陈欣1,
吕丽萍1, 3,
马建1,
史奕1,
贾竞超1, 3,
解宏图1, 4,
张旭东1,
何红波1,
梁超1,
鲁彩艳1, 2,,
1.中国科学院沈阳应用生态研究所 沈阳 110016
2.辽宁省稳定同位素技术重点实验室 沈阳 110016
3.中国科学院大学 北京 100049
4.辽宁省现代保护性耕作与生态农业重点实验室 沈阳 110016
基金项目: 国家重点研发计划课题2016YFD0800103
国家自然科学基金项目41671290
王宽诚教育基金会项目GJTD-2019-10
水体污染控制与治理科技重大专项2018ZX07601-002
和辽宁省重点研发计划项目2020JH2/10200025
详细信息
作者简介:袁磊, 主要研究方向为土壤氮素的迁移转化与去向。E-mail:13776641831@163.com
通讯作者:鲁彩艳, 主要研究方向为土壤碳氮磷营养元素循环过程。E-mail:microyan76@126.com
中图分类号:X592计量
文章访问数:295
HTML全文浏览量:6
PDF下载量:636
被引次数:0
出版历程
收稿日期:2020-06-25
录用日期:2020-09-07
刊出日期:2021-01-01
Nitrogen leaching risks and control mechanisms of spring maize fields in black soil
YUAN Lei1, 3,,CHEN Xin1,
LYU Liping1, 3,
MA Jian1,
SHI Yi1,
JIA Jingchao1, 3,
XIE Hongtu1, 4,
ZHANG Xudong1,
HE Hongbo1,
LIANG Chao1,
LU Caiyan1, 2,,
1. Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
2. Key Laboratory of Stable Isotope Techniques and Applications, Shenyang 110016, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Key Laboratory of Conservation Tillage and Ecological Agriculture, Liaoning Province, Shenyang 110016, China
Funds: the National Key Research and Development Program of China2016YFD0800103
the National Natural Science Foundation of China41671290
K C Wong Education Foundation ProjectGJTD-2019-10
the Major Science and Technology Program for Water Pollution Control and Treatment of China2018ZX07601-002
the Key Research and Development Program of Liaoning Province2020JH2/10200025
More Information
Corresponding author:LU Caiyan, E-mail:microyan76@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为阐明黑土春玉米田氮素的淋溶风险与阻控机制,运用田间原位15N示踪技术,设常规垄作、免耕无秸秆覆盖和免耕100%秸秆覆盖(秸秆量为7500 kg·hm-2)3个处理,量化了长期免耕秸秆覆盖措施下氮素在不同形态氮库中的转化特征、淋溶运移规律和去向。结果表明:农民常规施肥量条件下,常规垄作、免耕无秸秆覆盖和免耕全量秸秆覆盖均已导致东北黑土春玉米田0~300 cm土壤剖面中分别累积461.6 kg(N)·hm-2、450.7 kg(N)·hm-2和439.7 kg(N)·hm-2的矿质氮,且主要是硝态氮(占比分别为84.2%、79.5%和81.7%),存在着氮素的淋溶损失风险。当季施入肥料氮对玉米苗期和抽雄期0~40 cm土层总硝态氮库累积的贡献率平均为60.9%和58.0%,其淋溶损失风险较高。与常规垄作处理相比,免耕全量秸秆覆盖降低了0~40 cm土层肥料氮向矿质氮库的转化,降低比例达20.8%;增加了其向黏土矿物固定态铵和有机氮库的转化,提高比例分别为39.4%和30.5%。0~20 cm土层,黏土矿物对肥料来源铵的固定能力和微生物对肥料来源矿质氮的固持能力基本相当;20~40 cm土层,固持能力前者高于后者,说明外源碳输入的数量及其与土壤微生物的接触程度共同决定着对矿质氮的固持潜能。通过免耕和秸秆覆盖调控机制,可阻控黑土春玉米田矿质氮在土壤剖面的大量积累,使氮肥利用效率和玉米产量均提高9.7%,氮肥的气态损失降低27.7%,延缓肥料氮向深层土壤剖面淋溶运移的速率。
关键词:免耕/
秸秆覆盖/
15N示踪/
迁移转化/
淋溶损失
Abstract:Nitrogen (N) availability and retention in soil-crop systems are important for increasing crop productivity, improving N use efficiency (NUE), and minimizing environmental pollution from N losses. In the black soil region of Northeast China, it is unclear how agricultural management practices affect soil mineral N accumulation and leaching. In this study, an in-situ 15N-labeled tracer field experiment was performed to quantify the transformation characteristics, migration, and soil N fate when long-term no-till with maize stover mulching was used. The soil profile was investigated under three treatments: conventional ridge tillage (RT), no-till with no maize stover mulching (NT0), and no-till with 100% maize stover mulching (NT100; 7500 kg·hm-2 maize stover). The accumulated mineral N [primarily as nitrate nitrogen (NO3--N)] in the 300 cm soil profiles