高晓东2, 3,
王嘉昕1, 2,
赵西宁2, 3,,
1.西北农林科技大学水利与建筑工程学院 杨凌 712100
2.西北农林科技大学旱区农业水土工程教育部重点实验室 杨凌 712100
3.中国科学院水利部水土保持研究所 杨凌 712100
基金项目: 国家重点研发计划项目2017YFC0403605
详细信息
作者简介:周艳清, 主要研究方向为农业水土资源综合利用。E-mail: zhouyanq021@163.com
通讯作者:赵西宁, 主要研究方向为农业水土资源利用与调控。E-mail: xiningz@aliyun.com
中图分类号:Q948.1计量
文章访问数:180
HTML全文浏览量:6
PDF下载量:84
被引次数:0
出版历程
收稿日期:2020-06-08
录用日期:2020-08-03
刊出日期:2021-02-01
Lycium barbarum root water uptake characteristics in the Qaidam Basin irrigation
ZHOU Yanqing1, 2,,GAO Xiaodong2, 3,
WANG Jiaxin1, 2,
ZHAO Xining2, 3,,
1. College of Water Resources and Architectural Engineering, Northwest A & F University, Yangling 712100, China
2. Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A & F University, Yangling 712100, China
3. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
Funds: the National Key Research and Development Project of China2017YFC0403605
More Information
Corresponding author:ZHAO Xining, E-mail: xiningz@aliyun.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:探讨柴达木盆地灌区作物水分利用特征,可为灌溉系统设计和水资源高效利用提供理论依据。以柴达木盆地怀头他拉灌区主要作物枸杞为对象,将枸杞潜在水源划分为浅层(0~20 cm)、中层(20~60 cm)和深层(60~100 cm)土壤水,利用稳定氧同位素示踪技术以及MixSIAR模型定量研究不同田间管理模式下[平作裸地(CK)、平作覆膜(MF)和垄作覆膜(MR)]枸杞根系水分吸收特征。结果表明:萌芽展叶期浅层土壤水分环境相对较好,CK和MF处理枸杞主要吸收浅层土壤水分,利用比例分别为45.9%和37.7%,MR处理对浅层、中层和深层土壤水源的利用比例相当;开花坐果期各层土壤水分都有所提高,相比于CK,MF处理浅层土壤水分利用比例增加13.5%,MR处理浅层土壤水分利用比例减少11.1%;果熟期枸杞蒸腾耗水量增加,相比于CK,MF和MR处理对浅层土壤水分的利用比例分别增加11.7%和24.0%;落叶期浅层土壤含水量较低,3个处理都主要吸收深层土壤水分。浅层土壤水源的利用比例与该层土壤水分呈正相关,枸杞对浅层土壤水分变化较敏感。3种管理模式下枸杞根系水分吸收来源差异明显。覆膜和垄作措施均提高了土壤含水量。相比于CK,MF和MR处理枸杞都增加了对浅层水源的利用。MR处理下土壤水分状况较好且枸杞根系水分吸收利用模式更加灵活,对柴达木盆地灌区是一种较优的田间水分管理模式。
关键词:枸杞/
干旱灌区/
根系水分吸收/
土壤水分/
管理模式/
MixSIAR模型
Abstract:Lycium barbarum (Chinese wolfberry) helps ecosystems by providing storm protection and sand immobilization, and it is also a cash crop for Qaidam Basin farmers. L. barbarum is a common crop in arid regions, such as the Qaidam Basin, China, but drought and water scarcity have constrained industry development. Identifying crop water-use strategies is important for designing efficient irrigation systems. Seasonal L. barbarum water-use was investigated in 2018 in the Qaidam Basin Huaiten Tula Irrigation Area. Natural oxygen stable isotope tracers were used to measure the oxygen stable isotope composition (δ18O) of water in the xylem and soil of L. barbarum orchards with three field management practices (conventional flat planting, CK; flat-planting full-film mulching, MF; and ridge-furrow full-film mulching, MR). The soil water contribution to root water uptake was analyzed using the MixSIAR Bayesian mixing practices. The soil water and soil water δ18O profile distribution showed that all soil layers (shallow: 0-20 cm; middle: 20-60 cm; and deep: 60-100 cm) were potential water sources for L. barbarum. During the sprouting period (starting May 25, 2018), CK and MF plants used primarily shallow soil water, accounting for 45.9% and 37.7% of the total water use, respectively, due to the larger amounts of shallow-layer soil water. MR plants used the same amount of water from each layer. During the blossom and fruiting period (starting July 9, 2018), the soil water content increased in all soil layers. Compared with that in CK plants, the shallow-layer soil water use increased by 13.5% in MF plants and decreased by 11.1% in MR plants. During the fruit ripening period (starting July 30, 2018), water consumption increased. Compared with that in CK plants, shallow-layer soil water use increased in MF (by 11.7%) and MR (by 24.0%) plants. During the defoliation period (starting September 22, 2018), the water content in the shallow-layer soil was lower than that in the other soil layers, and all of the treatment groups used primarily deep-layer soil water. These results showed that shallow-layer soil contributions were positively correlated with water content, indicating that L. barbarum is sensitive to changes in the shallow-layer soil water. There were significant differences in the root water uptake among the three field management practices. Mulching and ridge-furrow treatments increased the soil water content and, compared with that in CK plants, the MF and MR treatments increased the shallow-layer soil water use. The soil water content was higher and the water source was more flexible during the growth period with the MR treatment than with the CK and MF treatments. These results suggest that MR is a better field water management practice for promoting the sustainable and healthy development of L. barbarum orchards.
