程凯凯1,
廖育林1,
郭立君1,
文丽1,
唐海明1,
汤文光1,
汪柯1,
禇飞1,
钟伶桃2,
姜海天3,
肖小平1,,
1.湖南省土壤肥料研究所 长沙 410125
2.宁乡市农业农村局 宁乡 410699
3.宁乡市农资服务中心 宁乡 410600
基金项目: 国家重点研发计划项目2016YFD0300906
湖南省农业科技创新资金项目2019LS03-1
详细信息
作者简介:李超, 主要从事稻田培肥与耕作生态研究。E-mail: hnchaoli0419@163.com
通讯作者:肖小平, 主要从事稻田培肥及农作制研究。E-mail: hntfsxxping@163.com
中图分类号:S225.4;X513计量
文章访问数:149
HTML全文浏览量:19
PDF下载量:193
被引次数:0
出版历程
收稿日期:2020-08-12
录用日期:2020-09-23
刊出日期:2021-05-01
Effect of crushing degree and returning method on straw combustion
LI Chao1,,CHENG Kaikai1,
LIAO Yulin1,
GUO Lijun1,
WEN Li1,
TANG Haiming1,
TANG Wenguang1,
WANG Ke1,
CHU Fei1,
ZHONG Lingtao2,
JIANG Haitian3,
XIAO Xiaoping1,,
1. Institute of Soil Fertility Research in Hunan Province, Changsha 410125, China
2. Ningxiang Agriculture and Rural Bureau, Ningxiang 410699, China
3. Ningxiang Agricultural Materials Service Center, Ningxiang 410600, China
Funds: the National Key Research and Development Program of China2016YFD0300906
Hunan AgriculturalScience and Technology Innovation Fund Program2019LS03-1
More Information
Corresponding author:XIAO Xiaoping, E-mail: hntfsxxping@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为从根本上禁止稻草焚烧,促进稻草还田,本研究依托自主研发的稻草粉碎均匀抛撒装置,通过大田试验与野外模拟试验,以目前水稻收获的常规模式稻草不粉碎条带还田(T1)及中度粉碎条带还田(T2)为对照,设置稻草粉碎条带还田模式(T3)及稻草粉碎均匀抛撒还田模式(T4),研究不同粉碎程度与还田方式对稻草焚烧特性的影响。结果表明:稻草抛撒均匀度及还田密度随着粉碎程度的增加而显著增加,稻草还田厚度则呈显著减少趋势。T4的稻草平均长度为5.3 cm,分别仅为T1、T2的13.6%、36.8%;稻草抛撒均匀度为87.4%,较T1、T2分别增加49.7个和42.0个百分点;稻草还田厚度为2.7 cm,仅为T1、T2的22.1%、27.8%;稻草还田密度为17.6 kg·m-3,较T1、T2分别增加88.3%、17.3%。在稻草条带还田(T1、T2、T3)模式下,粉碎程度越高,含水率下降越慢,燃烧时间越长,燃烧率越低,燃烧速率越慢,灰分越高,燃烧越不充分。T4通过稻草均匀抛撒虽可加速稻草含水率的下降,但燃烧时间、燃烧率及灰分仅分别为0.3 min、6.0%、1.7%,均显著低于其他处理,几乎未燃烧。表明稻草粉碎均匀抛撒还田条件下无法燃烧,有利于从根本上实现秸秆禁烧。
关键词:稻草焚烧/
稻草还田/
稻草粉碎/
均匀抛撒/
燃烧特性/
灰分
Abstract:Rice straw burning is a major source of pollutants emissions in China. Its contribution to the emission of various pollutants is much higher than that of corn and wheat straws, which has resulted in tremendous pressure on the surrounding urban environment and residents' health. Simultaneously, rice straw will become the most important source of organic fertilizer for rice production in the future. To fundamentally forbid rice straw burning and promote rice straw return to the field, in this study, we set the current conventional mode of rice harvest, including rice straw stripped to the field without crush (T1) and with moderate crush (T2) as controls, and crushed rice straw stripped to the field (T3) and evenly returned to the field (T4) as the treatments. The treatments relied on a self-invented device that crushed and homogeneously scattered the rice straw in field tests. The field simulation tests aimed to study the influence of different crushing degrees and returning methods on the rice straw combustion characteristics. The results showed that the scattering homogeneity and returning density of rice straw increased significantly with increased crushing degree, but the returning thickness of rice straw significantly decreased. The rice straw average length of T4 was 5.3 cm, which was only 13.6% and 36.8% of T1 and T2, respectively. The scattering homogeneity of T4 was 87.4%, which was 49.7% and 42.0% higher than that of T1 and T2, respectively. The thickness of rice straw returned to the field of T4 was 2.7 cm, which was only 22.1% and 27.8% of T1 and T2, respectively. The density of rice straw returned to the field of T4 was 17.6 kg·m-3, which was 88.3% and 17.3% higher than that of T1 and T2, respectively. Under the rice straw