were 461.6 kg(N)·hm-2 (RT), 450.7 kg(N)·hm-2 (NT0), and 439.7 kg(N)·hm-2 (NT100) when traditional fertilizer applications were used, suggesting a N leaching risk. In all 0–40 cm soil layers, the percentage of fertilizer-derived NO3--N to total NO3--N was on average 60.9% (maize seedling stage) and 58.0% (maize tasseling stage), indicating a high N leaching risk in the seasonally applied fertilizer. NT100 decreased the transformation of fertilizer N into mineral N pools by 20.8% in 0–40 cm soil layers but accelerated the conversion into fixed ammonium NO3--N and organic N pools by 39.4% and 30.5%, respectively, compared with that by RT. The clay mineral to fertilizer-derived NO3--N fixation capacity was the same as the soil microorganism to fertilizer-derived mineral N immobilization capability at a depth of 0–20 cm, but the fixation capacity was higher than the immobilization capability at 20–40 cm. These findings suggest that the immobilization potential of soil microorganism to fertilizer-derived mineral N is dependent on the maize straw mulch quantity and maize straw accessibility to soil microorganisms. No-till with maize stover mulching reduced the soil mineral N accumulation in black soil spring maize fields, increased the fertilizer nitrogen use efficiency and maize yield by 9.7%, decreased the fertilizer N gaseous loss by 27.7%, and delayed fertilizer N leaching to deeper soil.
Key words:No-tillage/
Stover mulching/
15N-labeling/
Migration and transformation/
Leaching loss
HTML全文

图1不同处理下2015年玉米成熟期0~300 cm土壤剖面矿质氮的含量变化
RT:常规垄作; NT0:免耕无秸秆覆盖; NT100:免耕100%玉米秸秆覆盖。
Figure1.Content of mineral nitrogen in 0-300 cm soil profile at maturity of maize under different treatments in 2015
RT: ridge tillage; NT0: no-tillage without maize stover mulching; NT100: no-tillage with 100% maize stover mulching.


图2不同处理下玉米不同生育期土壤矿质氮含量的动态变化
RT:常规垄作; NT0:免耕无秸秆覆盖; NT100:免耕100%秸秆覆盖。不同小写字母表示同一生育期各处理间在P < 0.05水平差异显著。
Figure2.Dynamics of mineral N contents in soil at different growth stages of maize under different treatments
RT: ridge tillage; NT0: no-tillage without maize stover mulching; NT100: no-tillage with 100% maize stover mulching. Different lowercase letters mean significant differences at P < 0.05 level among different treatments at the same growth stage.


图3玉米不同生育期尿素来源矿质氮占土壤总矿质氮的比例
RT:常规垄作; NT0:免耕无秸秆覆盖; NT100:免耕100%秸秆覆盖。不同小写字母表示同一生育期各处理间在P < 0.05水平差异显著。
Figure3.Percentages of fertilizer-derived mineral N to total mineral N at different growth stages of maize under different treatments
RT: ridge tillage; NT0: no-tillage without maize stover mulching; NT100: no-tillage with 100% maize stover mulching. Different lowercase letters mean significant differences at P < 0.05 level among different treatments at the same growth stage.


图4玉米成熟期0~100 cm剖面尿素来源矿质氮占土壤总矿质氮的比例
RT:常规垄作; NT0:免耕无秸秆覆盖; NT100:免耕100%秸秆覆盖。
Figure4.Percentages of fertilizer-derived mineral N to total mineral N in the 0-100 cm soil profile at maize maturity stage under different treatments
RT: ridge tillage; NT0: no-tillage without maize stover mulching; NT100: no-tillage with 100% maize stover mulching.


