013, 39(8): 1339-1344 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201308003.htm
[44]FANG X, LIU X, ZHANG Y, et al. Effects of uniconazole or gibberellic acid application on the lignin metabolism in relation to lodging resistance of culm in common buckwheat (Fagopyrum esculentum M. )[J]. Journal of Agronomy and Crop Science, 2018, 204(4): 414-423 doi: 10.1111/jac.12274
[45]解新明, 赵燕慧, 霍松, 等. 象草不同品种木质素合成关键酶活性的动态变化[J]. 草地学报, 2010, 18(4): 523-527 https://www.cnki.com.cn/Article/CJFDTOTAL-CDXU201004010.htm
XIE X M, ZHAO Y H, HUO S, et al. Dynamic changes of enzyme activities related to lignin biosynthesis for elephantgrass cultivars[J]. Acta Agrestia Sinica, 2010, 18(4): 523-527 https://www.cnki.com.cn/Article/CJFDTOTAL-CDXU201004010.htm
[46]王千, 依艳丽, 张淑香. 不同钾肥对番茄幼苗酚类物质代谢作用的影响[J]. 植物营养与肥料学报, 2012, 18(3): 706-716 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201203023.htm
WANG Q, YI Y L, ZHANG S X. Effects of different potassium on phenol metabolism of tomato seedlings[J]. Plant Nutrition and Fertilizer Science, 2012, 18(3): 706-716 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201203023.htm
[47]王晓光, 王岩, 李兴涛, 等. 低钾胁迫对大豆叶片膜脂过氧化及保护酶活性的影响[J]. 中国油料作物学报, 2010, 32(4): 512-517 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201004013.htm
WANG X G, WANG Y, LI X T, et al. Effects of low potassium on membrane lipid peroxidation and protective enzyme activity of soybean leaves[J]. Chinese Journal of Oil Crop Sciences, 2010, 32(4): 512-517 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYW201004013.htm
[48]王凯, 赵小红, 姚晓华, 等. 茎秆特性和木质素合成与青稞抗倒伏关系[J]. 作物学报, 2019, 45(4): 621-627 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201904014.htm
WANG K, ZHAO X H, YAO X H, et al. Relationship of stem characteristics and lignin synthesis with lodging resistance of hulless barley[J]. Acta Agronomica Sinica, 2019, 45(4): 621-627 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201904014.htm
[49]王晓光, 曹敏建, 于海秋, 等. 不同基因型大豆吸收利用钾素的差异分析[J]. 沈阳农业大学学报, 2008, 39(5): 520-524 doi: 10.3969/j.issn.1000-1700.2008.05.002
WANG X G, CAO M J, YU H Q, et al. Difference of potassium uptake and use efficiency between different genotypic soybeans[J]. Journal of Shenyang Agricultural University, 2008, 39(5): 520-524 doi: 10.3969/j.issn.1000-1700.2008.05.002
[50]汪灿, 阮仁武, 袁晓辉, 等. 荞麦茎秆解剖结构和木质素代谢及其与抗倒性的关系[J]. 作物学报, 2014, 40(10): 1846-1856 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201410021.htm
WANG C, RUAN R W, YUAN X H, et al. Relationship of anatomical structure and lignin metabolism with lodging resistance of culm in buckwheat[J]. Acta Agronomica Sinica, 2014, 40(10): 1846-1856 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201410021.htm

相关话题/作物 生育 生理 图片 营养