Key words:Lycium barbarum/
Arid oasis irrigation area/
Root water uptake/
Soil water/
Management practices/
MixSIAR model
HTML全文

图12018年5—9月降水量及降水和灌溉水稳定氧同位素值(δ18O)及平均每日气温变化
Figure1.Temporal variations of precipitation and oxygen isotopic compositions of precipitation and irrigation water, and daily temperature during May to September in 2018


图2不同管理模式下枸杞样地土壤含水量时空变化
CK: 平作裸地; MF: 平作覆膜; MR: 垄作覆膜。
Figure2.Temporal and spatial variation of soil water contents in Lycium barbarum fields under different management treatments
CK: conventional flat planting; MF: flat planting with full film mulching; MR: ridge-furrow planting with full film mulching.


图3枸杞样地不同深度土壤水δ18O值(平均值±标准误差, n=18)
Figure3.Stable oxygen isotope rates of soil water in Lycium barbarum fields at different depths (mean±S.E., n=18)


图4不同管理模式下枸杞对3个土层潜在水源利用比例的时间变化
CK: 平作裸地; MF: 平作覆膜; MR: 垄作覆膜。
Figure4.Temporal variation of utilization proportions of Lycium barbarum from potential water sources in three soil layers for different management treatments
CK: conventional flat planting; MF: flat planting with full film mulching; MR: ridge-furrow planting with full film mulching.


图5枸杞对3个土层潜在水源利用比例与相应土层土壤含水量的关系
Figure5.Relationship between utilization proportions of Lycium barbarum from potential water sources in three soil layers and corresponding soil water contents

表1试验区0~100 cm土层土壤容重及养分含量
Table1.Soil bulk density and soil available nutrients contents in 0?100 cm soil layer in the experimental area
土层深度Soil depth (cm) | 容重Bulk density (g·cm?3) | 全氮Total N (g·kg?1) | 速效氮Available N (mg·kg?1) | 速效磷Available P (mg·kg?1) | 速效钾Available K (mg·kg?1) | 有机质Organic matter (g·kg?1) |
0~20 | 1.56±0.07 | 0.36±0.0043 | 41.47±0.32 | 55.28±0.47 | 89.31±2.14 | 1.09±0.32 |
20~40 | 1.54±0.09 | 0.33±0.0038 | 51.12±0.56 | 19.61±0.60 | 82.22±0.91 | 1.33±0.03 |
40~60 | 1.50±0.05 | 0.28±0.0015 | 35.56±0.64 | 17.05±1.08 | 47.11±0.66 | 2.04±0.05 |
60~80 | 1.52±0.04 | 0.25±0.0019 | 57.84±0.85 | 15.92±0.61 | 34.53±0.65 | 1.77±0.04 |
80~100 | 1.50±0.07 | 0.27±0.0014 | 69.12±1.22 | 14.27±0.47 | 33.42±0.97 | 1.50±0.06 |

表2不同处理的枸杞基本信息
Table2.Informations of Lycium barbarum trees in different management treatments
处理Treatment | 平均树高Average height (cm) | 平均地径Average ground diameter (mm) | 株距×行距Plants space × rows space (m) |
平作裸地Conventional flat planting | 123±5.9 | 29.33±0.64 | 1×1.5 |
平作覆膜Flat planting with full film mulching | 116±4.7 | 27.89±0.51 | 1×1.5 |
垄作覆膜Ridge-furrow planting with full film mulching | 110±3.5 | 30.89±1.10 | 1×1.5 |
每个处理选取9株测量树高和地径。Height and ground diameter are mean values of 9 trees in each treatment. |

参考文献
[1] | ZHANG C L, LI Q, SHEN Y P, et al. Monitoring of aeolian desertification on the Qinghai-Tibet Plateau from the 1970s to 2015 using Landsat images[J]. Science of the Total Environment, 2018, 619/620: 1648-1659 doi: 10.1016/j.scitotenv.2017.10.137 |
[2] | 张体彬, 康跃虎, 万书勤, 等. 滴灌枸杞对龟裂碱土几种酶活性的改良效应[J]. 土壤学报, 2015, 52(6): 1392-1400 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201506019.htm ZHANG T B, KANG Y H, WAN S Q, et al. Ameliorative effect of cropping Lycium barbarum L. with drip irrigation on soil enzymes activities in takyric solonetz[J]. Acta Pedologica Sinica, 2015, 52(6): 1392-1400 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201506019.htm |