strip-returning modes (T1, T2, T3), the higher the degree of rice straw crushing, the slower the decline in moisture content, the longer the combustion time, the lower the combustion rate, the slower the combustion speed, the higher the ash content, and the less sufficient the combustion. Although T4 can accelerate the decrease in rice straw moisture content by homogeneous scattering, the combustion time, combustion speed, and ash content were only 0.3%, 6.0%, and 1.7%, respectively. This was significantly lower than those in the other treatments, indicating that the rice straw was almost unburned. These results indicate that the rice straw could not be burned when crushed and evenly thrown to the field, which was beneficial for achieving a ban on rice straw combustion. Therefore, local government functional departments need only to compulsorily install the devices for crushing and homogeneously scattering rice straw with the combine harvester, which will completely prohibit the burning of rice straw. This will promote the fertilization of paddy soil and greatly reduce the difficulty and costs of agricultural law agencies enforcing rice straw burning bans.
Key words:Rice straw combustion/
Rice straw returning/
Rice straw crush/
Homogeneously scattering/
Combustion characteristics/
Ash content
HTML全文

图1不同粉碎与还田方式下稻草含水率(A)和失水速率(B)的变化动态
T1: 稻草不粉碎条带还田; T2: 稻草中度粉碎条带还田; T3: 稻草粉碎条带还田; T4 : 稻草粉碎均匀还田。
Figure1.Dynamic changes of rice straw moisture content (A) and dehydration rate (B) under different crushing and returning methods
T1: rice straw was not crushed and returned to field in a strip shape; T2: rice straw was moderately crushed and returned to field in a belt; T3: rice straw was crushed and returned to field in a belt; T4: rice straw was crushed and evenly returned to field.


图2不同粉碎与还田方式下稻草的燃烧率(A)、燃烧时间(B)和燃烧速率(C)
T1: 稻草不粉碎条带还田; T2: 稻草中度粉碎条带还田; T3: 稻草粉碎条带还田; T4: 稻草粉碎均匀还田。不同小写字母表示各处理间在P < 0.05水平差异显著。
Figure2.Combustion rate, combustion time and combustion speed of rice straw under different crushing and returning methods
T1: rice straw was not crushed and returned to field in a strip shape; T2: rice straw was moderately crushed and returned to field in a belt; T3: rice straw was crushed and returned to field in a belt; T4: rice straw was crushed and evenly returned to field. Different lowercase letters indicate significant differences among different treatments at P < 0.05 level.

表1不同粉碎与还田方式下稻草的田间特征
Table1.Field characteristics of rice straw under different crushing and returning methods
处理Treatment | 稻草不同长度占比Percentage of rice straw of different length (%) | 平均长度Average length(cm) | 还田厚度Returning thickness (cm) | 还田密度Returning density(kg?m?3) | 抛撒均匀度Scattering inhomogeneity(%) | ||||||||
0~5 cm | 5~10 cm | 10~20 cm | 20~30 cm | > 30 cm | |||||||||
T1 | 0±0.0c | 0±0.0c | 5.1±0.2b | 52.5±2.1a | 42.4±2.3a | 39.0±2.1a | 12.2±0.7a | 9.6±0.6c | 37.7±1.6a | ||||
T2 | 4.5±0.2b | 29.5±1.6a | 45.5±1.9a | 15.9±1.1b | 4.5±0.1b | 14.4±0.6b | 9.7±0.6b | 15.0±1.3b | 45.4±2.5b | ||||
T4 | 70.5±5.1a | 25.0±1.2b | 4.5±0.1b | 0±0.0c | 0±0.0c | 5.3±0.2c | 2.7±0.1c | 17.6±1.2a | 87.4±4.2c | ||||
T1: 稻草不粉碎条带还田; T2: 稻草中度粉碎条带还田; T4: 稻草粉碎均匀还田。同列不同小写字母表示处理间差异显著(P < 0.05)。T1: rice straw was not crushed and returned to field in a belt; T2: rice straw was moderately crushed and returned to field in a belt; T4: rice straw was crushed and evenly returned to field. Different lowercase letters in the same column mean significant differences at P < 0.05 level. |

