陈桂平?,,
殷文,
赵财,
于爱忠,
樊志龙,
胡发龙,
范虹,
柴强,
甘肃省干旱生境作物学重点实验室/甘肃农业大学农学院 兰州 730070
基金项目: 甘肃省科技计划项目20JR5RA037
甘肃省科技计划项目20JR5RA025
国家绿肥产业技术体系CARS-22-G-12
甘肃省高等学校创新能力提升项目2020B-126
甘肃省科协青年人才托举工程项目2020-12
详细信息
通讯作者:柴强, 主要从事多熟种植、循环农业、保护性耕作技术与理论研究。E-mail: chaiq@gsau.edu.cn
同等贡献者: 郭瑶, 主要从事节水农业研究, E-mail: guoyaogsau@126.com; 陈桂平, 主要从事多熟种植研究, E-mail: chengp@gsau.edu.cn中图分类号:S341.1;S152.7
计量
文章访问数:195
HTML全文浏览量:6
PDF下载量:134
被引次数:0
出版历程
收稿日期:2020-06-14
录用日期:2020-09-15
刊出日期:2021-02-01
Effects of reducing water and nitrogen supplies in rotated wheat with previous plastic mulched maize
GUO Yao?,,CHEN Guiping?,,
YIN Wen,
ZHAO Cai,
YU Aizhong,
FAN Zhilong,
HU Falong,
FAN Hong,
CHAI Qiang,
Gansu Provincial Key Laboratory of Arid Land Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
Funds: financially supported by the Science and Technology Project of Gansu Province20JR5RA037
financially supported by the Science and Technology Project of Gansu Province20JR5RA025
the Green Manure Industry Research System of ChinaCARS-22-G-12
Gansu Provincial Scientific Project of Colleges and Universities2020B-126
Gansu Young Science and Technology Talents Supporting Project2020-12
More Information
Corresponding author:CHAI Qiang, E-mail: chaiq@gsau.edu.cn
Equivalent contributors摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:针对长期连作作物生产力低下等突出问题,研究前茬地膜覆盖作物免耕留膜,轮作后茬作物的生产效应,对于优化栽培模式,建立甘肃河西绿洲灌区作物生产的节本增效技术具有重要意义。2016-2017年,通过田间定位试验,研究了前茬地膜覆盖玉米茬口两种耕作方式(免耕留膜,NT;传统耕作,CT)、两种灌水水平(传统灌水,2400 m3·hm-2,I2;传统灌水减量20%,1920 m3·hm-2,I1)和3个施氮水平(传统施氮,225 kg·hm-2,N3;传统施氮减量20%,180 kg·hm-2,N2;传统施氮减量40%,135 kg·hm-2,N1)对轮作小麦产量、光能与灌溉水利用及经济效益的影响,以期为优化试区小麦的栽培技术提供理论依据。研究结果表明,前茬玉米免耕留膜较传统耕作小麦全生育期总叶日积提高21.6%~26.1%(P < 0.05),特别是小麦灌浆至成熟期提高41.3%~45.2%(P < 0.05),具有延缓衰老的作用。小麦灌浆至成熟期,免耕留膜集成减量20%水氮供应(NTI1N2)处理比传统耕作和水氮供应(CTI2N3)提高叶日积34.8%~50.7%。免耕留膜较传统耕作提高籽粒产量、光能利用率和灌溉水利用效率分别为10.1%~10.4%、5.6%~12.3%和10.1%~10.3%(P < 0.05);NTI1N2较CTI2N3处理小麦增产15.2%~22.0%、光能利用率提高8.1%~18.5%、灌溉水利用效率提高44.0%~52.5%(P < 0.05)。免耕留膜结合减量水氮供应可降低生产成本,提高纯收益和产投比,NTI1N2较CTI2N3处理纯收益和产投比分别提高22.9%~23.9%和34.8%~35.1%,单方水效益提高53.6%~68.9%(P < 0.05)。因此,前茬地膜覆盖玉米免耕留膜配套减量20%灌水(1920 m3·hm-2)与施氮(180 kg·hm-2)可作为甘肃河西绿洲灌区发展节本增效小麦生产的关键技术。
关键词:轮作/
地膜玉米/
小麦/
水氮耦合/
光能利用/
水分生产力/
经济效益
Abstract:To combat low crop productivity in long-term continuous cropping systems, it is necessary to study the effects of no-tillage and continued mulched plastic to optimize cultivation and establish cost-saving and benefits-increasing technology in Hexi irrigated areas in Gansu Province. A field experiment was conducted in northwestern irrigated areas in 2016-2017 to evaluate the yield, light energy, irrigation water utilization, and economic benefits of all combinations of two tillage practices, two irrigation levels, and three nitrogen application levels on wheat. The two tillage practices included no-tillage and continued mulched plastic in previous maize (NT) and conventional tillage in previous maize after removing the mulched plastic from soil (CT). The two levels of irrigation included the local conventional irrigation amount, 2400 m3·hm-2 (high: I2), and the local conventional irrigation amount reduced by 20%, 1920 m3·hm-2 (low: I1). The three levels of nitrogen application