[3] | 陈艳瑞, 尹林克. 人工防风固沙林演替中群落组成和优势种群生态位变化特征[J]. 植物生态学报, 2008, 32(5): 1126-1133 doi: 10.3773/j.issn.1005-264x.2008.05.017 CHEN Y R, YIN L K. Community composition and niche change characteristics of dominant species in the wind-breaking and sand-fixing forest, Xinjiang, China[J]. Journal of Plant Ecology (Chinese Version), 2008, 32(5): 1126-1133 doi: 10.3773/j.issn.1005-264x.2008.05.017 |
[4] | 胥生荣, 张恩和, 马瑞丽, 等. 干旱胁迫及复水对耐旱枸杞水力学特性的影响[J]. 中国生态农业学报, 2017, 25(8): 1190-1197 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170811&flag=1 XU S R, ZHANG E H, MA R L, et al. Hydraulic characteristics of Lycium barbarum L. seedlings under drought stress and re-watering conditions[J]. Chinese Journal of Eco-Agriculture, 2017, 25(8): 1190-1197 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170811&flag=1 |
[5] | GAO X D, WU P T, ZHAO X N, et al. Estimation of spatial soil moisture averages in a large gully of the Loess Plateau of China through statistical and modeling solutions[J]. Journal of Hydrology, 2013, 486: 466-478 doi: 10.1016/j.jhydrol.2013.02.026 |
[6] | LIANG H B, XUE Y Y, LI Z S, et al. Soil moisture decline following the plantation of Robinia pseudoacacia forests: Evidence from the Loess Plateau[J]. Forest Ecology and Management, 2018, 412: 62-69 doi: 10.1016/j.foreco.2018.01.041 |
[7] | 杨荣金, 舒俭民, 李秀红, 等. 柴达木盆地生态环境保护战略与对策[J]. 科技导报, 2017, 35(6): 115-119 https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201706023.htm YANG R J, SHU J M, LI X H, et al. Strategy and countermeasures of ecological environment protection in Qaidam Basin[J]. Science & Technology Review, 2017, 35(6): 115-119 https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201706023.htm |
[8] | HUO G P, ZHAO X N, GAO X D, et al. Seasonal water use patterns of rainfed jujube trees in stands of different ages under semiarid Plantations in China[J]. Agriculture, Ecosystems & Environment, 2018, 265: 392-401 http://www.sciencedirect.com/science/article/pii/S0167880918302627 |
[9] | 丁丹, 贾文雄, 马兴刚, 等. 祁连山亚高山灌丛优势植物水分来源[J]. 生态学报, 2018, 38(4): 1348-1356 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201804020.htm DING D, JIA W X, MA X G, et al. Water source of dominant plants of the subalpine shrubland in the Qilian Mountains, China[J]. Acta Ecologica Sinica, 2018, 38(4): 1348-1356 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201804020.htm |
[10] | 邓文平, 章洁, 张志坚, 等. 北京土石山区水分在土壤-植物-大气连续体(SPAC)中的稳定同位素特征[J]. 应用生态学报, 2017, 28(7): 2171-2178 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201707011.htm DENG W P, ZHANG J, ZHANG Z J, et al. Stable hydrogen and oxygen isotope compositions in soil-plant-atmosphere continuum (SPAC) in rocky mountain area of Beijing, China[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2171-2178 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201707011.htm |
[11] | 石辉, 刘世荣, 赵晓广. 稳定性氢氧同位素在水分循环中的应用[J]. 水土保持学报, 2003, 17(2): 163-166 doi: 10.3321/j.issn:1009-2242.2003.02.045 SHI H, LIU S R, ZHAO X G. Application of stable hydrogen and oxygen isotope in water circulation[J]. Journal of Soil Water Conservation, 2003, 17(2): 163-166 doi: 10.3321/j.issn:1009-2242.2003.02.045 |
[12] | DAWSON T E, MAMBELLI S, PLAMBOECK A H, et al. Stable isotopes in plant ecology[J]. Annual review of Ecology and Systematics, 2002, 33(1): 507-559 doi: 10.1146/annurev.ecolsys.33.020602.095451 |