表2不同粉碎与还田方式下稻草燃烧的出灰率
Table2.Ash rate of burned rice straw under different crushing and returning methods
处理Treatment | 稻草干重Dry rice strawweight (g) | 灰渣Ash(g) | 灰分Ash rate(%) | 有无明火With or withoutopen fire |
T1 | 220 | 32.3±0.6a | 14.7±0.3a | 有Yes |
T2 | 220 | 32.8±0.8a | 14.9±0.4a | 有Yes |
T3 | 220 | 33.6±0.8a | 15.3±0.3a | 无No |
T4 | 220 | 3.7±0.3b | 1.7±0.2b | 无No |
T1: 稻草不粉碎条带还田; T2: 稻草中度粉碎条带还田; T3: 稻草粉碎条带还田; T4: 稻草粉碎均匀还田。同列不同小写字母表示各处理间在P < 0.05水平差异显著。T1: rice straw was not crushed and returned to field in a strip shape; T2: rice straw was moderately crushed and returned to field in a belt; T3: rice straw was crushed and returned to field in a belt; T4: rice straw was crushed and evenly returned to field. Different lowercase letters in the same column indicate significant differences among different treatments at P < 0.05 level. |

参考文献
[1] | 车莉. 农作物秸秆资源量估算?分布与利用潜力研究[D]. 大连: 大连理工大学, 2014 CHE L. Research on resource estimation, distribution and utilization potential of crop residue[D]. Dalian: Dalian University of Technology, 2014 |
[2] | 彭立群, 张强, 贺克斌. 基于调查的中国秸秆露天焚烧污染物排放清单[J]. 环境科学研究, 2016, 29(8): 1109-1118 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201608002.htm PENG L Q, ZHANG Q, HE K B. Emissions inventory of atmospheric pollutants from open burning of crop residues in China based on a national questionnaire[J]. Research of Environmental Sciences, 2016, 29(8): 1109-1118 https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201608002.htm |
[3] | 张景源, 杨绪红, 涂心萌, 等. 2014-2018年中国田间秸秆焚烧火点的时空变化[J]. 农业工程学报, 2019, 35(19): 191-199 doi: 10.11975/j.issn.1002-6819.2019.19.023 ZHANG J Y, YANG X H, TU X M, et al. Spatio-temporal change of straw burning fire points in field of China from 2014 to 2018[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 191-199 doi: 10.11975/j.issn.1002-6819.2019.19.023 |
[4] | 张晓荟. 中国秸秆焚烧大气污染物高分辨率排放特征研究[D]. 南京: 南京大学, 2019 ZHANG X H. High-resolution characteristics of air pollutant emissions from crop residue burning in China[D]. Nanjing: Nanjing University, 2019 |
[5] | 包雪梅, 张福锁, 马文奇, 等. 陕西省有机肥料施用状况分析评价[J]. 应用生态学报, 2003, 14(10): 1669-1672 doi: 10.3321/j.issn:1001-9332.2003.10.017 BAO X M, ZHANG F S, MA W Q, et al. Change of farmyard manure application in Shaanxi Province[J]. Chinese Journal of Applied Ecology, 2003, 14(10): 1669-1672 doi: 10.3321/j.issn:1001-9332.2003.10.017 |
[6] | SOMMERFELDT T G, CHANG C, ENTZ T. Long-term annual manure applications increase soil organic matter and nitrogen, and decrease carbon to nitrogen ratio[J]. Soil Science Society of America Journal, 1988, 52(6): 1668-1672 doi: 10.2136/sssaj1988.03615995005200060030x |
[7] | 高洪军, 朱平, 彭畅, 等. 等氮条件下长期有机无机配施对春玉米的氮素吸收利用和土壤无机氮的影响[J]. 植物营养与肥料学报, 2015, 21(2): 318-325 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201502006.htm GAO H J, ZHU P, PENG C, et al. Effects of partially replacement of inorganic N with organic materials on nitrogen efficiency of spring maize and soil inorganic nitrogen content under the same N input[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 318-325 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201502006.htm |
[8] | 肖小平, 李超, 唐海明, 等. 秸秆还田下减氮增密对双季稻田土壤氮素库容及氮素利用率的影响[J]. 中国生态农业学报(中英文), 2019, 27(3): 422-430 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0309&flag=1 XIAO X P, LI C, TANG H M, et al. Soil nitrogen storage and recovery efficiency in double paddy fields under reduced nitrogen dose and increased crop density[J]. Chinese Journal of Eco-Agriculture, 2019, 27(3): 422-430 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-0309&flag=1 |