included the local conventional nitrogen amount, 225 kg·hm-2 (high: N3), the local conventional nitrogen amount reduced by 20%, 180 kg·hm-2 (medium: N2), and the local conventional nitrogen amount reduced by 40%, 135 kg·hm-2 (low: N1). The results showed that NT increased the leaf area duration (LAD) of wheat across all growth stages by 21.6% to 26.1%, and the LAD remained high from the wheat filling to the maturity stage, increasing by 41.3% to 45.2% (P < 0.05), compared with CT, and delaying senescence. A 20% reduction in irrigation and N application combined with NT (NTI1N2) resulted in a greater LAD (by 34.8% to 50.7%) from the wheat filling to the maturity stage than CT with conventional high levels of irrigation and nitrogen (CTI2N3). NT increased wheat grain yield, light use efficiency, and irrigation water use efficiency by 10.1% to 10.4%, 5.6% to 12.3%, and 10.1% to 10.3% (P < 0.05) compared with CT, respectively. The grain yield, light use efficiency, and irrigation water use efficiency were significantly increased by 15.2% to 22.0%, 8.1% to 18.5%, and 44.0% to 52.5% with NTI1N2 compared with CTI2N3, respectively. NT integrated with reduced irrigation and nitrogen application reduced the production cost and improved the net return and input-output ratio. The NTI1N2 treatment increased the net return and input-output ratio by 22.9% to 23.9% and 34.8% to 35.1%, respectively. In addition, the benefit per cubic meter of water increased by 53.6% to 68.9% with NTI1N2 compared with CTI2N3 treatment. These results suggest that no-tillage and continued mulched plastic in previous maize with low irrigation (1920 m3·hm-2) and medium nitrogen (180 kg·hm-2) can reduce costs and increase the benefits of wheat production in Hexi irrigated areas in Gansu Province.
Key words:Crop rotation/
Plastic mulched maize/
Wheat/
Water-nitrogen coupling/
Light utilization/
Water productivity/
Economic benefits
Equivalent contributors
注释:
1) 同等贡献者: 郭瑶, 主要从事节水农业研究, E-mail: guoyaogsau@126.com; 陈桂平, 主要从事多熟种植研究, E-mail: chengp@gsau.edu.cn
HTML全文

图12015—2017年玉米轮作小麦种植制度示意图
Figure1.Diagram of the cropping system of maize-wheat rotation from 2015 to 2017


图2不同耕作措施、灌溉与施氮水平下小麦光能利用率
各处理名称见表 1。不同小写字母表示处理间在P < 0.05水平差异显著。
Figure2.Light use efficiency of wheat under different tillage practices, and irrigation and nitrogen levels
Treatments abbreviations are described in Table 1. Different lowercase letters indicate significant differences among treatments at P < 0.05 probability level.


图3不同耕作措施、灌水与施氮水平下小麦的灌溉水利用效率
各处理名称见表 1。不同小写字母表示处理间在P < 0.05水平差异显著。
Figure3.Irrigation water use efficiency of wheat under different tillage practices, and irrigation and nitrogen levels
Treatments abbreviations are described in Table 1. Different lowercase letters indicate significant differences among treatments at P < 0.05 probability level.


图4不同耕作措施、灌水与施氮水平下小麦的单方水效益
各处理名称见表 1。不同小写字母表示处理间在P < 0.05水平差异显著。
Figure4.Benefit per cubic meter water of wheat under different tillage practices, and irrigation and nitrogen levels
Treatment abbreviations are described in Table 1. Different lowercase letters indicate significant differences among treatments at P < 0.05 probability level.