[13] | 朱林, 许兴, 毛桂莲. 宁夏平原北部地下水埋深浅地区不同灌木的水分来源[J]. 植物生态学报, 2012, 36(7): 618-628 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201207006.htm ZHU L, XU X, MAO G L. Water sources of shrubs grown in the northern Ningxia Plain of China characterized by shallow groundwater table[J]. Chinese Journal of Plant Ecology, 2012, 36(7): 618-628 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201207006.htm |
[14] | ZHAO L J, WANG L X, CERNUSAK L A, et al. Significant difference in hydrogen isotope composition between xylem and tissue water in Populus euphratica[J]. Plant, Cell & Environment, 2016, 39(8): 1848-1857 http://www.ncbi.nlm.nih.gov/pubmed/27061571 |
[15] | 吕婷, 赵西宁, 高晓东, 等. 黄土丘陵区典型天然灌丛和人工灌丛优势植物土壤水分利用策略[J]. 植物生态学报, 2017, 41(2): 175-185 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201702003.htm LYU T, ZHAO X N, GAO X D, et al. Soil water use strategy of dominant species in typical natural and planted shrubs in loess hilly region[J]. Chinese Journal of Plant Ecology, 2017, 41(2): 175-185 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201702003.htm |
[16] | 刘保清, 刘志民, 钱建强, 等. 科尔沁沙地南缘主要固沙植物旱季水分来源[J]. 应用生态学报, 2017, 28(7): 2093-2101 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201707001.htm LIU B Q, LIU Z M, QIAN J Q, et al. Water sources of dominant sand-binding plants in dry season in southern Horqin Sandy Land, China[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2093-2101 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201707001.htm |
[17] | 朱雅娟, 贾志清. 秋季巴丹吉林沙漠东南缘人工梭梭林水分来源[J]. 林业科学, 2012, 48(8): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201208002.htm ZHU Y J, JIA Z Q. Water source of Haloxylon ammodendron plantations in autumn at the southeast edge of Badain Jaran Desert[J]. Scientia Silvae Sinicae, 2012, 48(8): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201208002.htm |
[18] | DAI Y, ZHENG X J, TANG L S, et al. Stable oxygen isotopes reveal distinct water use patterns of two Haloxylon species in the Gurbantonggut Desert[J]. Plant and Soil, 2015, 389(1/2): 73-87 doi: 10.1007/s11104-014-2342-z |
[19] | MOORE J W, SEMMENS B X. Incorporating uncertainty and prior information into stable isotope mixing models[J]. Ecology Letters, 2008, 11(5): 470-480 doi: 10.1111/j.1461-0248.2008.01163.x |
[20] | PARNELL A C, INGER R, BEARHOP S, et al. Source partitioning using stable isotopes: Coping with too much variation[J]. PLoS One, 2010, 5(3): e9672 doi: 10.1371/journal.pone.0009672 |
[21] | STOCK B C, JACKSON A L, WARD E J, et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models[J]. PeerJ, 2018, 6: e5096 doi: 10.7717/peerj.5096 |
[22] | ELLSWORTH P Z, WILLIAMS D G. Hydrogen isotope fractionation during water uptake by woody xerophytes[J]. Plant and Soil, 2007, 291(1/2): 93-107 http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1007/s11104-006-9177-1 |
[23] | BARBETA A, JONES S P, CLAVé L U, et al. Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest[J]. Hydrology and Earth System Sciences, 2019, 23(4): 2129-2146 doi: 10.5194/hess-23-2129-2019 |
[24] | 马小军, 靳静静, 司炳成, 等. 提取方法对土壤水同位素和植物水源分割的影响[J]. 应用生态学报, 2019, 30(6): 1840-1846 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201906006.htm MA X J, JIN J J, SI B C, et al. Effects of extraction methods on soil water isotope and plant water source segmentation[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 1840-1846 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201906006.htm |