图5不同处理下玉米苗期尿素氮在土壤不同形态氮库中的转化特征
RT:常规垄作; NT0:免耕无秸秆覆盖; NT100:免耕100%秸秆覆盖。不同小写字母表示同一形态氮库各处理间在P < 0.05水平差异显著。
Figure5.Transformation of ferilizer nitrogen into soil different N pools at maize seedling stage under different treatments
RT: ridge tillage; NT0: no-tillage without maize stover mulching; NT100: no-tillage with 100% maize stover mulching. Different lowercase letters mean significant differences at P < 0.05 level among different treatments in the same N pool.


图6不同处理下玉米成熟期尿素氮在土壤-作物系统中的分配与去向(A)和玉米产量(B)
RT:常规垄作; NT0:免耕无秸秆覆盖; NT100:免耕100%秸秆覆盖。不同小写字母表示不同处理间P < 0.05水平差异显著。
Figure6.Distribution and fate of fertilizer nitrogen in soil-crop systems at maize ripening stage (A) and maize yields under different treatments (B)
RT: ridge tillage; NT0: no-tillage without maize stover mulching; NT100: no-tillage with 100% maize stover mulching. Different lowercase letters mean significant differences at P < 0.05 level among different treatments.


图7玉米成熟期0~100 cm剖面肥料来源矿质氮占所施用肥料氮的比例
RT:常规垄作; NT0:免耕无秸秆覆盖; NT100:免耕100%秸秆覆盖。
Figure7.Percentage of fertilizer-derived mineral N to applied fertilizer N in the 0-100 cm soil profile at maize ripening stage
RT: ridge tillage; NT0: no-tillage without maize stover mulching; NT100: no-tillage with 100% maize stover mulching.

参考文献
[1] | 朱兆良.农田中氮肥的损失与对策[J].土壤与环境, 2000, 9(1):1-6 doi: 10.3969/j.issn.1674-5906.2000.01.001 ZHU Z L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction[J]. Soil and Environmental Sciences, 2000, 9(1):1-6 doi: 10.3969/j.issn.1674-5906.2000.01.001 |
[2] | 乔云发, 韩晓增, 赵兰坡, 等.黑土氮肥氨挥发损失特征研究[J].水土保持学报, 2009, 23(1):198-201 doi: 10.3321/j.issn:1009-2242.2009.01.042 QIAO Y F, HAN X Z, ZHAO L P, et al. Researches on ammonia volatilization loss characters of nitrogen fertilizer from black soil[J]. Journal of Soil and Water Conservation, 2009, 23(1):198-201 doi: 10.3321/j.issn:1009-2242.2009.01.042 |
[3] | 蔡红光, 张秀芝, 任军, 等.东北春玉米连作体系土壤剖面无机氮的变化特征[J].西北农林科技大学学报:自然科学版, 2012, 40(5):143-148 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201205026.htm CAI H G, ZHANG X Z, REN J, et al. Characteristics of inorganic nitrogen in soil profile for continuous maize production in Northeast China[J]. Journal of Northwest A & F University:Natural Science Edition, 2012, 40(5):143-148 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201205026.htm |
[4] | 李雨繁, 贾可, 王金艳, 等.不同类型高氮复混(合)肥氨挥发特性及其对氮素平衡的影响[J].植物营养与肥料学报, 2015, 21(3):615-623 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201503008.htm LI Y F, JIA K, WANG J Y, et al. Ammonia volatilization characteristics of different kinds of high-nitrogen compound fertilizers and their effects on nitrogen balance[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(3):615-623 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201503008.htm |
[5] | 韩蔚娟, 王寅, 陈海潇, 等.黑土区玉米施用新型肥料的效果和环境效应[J].水土保持学报, 2016, 30(2):307-311 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201602053.htm HAN W J, WANG Y, CHEN H X, et al. Study on the effect of new-type fertilizer application on spring maize production and its environmental impact in black soil area[J]. Journal of Soil and Water Conservation, 2016, 30(2):307-311 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201602053.htm |
[6] | 吕艳杰, 于海燕, 姚凡云, 等.秸秆还田与施氮对黑土区春玉米田产量、温室气体排放及土壤酶活性的影响[J].中国生态农业学报, 2016, 24(11):1456-1463 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20161103&flag=1 LYU Y J, YU H Y, YAO F Y, et al. Effects of soil straw return and nitrogen on spring maize yield, greenhouse gas emission and soil enzyme activity in black soils[J]. Chinese Journal of Eco-Agriculture, 2016, 24(11):1456-1463 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20161103&flag=1 |