图5小麦叶日积与籽粒产量及光能利用率的相关关系
Figure5.Relationships between leaf area duration and grain yield (A), light use efficiency (B) of wheat

表12016—2017年小麦试验处理代码及灌溉和施氮量
Table1.Treatments codes, irrigation and nitrogen amounts during spring wheat growth period from 2016 to 2017
耕作措施 Tillage practice | 灌溉制度Irrigation schedule | 施氮量Nitrogen rate | |||||||||
总灌溉量 Total irrigation amount (m3?hm?2) | 关键生育时期灌溉量 Irrigation amount at key growth stage (m3?hm?2) | 传统施氮 Conventional nitrogen amount (N3, 225 kg?hm?2) | 传统施氮减量20% Conventional nitrogen amount reduced by 20%(N2, 180 kg?hm?2) | 传统施氮减量40% Conventional nitrogen amount reduced by 40%(N1, 135 kg?hm?2) | |||||||
苗期 Seeding | 孕穗 Booting | 灌浆期 Filling | |||||||||
免耕留膜(NT) No tillage and continued mulched plastic | 2400 (I2) | 750 | 900 | 750 | NTI2N3 | NTI2N2 | NTI2N1 | ||||
1920 (I1) | 600 | 720 | 600 | NTI1N3 | NTI1N2 | NTI1N1 | |||||
传统耕作(CT) Conventional tillage | 2400 (I2) | 750 | 900 | 750 | CTI2N3 | CTI2N2 | CTI2N1 | ||||
1920 (I1) | 600 | 720 | 600 | CTI1N3 | CTI1N2 | CTI1N1 |

表2耕作措施、灌溉和氮素水平对小麦不同生育期叶日积的影响
Table2.Leaf area duration of wheat in different growth periods as affected by tillage practices, and irrigation and nitrogen levels
年份Year | 耕作措施Tillage practice | 灌水水平Irrigation level | 施氮水平Nitrogen level | 小麦生育阶段Wheat growth stage | 合计Sum | ||||||||
P1?P2 | P2?P3 | P3?P4 | P4?P5 | P5?P6 | |||||||||
2016 | NT | I2 | N3 | 60.5a | 100.1a | 83.1ab | 53.9ab | 24.8ab | 322.3a | ||||
N2 | 49.5bcd | 82.2bcd | 79.5abc | 57.7a | 24.1ab | 293.0ab | |||||||
N1 | 49.2bcd | 78.5cd | 72.7bcde | 45.9bc | 17.5c | 263.8bcd | |||||||
I1 | N3 | 58.3a | 95.2ab | 91.1a | 57.7a | 22.1b | 324.4a | ||||||
N2 | 54.9ab | 96.4ab | 92.4a | 58.4a | 25.5a | 327.5a | |||||||
N1 | 50.5bc | 79.2cd | 75.0bcd | 51.2ab | 17.6c | 273.4bc | |||||||
CT | I2 | N3 | 47.0bcd | 87.7abc | 80.9abc | 45.2bc | 17.0c | 277.7bc | |||||
N2 | 44.0cd | 77.1abc | 68.9cde | 42.2c | 18.1c | 250.3cd | |||||||
N1 | 41.2d | 72.8cd | 65.0de | 36.9cd | 15.8c | 231.7de | |||||||
I1 | N3 | 47.1bcd | 88.7abc | 81.9abc | 41.2cd | 12.8d | 271.8bc | ||||||
N2 | 45.1cd | 74.3cd | 70.2bcde | 40.4cd | 10.9de | 240.8cde | |||||||
N1 | 41.7d | 67.3d | 60.4e | 33.2d | 9.1e | 211.6e | |||||||
2017 | NT | I2 | N3 | 67.5abc | 91.1a | 82.9a | 48.8a | 19.8ab | 310.0a | ||||
N2 | 64.5abcd | 89.0a | 83.9a | 48.0a | 18.5abc | 303.9ab | |||||||
N1 | 59.5bcde | 82.6ab | 74.6abc | 39.7bc | 15.2cde | 189.0abcd | |||||||
I1 | N3 | 73.4a | 91.7a | 81.2ab | 48.0a | 19.9ab | 314.1a | ||||||
N2 | 71.4ab | 89.7a | 81.3ab | 49.7a | 21.5a | 313.5a | |||||||
N1 | 65.5abcd | 80.7abc | 71.6abc | 42.4ab | 16.9bcd | 277.0abc | |||||||
CT | I2 | N3 | 59.4bcde | 79.5abc | 68.0bcd | 34.6bcd | 12.6defg | 254.1bcde | |||||
N2 | 56.4cde | 77.2abc | 66.0cd | 34.9bcd | 14.1def | 248.5cde | |||||||
N1 | 49.5e | 69.5bc | 60.7cd | 31.0d | 10.2fg | 220.8de | |||||||
I1 | N3 | 57.5cde | 77.1abc | 67.8bcd | 35.2bcd | 12.6defg | 250.2cde | ||||||
N2 | 54.5de | 73.7bc | 64.9cd | 33.5cd | 11.0efg | 237.6cde | |||||||
N1 | 48.6e | 65.7d | 57.1d | 28.8d | 8.8g | 209.1e | |||||||
耕作措施Tillage practice (T) | ** | ** | ** | ** | ** | ** | |||||||
