徐欣2,
焦晓光2,
曲红云3,
侯萌1,
隋跃宇1,,
1.中国科学院东北地理与农业生态研究所黑土区农业生态重点实验室 哈尔滨 150081
2.黑龙江大学现代农业与生态环境学院 哈尔滨 150080
3.黑龙江省农业科学院园艺分院 哈尔滨 150069
基金项目: 国家重点研发计划项目2016YFD0800100
黑龙江省****科学基金JC2018011
详细信息
作者简介:陈一民, 主要从事土壤微生物及养分循环的研究。E-mail:chenyimin@iga.ac.cn
通讯作者:隋跃宇, 主要从事黑土生态及区域土壤地理研究。 E-mail:suiyy@iga.ac.cn
中图分类号:S158.5计量
文章访问数:228
HTML全文浏览量:26
PDF下载量:215
被引次数:0
出版历程
收稿日期:2020-06-17
录用日期:2020-09-04
刊出日期:2021-01-01
The effect of reduced irrigation and chemical fertilizers on phosphorus accumulation and leaching in Mollisol vegetable fields
CHEN Yimin1,,XU Xin2,
JIAO Xiaoguang2,
QU Hongyun3,
HOU Meng1,
SUI Yueyu1,,
1. Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
2. College of Modern Agriculture and Eco-environment, Heilongjiang University, Harbin 150080, China
3. Institute of Horticulture, Heilongjiang Academy of Agricultural Sciences, Harbin 150069, China
Funds: the National Key Research and Development Program of China2016YFD0800100
Heilongjiang Province Natural Science Funds for Outstanding YouthJC2018011
More Information
Corresponding author:SUI Yueyu, E-mail:suiyy@iga.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:设施黑土菜田由于过量施肥和灌溉导致磷素淋溶损失严重,亟待优化水肥管理模式以减少设施黑土菜田磷素淋溶。本研究依托黑土设施菜田淋溶监测试验,设置常规灌溉量与施肥量(WF)、常规灌溉量+80%常规化肥量(W80% F)、80%常规灌溉量+常规肥处理(80% WF)3个处理,对土壤磷储量、速效磷动态变化、磷素淋失量进行分析,研究了不同水肥处理对黑土设施茄子土壤磷素淋失风险和淋失量的影响。结果表明:经种植1季茄子后,WF、W80% F和80% WF处理0~100 cm土体磷储量分别为9.69 t·hm-2、9.36 t·hm-2和8.84 t·hm-2,分别比移栽前增加26.5%、27.5%和7.1%。随着茄子生育期延长,0~20 cm土层速效磷含量呈先升高后降低的趋势,80% WF处理速效磷含量较其他两个处理高,变幅为145.17~224.55 mg·kg-1;20~40 cm土层,WF处理速效磷含量基本保持不变,80% WF处理速效磷含量整体呈上升趋势,W80% F处理速效磷含量先升高后降低再升高,除盛果期外均显著高于另两个处理。WF、W80% F和80% WF磷素淋失量分别为17.84 kg·hm-2、17.47 kg·hm-2和9.02 kg·hm-2,其中有机磷淋失量占磷素淋失总量的90%以上。磷素淋失量与磷储量增加量、盛果期0~40 cm土层速效磷含量、拉秧期0~20 cm土层速效磷含量之间均存在显著的相关性(P < 0.05),可通过磷储量增加量来预测生育期内磷素淋失量。与常规水肥处理相比,减少化肥施用量对磷素淋失量和淋失风险无明显影响,但减少灌溉量能显著减少磷素淋失量,降低磷素淋失风险。研究结果可为设施黑土菜田磷素淋溶阻控提供技术支撑,为新阻控技术的研发提供理论指导。
关键词:设施黑土菜田/
磷淋溶/
磷储量/
减施化肥/
减少灌溉量
Abstract:Excessive fertilization and irrigation have led to phosphorus leaching in Mollisol vegetable fields, and optimization of these practices is critical for reducing phosphorus pollution. A leaching monitoring experiment was performed in a Mollisol eggplant field using the following three treatments: standard irrigation and chemical fertilizer amounts (WF), standard irrigation + 80% chemical fertilizer (W80%F), and 80% irrigation + standard chemical fertilizer (80%WF). The soil phosphorus storage, available phosphorus dynamics, and phosphorus leaching amounts were analyzed to determine the effects of irrigation and fertilization treatments on phosphorus leaching. After one growing season, phosphorus storage in the 0–100 cm soil layers were 9.69 t·hm-2 (WF), 9.36 t·hm-2 (W80%F), and 8.84 t·hm-2 (80%WF), which were 26.5%, 27.5%, and 7.1% higher than before planting, respectively. These results showed that phosphorous accumulation occurred, which increased the leaching risk. During the extended eggplant growing period, the available phosphorus in the 0–20 cm soil layer increased and then decreased, and was highest in the 80%WF treatment, ranging between 145.17–224.55 mg·kg-1. The available phosphorus in the 20–40 cm soil layer did not change under WF treatment and increased under 80%WF treatment. The available phosphorus fluctuated with W80%F but was significantly higher than that in the other treatments, except during the full fruit period. The phosphorus leaching amounts were 17.84 kg·hm-2 (WF), 17.47 kg·hm-2 (W80%F), and 9.02 kg·hm-2 (80%WF). Organic phosphorus leaching was more than 90% of the total phosphorus leaching, differing from other soil types. There were significant positive correlations between phosphorus leaching and increased phosphorus storage, available phosphorus in the 0–40 cm layer at the full fruit stage and in the 0–20 cm layer at the withering stage (P < 0.05). This indicates that changes in phosphorus storage and the available phosphorus content may help predict phosphorus leaching in Mollisols. After one growing season, phosphorus storage in the 0–100 cm layer increased in all treatments; the smallest increase was in the W80%F treatment, indicating that reduced irrigation lowers the phosphorous leaching risk. Reducing chemical fertilizers did not affect phosphorus leaching or the leaching risk. These results provide information for preventing phosphorus leaching, which may be used to develop new techniques for Mollisol vegetable fields.
Key words:Facility vegetable field of Mollisols/
Phosphorus leaching/
Phosphorus storage/
Reducing chemical fertilizers application/
Reducing irrigation
HTML全文