[7] | BLANCO-CANQUI H, LAL R. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till[J]. Soil and Tillage Research, 2007, 95(1/2):240-254 |
[8] | HE J, WANG Q J, LI H W, et al. Effect of alternative tillage and residue cover on yield and water use efficiency in annual double cropping system in North China Plain[J]. Soil and Tillage Research, 2009, 104(1):198-205 doi: 10.1016/j.still.2008.08.015 |
[9] | 余海英, 彭文英, 马秀, 等.免耕对北方旱作玉米土壤水分及物理性质的影响[J].应用生态学报, 2011, 22(1):99-104 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201101018.htm YU H Y, PENG W Y, MA X, et al. Effects of no-tillage on soil water content and physical properties of spring corn fields in semiarid region of northern China[J]. Chinese Journal of Applied Ecology, 2011, 22(1):99-104 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201101018.htm |
[10] | PLAZA-BONILLA D, CANTERO-MARTíNEZ C, VI?AS P, et al. Soil aggregation and organic carbon protection in a no-tillage chronosequence under Mediterranean conditions[J]. Geoderma, 2013, 193/194:76-82 doi: 10.1016/j.geoderma.2012.10.022 |
[11] | 陈文超, 朱安宁, 张佳宝, 等.保护性耕作对潮土团聚体组成及其有机碳含量的影响[J].土壤, 2014, 46(1):35-40 doi: 10.3969/j.issn.1674-5906.2014.01.006 CHEN W C, ZHU A N, ZHANG J B, et al. Effects of conservation tillage on the composition and organic carbon content of soil aggregates in fluvo-aquic soil[J]. Soils, 2014, 46(1):35-40 doi: 10.3969/j.issn.1674-5906.2014.01.006 |
[12] | 胡立峰, 胡春胜, 安忠民, 等.不同土壤耕作法对作物产量及土壤硝态氮淋失的影响[J].水土保持学报, 2005, 19(6):186-189 doi: 10.3321/j.issn:1009-2242.2005.06.046 HU L F, HU C S, AN Z M, et al. Effects of different tillage patterns on crop yields and nitrate leaching in soil[J]. Journal of Soil and Water Conservation, 2005, 19(6):186-189 doi: 10.3321/j.issn:1009-2242.2005.06.046 |
[13] | 戴晓琴, 李运生, 欧阳竹.免耕系统土壤氮素有效性及其管理[J].土壤通报, 2009, 40(3):691-696 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200903051.htm DAI X Q, LI Y S, OUYANG Z. Availability of nitrogen and its management in no-till system[J]. Chinese Journal of Soil Science, 2009, 40(3):691-696 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200903051.htm |
[14] | 范如芹, 梁爱珍, 杨学明, 等.耕作方式对黑土团聚体含量及特征的影响[J].中国农业科学, 2010, 43(18):3767-3775 doi: 10.3864/j.issn.0578-1752.2010.18.010 FAN R Q, LIANG A Z, YANG X M, et al. Effects of tillage on soil aggregates in black soils in northeast China[J]. Scientia Agricultura Sinica, 2010, 43(18):3767-3775 doi: 10.3864/j.issn.0578-1752.2010.18.010 |
[15] | CONSTANTIN J, MARY B, LAURENT F, et al. Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments[J]. Agriculture, Ecosystems & Environment, 2010, 135(4):268-278 |
[16] | ZHANG J S, ZHANG F P, YANG J H, et al. Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China[J]. Agriculture, Ecosystems & Environment, 2011, 140(1/2):164-173 |
[17] | 王晓波, 车威, 纪荣婷, 等.秸秆还田和保护性耕作对砂姜黑土有机质和氮素养分的影响[J].土壤, 2015, 47(3):483-489 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201503009.htm WANG X B, CHE W, JI R T, et al. Effects of straw returning and conservation tillage patterns on the contents of organic matter and nitrogen nutrient in the lime concretion black soil[J]. Soils, 2015, 47(3):483-489 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201503009.htm |