灌水水平Irrigation level (I) | NS | NS | NS | NS | ** | NS | |||||||
施氮水平Nitrogen level (N) | ** | ** | ** | ** | ** | ** | |||||||
T×I | NS | NS | NS | * | ** | NS | |||||||
T×N | NS | NS | NS | NS | * | NS | |||||||
I×N | NS | NS | NS | NS | NS | NS | |||||||
T×I×N | NS | NS | NS | NS | * | NS | |||||||
各处理名称见表 1。P1、P2、P3、P4、P5、P6分别为2016年5月6日、5月20日、6月6日、6月22日、7月7日、7月20日, 2017年5月3日、5月23日、6月9日、6月24日、7月7日、7月18日, 相对应小麦的生长阶段分别为幼苗、拔节期、孕穗期、灌浆初期、灌浆中期和成熟期。同一年份同列数据后不同小写字母表示不同处理在P < 0.05水平差异显著。*: P < 0.05显著; **: P < 0.01显著; NS: 不显著。Treatments abbreviations are described in Table 1. P1, P2, P3, P4, P5, and P6 denote sampling dates of 6 May, 20 May, 6 June, 22 June, 7 July, and 20 July in 2016, respectively; and 3 May, 23 May, 9 June, 24 June, 7 July, and 18 July in 2017, respectively, corresponding to growth stages of wheat of seedling, jointing, booting, early-filling, middle-filling, and full-ripening, respectively. Within a column for a given year, different lowercase letters indicate significant differences among treatments at P < 0.05 probability level. *: P < 0.05; **: P < 0.01; NS: not significant. |

表3不同耕作措施、灌溉与施氮水平对小麦产量及经济效益的影响
Table3.Grain yield and economic benefits of wheat as affected by tillage practices, and irrigation and nitrogen levels
年份 Year | 耕作措施 Tillage practice | 灌水水平 Irrigation level | 施氮水平 Nitrogen level | 籽粒产量 Grain yield(kg?hm?2) | 产值 Output(¥?hm?2) | 投入 Cost (¥·hm?2) | 纯收益 Net return(¥?hm?2) | 产投比 Input-outputratio | |||||
机械与劳力Machinery and labor | 农资与其他材料Agricultural and other materials | 总投入Total cost | |||||||||||
2016 | NT | I2 | N3 | 8730bc | 30?003abc | 2955 | 5321 | 8276ab | 21?727ab | 2.63bc | |||
N2 | 8980ab | 29?947ab | 2955 | 5161 | 8116b | 21?831a | 2.69ab | ||||||
N1 | 7910def | 26?806de | 2955 | 4950 | 7905bc | 18?901bc | 2.39cd | ||||||
I1 | N3 | 9130a | 30?415a | 2955 | 5177 | 8132b | 22?283a | 2.74ab | |||||
N2 | 9050ab | 29?212ab | 2955 | 5017 | 7972bc | 21?240a | 2.66a | ||||||
N1 | 8550abcd | 27?702bcd | 2955 | 4806 | 7761c | 19?941ab | 2.57ab | ||||||
CT | I2 | N3 | 7420ef | 25?841ef | 3375 | 5321 | 8696a | 17?145d | 1.97c | ||||
N2 | 8730abc | 28?286cd | 3375 | 5161 | 8536a | 19?749bc | 2.31cd | ||||||
N1 | 7130f | 23?956f | 3375 | 4950 | 8325a | 15?631d | 1.88e | ||||||
I1 | N3 | 8230cde | 26?473cd | 3375 | 5177 | 8552a | 17?920bc | 2.10cd | |||||
N2 | 8190cde | 26?082cde | 3375 | 5017 | 8392ab | 17?689bc | 2.11d | ||||||
N1 | 7870def | 24?468ef | 3375 | 4806 | 8181b | 16?287cd | 1.99d | ||||||
2017 | NT | I2 | N3 | 8490b | 28?379bc | 3095 | 5379 | 8474ab | 19?905bc | 2.35b | |||
N2 | 9150a | 30?110a | 3095 | 5219 | 8314b | 21?796a | 2.62a | ||||||
N1 | 7670e | 26?025e | 3095 | 5008 | 8103bc | 17?922ef | 2.21c | ||||||
I1 | N3 | 8930a | 29?544a | 3095 | 5235 | 8330b | 21?214a | 2.55a | |||||
N2 | 8850a | 29?065ab | 3095 | 5075 | 8170bc | 20?894ab | 2.56a | ||||||
N1 | 7860de | 26?992de | 3095 | 4864 | 7959c | 19?033cde | 2.39b | ||||||
CT | I2 | N3 | 7690e | 25?966e | 3585 | 5379 | 8964a | 17?002fg | 1.90e | ||||
N2 | 8060cd | 26?606de | 3585 | 5219 | 8804a | 17?802de | 2.02d | ||||||