[25] | WEST A G, PATRICKSON S J, EHLERINGER J R. Water extraction times for plant and soil materials used in stable isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2006, 20(8): 1317-1321 doi: 10.1002/rcm.2456 |
[26] | GAO X D, ZHAO X N, LI H C, et al. Exotic shrub species (Caragana korshinskii) is more resistant to extreme natural drought than native species (Artemisia gmelinii) in a semiarid revegetated ecosystem[J]. Agricultural and Forest Meteorology, 2018, 263: 207-216 doi: 10.1016/j.agrformet.2018.08.029 |
[27] | 吴华武, 李小雁, 赵国琴, 等. 青海湖流域降水和河水中δ18O和δD变化特征[J]. 自然资源学报, 2014, 29(9): 1552-1564 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201409010.htm WU H W, LI X Y, ZHAO G Q, et al. The variation characteristics of δ18O and δD in precipitation and river water, Qinghai Lake basin[J]. Journal of Natural Resources, 2014, 29(9): 1552-1564 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201409010.htm |
[28] | 霍高鹏, 赵西宁, 高晓东, 等. 黄土丘陵区枣农复合系统土壤水分利用与竞争[J]. 自然资源学报, 2017, 32(12): 2043-2054 doi: 10.11849/zrzyxb.20161101 HUO G P, ZHAO X N, GAO X D, et al. Soil water use and competition in jujube-crop systems in loess hilly region[J]. Journal of Natural Resources, 2017, 32(12): 2043-2054 doi: 10.11849/zrzyxb.20161101 |
[29] | CAO X Q, YANG P L, ENGEL B A, et al. The effects of rainfall and irrigation on cherry root water uptake under drip irrigation[J]. Agricultural Water Management, 2018, 197: 9-18 doi: 10.1016/j.agwat.2017.10.021 |
[30] | 王绍飞, 赵西宁, 高晓东, 等. 黄土丘陵区盛果期苹果树土壤水分利用策略[J]. 林业科学, 2018, 54(10): 31-38 doi: 10.11707/j.1001-7488.20181004 WANG S F, ZHAO X N, GAO X D, et al. Water use source of apple trees with full productive Agein Loess Hilly Region[J]. Scientia Silvae Sinicae, 2018, 54(10): 31-38 doi: 10.11707/j.1001-7488.20181004 |
[31] | 赵西宁, 李楠, 高晓东, 等. 基于18O示踪的不同树龄枣树土壤水分利用特征分析[J]. 农业工程学报, 2018, 34(3): 135-142 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201803018.htm ZHAO X N, LI N, GAO X D, et al. Characteristics of soil water utilization for different stand ages of jujube trees based on 18O tracking[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(3): 135-142 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201803018.htm |
[32] | HASSELQUIST N J, ALLEN M F. Increasing demands on limited water resources: Consequences for two endangered plants in Amargosa Valley, USA[J]. American Journal of Botany, 2009, 96(3): 620-626 doi: 10.3732/ajb.0800181 |
[33] | GU X B, LI Y N, DU Y D. Continuous ridges with film mulching improve soil water content, root growth, seed yield and water use efficiency of winter oilseed rape[J]. Industrial Crops and Products, 2016, 85: 139-148 doi: 10.1016/j.indcrop.2016.02.056 |
[34] | 胥生荣, 张恩和, 马瑞丽, 等. 不同覆盖措施对枸杞根系生长和土壤环境的影响[J]. 中国生态农业学报, 2018, 26(12): 1802-1810 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1205&flag=1 XU S R, ZHANG E H, MA R L, et al. Effects of mulching patterns on root growth and soil environment of Lycium barbarum[J]. Chinese Journal of Eco-Agriculture, 2018, 26(12): 1802-1810 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1205&flag=1 |
[35] | 曹有龙, 何军. 枸杞栽培学[M]. 银川: 阳光出版社, 2013: 24-26 CAO Y L, HE J. Lycium Barbarum Cultivated Science[M]. Yinchuan: Sunshine Press, 2013: 24-26 |