[9] | 曾研华, 范呈根, 吴建富, 等. 等养分条件下稻草还田替代双季早稻氮钾肥比例的研究[J]. 植物营养与肥料学报, 2017, 23(3): 658-668 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201703012.htm ZENG Y H, FAN C G, WU J F, et al. Replacement ratio of nitrogen and potassium fertilizer by straw incorporation in early rice under the same nitrogen, phosphorus and potassium input[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(3): 658-668 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201703012.htm |
[10] | 孙汉印, 姬强, 王勇, 等. 不同秸秆还田模式下水稳性团聚体有机碳的分布及其氧化稳定性研究[J]. 农业环境科学学报, 2012, 31(2): 369-376 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201202026.htm SUN H Y, JI Q, WANG Y, et al. The distribution of water-stable aggregate-associated organic carbon and its oxidation stability under different straw returning modes[J]. Journal of Agro-Environment Science, 2012, 31(2): 369-376 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201202026.htm |
[11] | WANG X, QI J Y, ZHANG X Z, et al. Effects of tillage and residue management on soil aggregates and associated carbon storage in a double paddy cropping system[J]. Soil and Tillage Research, 2019, 194: 104339 doi: 10.1016/j.still.2019.104339 |
[12] | 崔婷婷, 窦森, 杨轶囡, 等. 秸秆深还对土壤腐殖质组成和胡敏酸结构特征的影响[J]. 土壤学报, 2014, 51(4): 718-725 doi: 10.11766/trxb201310260486 CUI T T, DOU S, YANG Y N, et al. Effect of deep applied corn stalks on composition of soil humus and structure of humic acid[J]. Acta Pedologica Sinica, 2014, 51(4): 718-725 doi: 10.11766/trxb201310260486 |
[13] | LIU P, HE J, LI H W, et al. Effect of straw retention on crop yield, soil properties, water use efficiency and greenhouse gas emission in China: A Meta-analysis[J]. International Journal of Plant Production, 2019, 13(4): 347-367 doi: 10.1007/s42106-019-00060-w |
[14] | LI T, GAO J S, BAI L Y, et al. Influence of green manure and rice straw management on soil organic carbon, enzyme activities, and rice yield in red paddy soil[J]. Soil and Tillage Research, 2019, 195: 104428 doi: 10.1016/j.still.2019.104428 |
[15] | 王爱玲, 高旺盛, 洪春梅. 华北灌溉区秸秆焚烧与直接还田生态效应研究[J]. 中国生态农业学报, 2003, 11(1): 142-144 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200301046.htm WANG A L, GAO W S, HONG C M. Study on the ecological effect of crop residues burned or incorporated in field in north central irrigated area of China[J]. Chinese Journal of Eco-Agriculture, 2003, 11(1): 142-144 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN200301046.htm |
[16] | 吴卫东, 李军政, 廖育林, 等. 联合收割机配套稻秸秆粉碎还田装置设计[J]. 农业装备与车辆工程, 2020, 58(5): 11-14 doi: 10.3969/j.issn.1673-3142.2020.05.003 WU W D, LI J Z, LIAO Y L, et al. Design of rice straw crushing and returning device for combine harvester[J]. Agricultural Equipment & Vehicle Engineering, 2020, 58(5): 11-14 doi: 10.3969/j.issn.1673-3142.2020.05.003 |
[17] | 廖育林, 鲁艳红, 高雅洁, 等. 适宜双季稻稻草还田的多功能联合作业装置[J]. 湖南农业科学, 2020, (4): 69-71 https://www.cnki.com.cn/Article/CJFDTOTAL-HNNK202004019.htm LIAO Y L, LU Y H, GAO Y J, et al. A new type of multi- functional combined operation device suitable for rice straw returning into double cropping paddy field[J]. Hunan Agricultural Sciences, 2020, (4): 69-71 https://www.cnki.com.cn/Article/CJFDTOTAL-HNNK202004019.htm |
[18] | 孙丽娟, 冯健. 秸秆粉碎还田机秸秆抛撒不均匀度测试方法探讨[J]. 中国农机化学报, 2016, 37(6): 35-38 https://www.cnki.com.cn/Article/CJFDTOTAL-GLJH201606010.htm SUN L J, FENG J. Research on test method of straw scattering inhomogeneity for smashed straw machine[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(6): 35-38 https://www.cnki.com.cn/Article/CJFDTOTAL-GLJH201606010.htm |