N1 | 6950f | 24?081f | 3585 | 5008 | 8593ab | 15?488h | 1.80e | ||||||
I1 | N3 | 8280bc | 27?706cd | 3585 | 5235 | 8820a | 18?885cde | 2.14cd | |||||
N2 | 8140cd | 27?931cd | 3585 | 5075 | 8660ab | 19?270cd | 2.23c | ||||||
N1 | 7060f | 24?517f | 3585 | 4864 | 8449ab | 16?068gh | 1.90e | ||||||
耕作措施 Tillage practice (T) | ** | ** | — | — | ** | ** | ** | ||||||
灌水水平 Irrigation level (I) | ** | ** | — | — | * | ** | ** | ||||||
施氮水平 Nitrogen level (N) | ** | ** | — | — | ** | ** | ** | ||||||
T×I | NS | NS | — | — | NS | NS | NS | ||||||
T×N | NS | NS | — | — | NS | NS | NS | ||||||
I×N | * | * | — | — | NS | * | * | ||||||
T×I×N | NS | NS | — | — | NS | NS | NS | ||||||
各处理名称见表1。同一年份同列数据后不同小写字母表示不同处理在P<0.05水平差异显著。*: P<0.05显著; **: P<0.01显著; NS: 不显著。Treatments abbreviations are described in Table 1. Within a column for a given year, different lowercase letters indicate significant differences among treatments at P<0.05 probability level. *: P<0.05; **: P<0.01; NS: not significant. |

参考文献
[1] | ZHANG S L, LI P R, YANG X Y, et al. Effects of tillage and plastic mulch on soil water, growth and yield of spring-sown maize[J]. Soil and Tillage Research, 2011, 112(1): 92-97 doi: 10.1016/j.still.2010.11.006 |
[2] | 郭瑶, 陈桂平, 殷文, 等. 内陆灌区小麦秸秆还田对玉米光能利用及水分生产效益的影响[J]. 中国生态农业学报, 2018, 26(6): 847-855 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0607&flag=1 GUO Y, CHEN G P, YIN W, et al. Effect of wheat straw retention on light energy utilization and water production benefits of maize in inland irrigated region[J]. Chinese Journal of Eco-Agriculture, 2018, 26(6): 847-855 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0607&flag=1 |
[3] | 卢秉林, 包兴国, 张久东, 等. 河西绿洲灌区玉米与绿肥间作模式对作物产量和经济效益的影响[J]. 中国土壤与肥料, 2014, (2): 67-71 https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201402015.htm LU B L, BAO X G, ZHANG J D, et al. Effects of different intercropping systems of corn and green manure on crop yield and economic benefit in Hexi Oasis Irrigation[J]. Soils and Fertilizers Sciences in China, 2014, (2): 67-71 https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201402015.htm |
[4] | 赵财, 王巧梅, 郭瑶, 等. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响[J]. 作物学报, 2018, 44(11): 1694-1703 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201811014.htm ZHAO C, WANG Q M, GUO Y, et al. Effects of water-nitrogen coupling patterns on dry matter accumulation and yield of wheat under no-tillage with previous plastic mulched maize[J]. Acta Agronomica Sinica, 2018, 44(11): 1694-1703 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201811014.htm |
[5] | GUO Y, YIN W, FAN Z L, et al. No-tillage with reduced water and nitrogen supply improves water use efficiency of wheat in arid regions[J]. Agronomy Journal, 2020, 112(1): 578-591 doi: 10.1002/agj2.20031 |
[6] | LOOMIS R S, WILLIAMS W A, DUNCAN W G, et al. Community architecture and the productivity of terrestrial plant communities[M]//PIETRO A S, GREEN F A, ARMY T J. Harvesting the Sun, Photosynthesis in Plant Life. New York: Academic Press, 1967: 291-308 |