[36] | 何昕孺, 戴国礼, 焦恩宁, 等. 限根栽培对枸杞根域温度、生物量积累及营养元素吸收的影响[J]. 西北农业学报, 2017, 26(2): 281-286 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201702018.htm HE X R, DAI G L, JIAO E N, et al. Effects of root-limited cultivation on root zone temperature, biomass accumulation and nutrients absorption of wolfberry[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2017, 26(2): 281-286 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201702018.htm |
[37] | DAWSON T E, PATE J S. Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: A stable isotope investigation[J]. Oecologia, 1996, 107(1): 13-20 doi: 10.1007/BF00582230 |
[38] | 孙守家, 孟平, 张劲松, 等. 利用氘同位素研究太行山南麓枣树水分利用的季节性变化[J]. 林业科学, 2011, 47(5): 46-53 https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201105008.htm SUN S J, MENG P, ZHANG J S, et al. Seasonal variation in water use of Ziziphus jujuba in the south aspect of Taihang Mountains with deuterium isotope signature[J]. Scientia Silvae Sinicae, 2011, 47(5): 46-53 https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201105008.htm |
[39] | WANG J X, GAO X D, ZHOU Y Q, et al. Impact of conservation practices on soil hydrothermal properties and crop water use efficiency in a dry agricultural region of the Tibetan Plateau[J]. Soil and Tillage Research, 2020, 200: 104619 doi: 10.1016/j.still.2020.104619 |
[40] | 胥生荣, 张恩和, 马瑞丽, 等. 覆盖对枸杞根系土壤环境和水分利用的影响[J]. 草业学报, 2019, 28(2): 12-22 https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB201902002.htm XU S R, ZHANG E H, MA R L, et al. Effects of mulching on soil environment and water utilization by roots of Lycium barbarum[J]. Acta Prataculturae Sinica, 2019, 28(2): 12-22 https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB201902002.htm |
[41] | KULMATISKI A, ADLER P B, STARK J M, et al. Water and nitrogen uptake are better associated with resource availability than root biomass[J]. Ecosphere, 2017, 8(3): e01738 doi: 10.1002/ecs2.1738 |
[42] | 郭京衡, 李尝君, 曾凡江, 等. 2种荒漠植物根系生物量分布与土壤水分、养分的关系[J]. 干旱区研究, 2016, 33(1): 166-171 https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201601021.htm GUO J H, LI C J, ZENG F J, et al. Relationship between root biomass distribution and soil moisture, nutrient for two desert plant spices[J]. Arid Zone Research, 2016, 33(1): 166-171 https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ201601021.htm |
[43] | VAN DER HEIJDEN G, DAMBRINE E, POLLIER B, et al. Mg and Ca uptake by roots in relation to depth and allocation to aboveground tissues: Results from an isotopic labeling study in a beech forest on base-poor soil[J]. Biogeochemistry, 2015, 122(2/3): 375-393 doi: 10.1007/s10533-014-0047-2 |
[44] | KULMATISKI A, BEARD K H. Root niche partitioning among grasses, saplings, and trees measured using a tracer technique[J]. Oecologia, 2013, 171(1): 25-37 doi: 10.1007/s00442-012-2390-0 |
[45] | HAMZEI J. Seed, oil, and protein yields of canola under combinations of irrigation and nitrogen application[J]. Agronomy Journal, 2011, 103(4): 1152-1158 doi: 10.2134/agronj2011.0018 |
[46] | 王自奎, 吴普特, 赵西宁, 等. 模拟垄沟灌溉土壤水分入渗特性试验研究[J]. 干旱地区农业研究, 2011, 29(3): 24-28 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201103004.htm WANG Z K, WU P T, ZHAO X N, et al. Simulation experiment on soil water infiltration characteristics under ridge-furrow irrigation[J]. Agricultural Research in the Arid Areas, 2011, 29(3): 24-28 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201103004.htm |