[19] | 刘正光. 谷秆固体燃料物理性能及燃烧特性研究[D]. 太谷: 山西农业大学, 2018 LIU Z G. Study on physical properties and combustion characteristics of straw stalk solid fuel[D]. Taigu: Shanxi Agricultural University, 2018 |
[20] | 白兆兴, 曹建峰, 林鹏云, 等. 秸秆类生物质燃烧动力学特性实验研究[J]. 能源研究与信息, 2009, 25(3): 130-137 doi: 10.3969/j.issn.1008-8857.2009.03.002 BAI Z X, CAO J F, LIN P Y, et al. Experimental study on the biomass combustion kinetics[J]. Energy Research and Information, 2009, 25(3): 130-137 doi: 10.3969/j.issn.1008-8857.2009.03.002 |
[21] | 马增益, 李月宁, 黄群星, 等. 水平强迫气流下木屑逆向阴燃过程的实验研究[J]. 燃烧科学与技术, 2004, 10(6): 497-500 doi: 10.3321/j.issn:1006-8740.2004.06.004 MA Z Y, LI Y N, HUANG Q X, et al. Experimental study of opposed smolder of the horizontal oriented sawdust in a forced air flow[J]. Journal of Combustion Science and Technology, 2004, 10(6): 497-500 doi: 10.3321/j.issn:1006-8740.2004.06.004 |
[22] | SIMMONS W W, RAGLAND K W. Burning rate of millimeter sized wood particles in a furnace[J]. Combustion Science and Technology, 1986, 46(1/2): 1-15 doi: 10.1080/00102208608959788?tab=permissions&scroll=top |
[23] | 王炯, 刘圣勇, 张品, 等. 玉米秸秆打捆燃烧特性研究[J]. 太阳能学报, 2018, 39(12): 3499-3504 https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201812028.htm WANG J, LIU S Y, ZHANG P, et al. Study on combustion characteristics of baled corn stalk[J]. Acta Energiae Solaris Sinica, 2018, 39(12): 3499-3504 https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201812028.htm |
[24] | 赵文霞, 杨朝旭, 刘帅, 等. 典型农作物秸秆组成及燃烧动力学分析[J]. 农业环境科学学报, 2019, 38(4): 921-927 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201904024.htm ZHAO W X, YANG Z X, LIU S, et al. Composition and combustion dynamics analysis of typical crop straws[J]. Journal of Agro-Environment Science, 2019, 38(4): 921-927 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201904024.htm |
[25] | CAO R, NAYA S, ARTIAGA R, et al. Logistic approach to polymer degradation in dynamic TGA[J]. Polymer Degradation and Stability, 2004, 85(1): 667-674 doi: 10.1016/j.polymdegradstab.2004.03.006 |
[26] | 朱恂, 李刚, 冯云鹏, 等. 重庆地区7种生物质的成分分析及热重实验[J]. 重庆大学学报: 自然科学版, 2006, 29(8): 44-48 https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE200608011.htm ZHU X, LI G, FENG Y P, et al. Thermogravimetric experiments and component analysis of biomass in Chongqing[J]. Journal of Chongqing University: Natural Science Edition, 2006, 29(8): 44-48 https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE200608011.htm |
[27] | 田红, 廖正祝. 农业生物质燃烧特性及燃烧动力学[J]. 农业工程学报, 2013, 29(10): 203-212 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201310030.htm TIAN H, LIAO Z Z. Combustion characteristics and combustion kinetics of agriculture biomass[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(10): 203-212 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201310030.htm |
[28] | 朱红, 常志州, 黄红英, 等. 高温焚烧对秸秆灰渣磷、钾养分变化的影响[J]. 植物营养与肥料学报, 2007, 13(6): 1197-1201 doi: 10.3321/j.issn:1008-505x.2007.06.035 ZHU H, CHANG Z Z, HUANG H Y, et al. Effect of incineration temperature on the content and availability of P and K in straw ash[J]. Plant Nutrition and Fertilizer Science, 2007, 13(6): 1197-1201 doi: 10.3321/j.issn:1008-505x.2007.06.035 |
[29] | 岑可法, 姚强, 骆仲泱, 等. 高等燃烧学[M]. 杭州: 浙江大学出版社, 2002: 299-304 CEN K F, YAO Q, LUO Z Y, et al. Advanced Combustion Theory[M]. Hangzhou: Zhejiang University Press, 2002: 299-304 |