[7] | 黄高宝. 作物群体受光结构与作物生产力研究[J]. 生态学杂志, 1999, 18(1): 59-65 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ901.011.htm HUANG G B. A review of the researches of crop colony structure and light distribution in relation to crop productivity[J]. Chinese Journal of Ecology, 1999, 18(1): 59-65 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ901.011.htm |
[8] | 章家恩. 作物群体结构的生态环境效应及其优化探讨[J]. 生态科学, 2000, 19(1): 30-35 doi: 10.3969/j.issn.1008-8873.2000.01.005 ZHANG J E. Discussion on the eco-environmental effects of crop community structure and its optimization[J]. Ecologic Science, 2000, 19(1): 30-35 doi: 10.3969/j.issn.1008-8873.2000.01.005 |
[9] | 沈允钢. 植物的光能利用问题[J]. 科学通报, 1961, (10): 46-50 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB196110004.htm SHEN Y G. The problem of photosynthesis of plants[J]. Chinese Science Bulletin, 1961, (10): 46-50 https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB196110004.htm |
[10] | 刘正芳, 柴强. 带型及施氮对玉米间作豌豆光能利用率的影响[J]. 农业现代化研究, 2012, 33(3): 367-371 doi: 10.3969/j.issn.1000-0275.2012.03.025 LIU Z F, CHAI Q. Response of solar radiation use efficiency on nitrogen application rates and percentage of intercropped maize and pea[J]. Research of Agricultural Modernization, 2012, 33(3): 367-371 doi: 10.3969/j.issn.1000-0275.2012.03.025 |
[11] | 周婷婷, 李军, 司政邦. 种植密度与品种类型对渭北旱地春玉米产量和光能利用的影响[J]. 西北农林科技大学学报: 自然科学版, 2015, 43(11): 54-62 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201511011.htm ZHOU T T, LI J, SI Z B. Effects of planting density and variety on growth and RUE of spring maize in Weibei highland[J]. Journal of Northwest A & F University: Natural Science Edition, 2015, 43(11): 54-62 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201511011.htm |
[12] | 肖新, 赵言文, 胡锋, 等. 南方丘陵典型季节性干旱区节水稻作模式生态系统功能特征研究[J]. 水土保持学报, 2006, 20(3): 74-78 doi: 10.3321/j.issn:1009-2242.2006.03.019 XIAO X, ZHAO Y W, HU F, et al. Study on function of different water-saving rice model ecosystems in southern China seasonal drought hilly region[J]. Journal of Soil and Water Conservation, 2006, 20(3): 74-78 doi: 10.3321/j.issn:1009-2242.2006.03.019 |
[13] | FLETCHER A L, JOHNSTONE P R, CHAKWIZIRA E, et al. Radiation capture and radiation use efficiency in response to N supply for crop species with contrasting canopies[J]. Field Crops Research, 2013, 150: 126-134 doi: 10.1016/j.fcr.2013.06.014 |
[14] | YIN W, CHAI Q, GUO Y, et al. Straw and plastic management regulate air-soil temperature amplitude and wetting-drying alternation in soil to promote intercrop productivity in arid regions[J]. Field Crops Research, 2020, 249: 107758 doi: 10.1016/j.fcr.2020.107758 |
[15] | 赵财, 陈桂平, 柴强, 等. 不同灌水水平下少耕地膜覆盖对玉米农田土壤温度和水分利用效率的影响[J]. 干旱地区农业研究, 2017, 35(1): 152-157 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201701024.htm ZHAO C, CHEN G P, CHAI Q, et al. The effect of minimum tillage and mulching on soil temperature and WUE of maize under different irrigation levels[J]. Agricultural Research in the Arid Areas, 2017, 35(1): 152-157 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201701024.htm |