[18] | 马守义, 谢丽华, 朱广石.黑土地保护性耕作技术的思考[J].玉米科学, 2018, 26(1):116-119 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201801018.htm MA S Y, XIE L H, ZHU G S. Think on the conservation tillage technology of blank soil in China[J]. Journal of Maize Sciences, 2018, 26(1):116-119 https://www.cnki.com.cn/Article/CJFDTOTAL-YMKX201801018.htm |
[19] | 祁剑英, 王兴, 濮超, 等.保护性耕作对土壤氮组分影响研究进展[J].农业工程学报, 2018, 34(S):222-229 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2018S1033.htm QI J Y, WANG X, PU C, et al. Research advances on effects of conservation tillage practice on soil nitrogen component[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(S):222-229 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2018S1033.htm |
[20] | 杨永辉, 武继承, 毛永萍, 等.免耕对土壤剖面孔隙分布特征的影响[J].中国生态农业学报, 2018, 26(7):1019-1028 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0709&flag=1 YANG Y H, WU J C, MAO Y P, et al. Effect of no-tillage on pore distribution in soil profile[J]. Chinese Journal of Eco-Agriculture, 2018, 26(7):1019-1028 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0709&flag=1 |
[21] | 董智, 解宏图, 张立军, 等.不同秸秆覆盖量免耕对土壤氨基糖积累的影响[J].土壤通报, 2013, 44(5):1158-1162 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201305023.htm DONG Z, XIE H T, ZHANG L J, et al. Accumulation of amino sugars affected by different stalk mulching quantity in no-tillage system[J]. Chinese Journal of Soil Science, 2013, 44(5):1158-1162 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201305023.htm |
[22] | 董智, 解宏图, 张立军, 等.东北玉米带秸秆覆盖免耕对土壤性状的影响[J].玉米科学, 2013, 21(5):100-103 doi: 10.3969/j.issn.1005-0906.2013.05.019 DONG Z, XIE H T, ZHANG L J, et al. Effects of no-tillage practice with corn stalk mulching on soil properties in the northeast of China[J]. Journal of Maize Sciences, 2013, 21(5):100-103 doi: 10.3969/j.issn.1005-0906.2013.05.019 |
[23] | 腾珍珍, 袁磊, 王鸿雁, 等.免耕秸秆覆盖条件下尿素来源铵态氮和硝态氮的累积与垂直运移过程[J].土壤通报, 2018, 49(4):919-928 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201804023.htm TENG Z Z, YUAN L, WANG H Y, et al. Vertical migration characteristics of ammonium nitrogen and nitrate nitrogen derived from urea nitrogen affected by corn stover mulching quantity in no-tillage system[J]. Chinese Journal of Soil Science, 2018, 49(4):919-928 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201804023.htm |
[24] | SILVA J A, BREMNER J M. Determination and isotope-ratio analysis of different forms of nitrogen in soils:5. fixed ammonium[J]. Soil Science Society of America Journal, 1966, 30(5):587-594 doi: 10.2136/sssaj1966.03615995003000050017x |
[25] | STARK J M, HART S C. Diffusion technique for preparing salt solutions, Kjeldahl digests, and persulfate digests for nitrogen-15 analysis[J]. Soil Science Society of America Journal, 1996, 60(6):1846-1855 doi: 10.2136/sssaj1996.03615995006000060033x |
[26] | 孙建飞, 白娥, 戴崴巍, 等. 15N标记土壤连续培养过程中扩散法测定无机氮同位素方法改进[J].生态学杂志, 2014, 33(9):2574-2580 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201409040.htm SUN J F, BAI E, DAI W W, et al. Improvements of the diffusion method to measure inorganic nitrogen isotope of 15N labeled soil[J]. Chinese Journal of Ecology, 2014, 33(9):2574-2580 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201409040.htm |
[27] | 张庆忠, 陈欣, 沈善敏.农田土壤硝酸盐积累与淋失研究进展[J].应用生态学报, 2002, 13(2):233-238 doi: 10.3321/j.issn:1001-9332.2002.02.026 ZHANG Q Z, CHEN X, SHEN S M. Advances in studies on accumulation and leaching of nitrate in farming soil[J]. Chinese Journal of Applied Ecology, 2002, 13(2):233-238 doi: 10.3321/j.issn:1001-9332.2002.02.026 |