[16] | OGOLA J B O, WHEELER T R, HARRIS P M. Effects of nitrogen and irrigation on water use of maize crops[J]. Field Crops Research, 2002, 78(2/3): 105-117 http://europepmc.org/abstract/AGR/IND23305050 |
[17] | 郭瑶, 陈桂平, 王巧梅, 等. 玉米免耕留膜可减少后茬轮作春小麦水氮用量[J]. 植物营养与肥料学报, 2019, 25(10): 1679-1689 doi: 10.11674/zwyf.18444 GUO Y, CHEN G P, WANG Q M, et al. Reuse of plastic film by spring wheat after no-tillage maize can reduce water and nitrogen input[J]. Plant Nutrition and Fertilizer Science, 2019, 25(10): 1679-1689 doi: 10.11674/zwyf.18444 |
[18] | GUO Y, YIN W, HU F L, et al. Reduced irrigation and nitrogen coupled with no-tillage and plastic mulching increase wheat yield in maize-wheat rotation in an arid region[J]. Field Crops Research, 2019, 243: 107615 doi: 10.1016/j.fcr.2019.107615 |
[19] | 郭瑶, 柴强, 殷文, 等. 绿洲灌区小麦免耕秸秆还田对后作玉米产量性能指标的影响[J]. 中国生态农业学报, 2017, 25(1): 69-77 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170110&flag=1 GUO Y, CHAI Q, YIN W, et al. Effect of wheat straw return to soil with zero-tillage on maize yield in irrigated oases[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 69-77 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170110&flag=1 |
[20] | RAJCAN I, TOLLENAAR M. Source: Sink ratio and leaf senescence in maize: Ⅱ. Nitrogen metabolism during grain filling[J]. Field Crops Research, 1999, 60(3): 255-265 doi: 10.1016/S0378-4290(98)00143-9 |
[21] | CIAMPITTI I A, VYN T J. A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages[J]. Field Crops Research, 2011, 121(1): 2-18 doi: 10.1016/j.fcr.2010.10.009 |
[22] | HE P, ZHOU W, JIN J Y. Carbon and nitrogen metabolism related to grain formation in two different senescent types of maize[J]. Journal of Plant Nutrition, 2004, 27(2): 295-311 doi: 10.1081/PLN-120027655 |
[23] | 吕鹏, 张吉旺, 刘伟, 等. 施氮量对超高产夏玉米产量及氮素吸收利用的影响[J]. 植物营养与肥料学报, 2011, 17(4): 852-860 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201104013.htm LYU P, ZHANG J W, LIU W, et al. Effects of nitrogen application on yield and nitrogen use efficiency of summer maize under super-high yield conditions[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 852-860 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201104013.htm |
[24] | 张雨新, 张富仓, 邹海洋, 等. 生育期水分调控对甘肃河西地区滴灌春小麦氮素吸收和利用的影响[J]. 植物营养与肥料学报, 2017, 23(3): 597-605 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201703005.htm ZHANG Y X, ZHANG F C, ZOU H Y, et al. Effects of soil water regulation at different growing stages on nitrogen uptake and utilization of spring wheat in the Hexi Region, Gansu Province[J]. Plant Nutrition and Fertilizer Science, 2017, 23(3): 597-605 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201703005.htm |
[25] | BEHERA S, JHA M K, KAR S. Dynamics of water flow and fertilizer solute leaching in lateritic soils of Kharagpur region, India[J]. Agricultural Water Management, 2003, 63(2): 77-98 doi: 10.1016/S0378-3774(03)00175-6 |
[26] | KHAKBAZAN M, GRANT C A, HUANG J Z, et al. Economic effects of preceding crops and nitrogen application on canola and subsequent barley[J]. Agronomy Journal, 2014, 106(6): 2055-2066 http://dl.sciencesocieties.org/publications/aj/articles/0/0/agronj2013.0274 |