[28] | 王大鹏, 郑亮, 吴小平, 等.旱地土壤硝态氮的产生、淋洗迁移及调控措施[J].中国生态农业学报, 2017, 25(12):1731-1741 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20171201&flag=1 WANG D P, ZHENG L, WU X P, et al. Review of soil nitrate formation, leaching transport and their control measures in upland farming systems[J]. Chinese Journal of Eco-Agriculture, 2017, 25(12):1731-1741 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20171201&flag=1 |
[29] | 时秀焕, 张晓平, 梁爱珍, 等.短期免耕对东北黑土硝态氮淋失的影响[J].农业系统科学与综合研究, 2010, 26(3):344-348 doi: 10.3969/j.issn.1001-0068.2010.03.017 SHI X H, ZHANG X P, LIANG A Z, et al. Effect of short-term no-tillage on nitrate leaching for a black soil in Northeast China[J]. System Sciences and Comprehensive Studies in Agriculture, 2010, 26(3):344-348 doi: 10.3969/j.issn.1001-0068.2010.03.017 |
[30] | LIU S Y, ZHANG X P, ZHAO J, et al. Effects of long-term no tillage treatment on gross soil N transformations in black soil in Northeast China[J]. Geoderma, 2017, 301:42-46 doi: 10.1016/j.geoderma.2017.04.008 |
[31] | NIEDER R, BENBI D K, SCHERER H W. Fixation and defixation of ammonium in soils:a review[J]. Biology & Fertility of Soils, 2011, 47(1):1-14 |
[32] | LU C Y, ZHANG X D, CHEN X, et al. Fixation of labeled (15NH4)2SO4 and its subsequent release in black soil of Northeast China over consecutive crop cultivation[J]. Soil and Tillage Research, 2010, 106(2):329-334 doi: 10.1016/j.still.2009.11.009 |
[33] | LU C Y, CHEN H H, TENG Z Z, et al. Effects of N fertilization and maize straw on the dynamics of soil organic N and amino acid N derived from fertilizer N as indicated by 15N labeling[J]. Geoderma, 2018, 321:118-126 doi: 10.1016/j.geoderma.2018.02.014 |
[34] | PAN F F, YU W T, MA Q, et al. Influence of 15N-labeled ammonium sulfate and straw on nitrogen retention and supply in different fertility soils[J]. Biology and Fertility of Soils, 2017, 53(3):303-313 doi: 10.1007/s00374-017-1177-1 |
[35] | PAN F F, YU W T, MA Q, et al. Do organic amendments improve the synchronism between soil N supply and wheat demand?[J]. Applied Soil Ecology, 2018, 125:184-191 doi: 10.1016/j.apsoil.2018.01.006 |
[36] | 朱兆良, 文启孝.中国土壤氮素[M].南京:江苏科学技术出版社, 1992 ZHU Z L, WEN Q X. Nitrogen in Soils of China[M]. Nanjing:Jiangsu Science and Technology Press, 1992 |
[37] | SUGIHARA S, FUNAKAWA S, KILASARA M, et al. Dynamics of microbial biomass nitrogen in relation to plant nitrogen uptake during the crop growth period in a dry tropical cropland in Tanzania[J]. Soil Science and Plant Nutrition, 2010, 56(1):105-114 |
[38] | SUGIHARA S, FUNAKAWA S, KILASARA M, et al. Effect of land management on soil microbial N supply to crop N uptake in a dry tropical cropland in Tanzania[J]. Agriculture, Ecosystems & Environment, 2012, 146(1):209-219 |
[39] | THOMSEN I K, CHRISTENSEN B T. Cropping system and residue management effects on nitrate leaching and crop yields[J]. Agriculture, Ecosystems & Environment, 1998, 68(1/2):73-84 |
[40] | MOOSHAMMER M, WANEK W, H? MMERLE I, et al. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling[J]. Nature Communications, 2014, 5:3694 doi: 10.1038/ncomms4694 |
[41] | DALAL R C, STRONG W M, COOPER J E, et al. Relationship between water use and nitrogen use efficiency discerned by 13C discrimination and 15N isotope ratio in bread wheat grown under no-till[J]. Soil and Tillage Research, 2013, 128:110-118 doi: 10.1016/j.still.2012.07.019 |