图1不同水肥处理0~100 cm土体全磷含量
各处理表述见表 1。
Figure1.Total phosphorus contents in 0-100 cm soil profiles of different irrigation or fertilization treatments
The description of treatments is shown in the table 1.


图2不同水肥处理0~100 cm土体磷储量
各处理表述见表 1。
Figure2.Phosphorus storage in 0-100 cm soil profile of different irrigation or fertilization treatments
The description of treatments is shown in the table 1.


图3茄子生育期内不同水肥处理0~20 cm和20~40 cm土层速效磷含量动态变化
各处理表述见表 1。
Figure3.Dynamics of available phosphorus contents in 0–20 cm and 20–40 cm soil layers during eggplant growth period of different irrigation or fertilization treatments
The description of treatments is shown in the table 1.

表1不同处理设施茄子生育期内具体施肥及灌溉量
Table1.Fertilization rates and irrigation amounts of different treatments during the growth period of eggplants
处理 Treatment | 基肥 Base fertilizer (kg?hm-2) | 初果期追肥 Top dressing at initial fruiting stage (kg?hm-2) | 盛果期追肥 Top dressing at fruiting stage (kg?hm-2) | 灌溉量 Irrigation amount (m3?hm-2) | ||||||||
有机肥 Organic fertilizer | N | P2O5 | K2O | N | N | K2O | 移栽 During transplanting | 开花期 At anthesis | ||||
WF | 5000 | 72 | 72 | 110 | 70 | 23 | 113 | 27 | 45 | |||
W80% F | 5000 | 57.6 | 57.6 | 88 | 56 | 18.4 | 90.4 | 27 | 45 | |||
80% WF | 5000 | 72 | 72 | 110 | 70 | 23 | 113 | 21.6 | 36 |

表2不同水肥处理土壤磷素淋失量
Table2.Soil phosphorus leaching amounts of different irrigation or fertilization treatments
处理 Treatment | 淋失量 Leaching amount (kg·hm-2) | ||
总磷 Total phosphorus | 有机磷 Organic phosphorus | 无机磷 Inorganic phosphorus | |
WF | 17.84±1.45a | 17.19±1.94a | 0.65±0.10b |
W80% F | 17.47±0.68a | 16.70±0.83a | 0.77±0.29a |
80% WF | 9.02±0.52b | 8.35±0.61b | 0.67±0.06b |
各处理表述见表 1。同列不同小写字母代表不同处理间在P < 0.05水平差异显著。The description of treatments is shown in the table 1. Different lowercase letters in the same column indicate significant differences among treatments at P < 0.05 level. |

表3磷素淋失量与磷储量变化及茄子不同生育期不同土层速效磷含量的相关分析
Table3.Correlation between phosphorus leaching amounts and changes in phosphorus storage, available phosphorus content of different soil layers at different growth stages of eggplant
土层深度 Soil depth (cm) | 磷素淋失总量 Total P leaching amount | 有机磷淋失量 Organic P leaching amount | 无机磷淋失量 Inorganic P leaching amount | |
磷储量变化量 Change in phosphorus storage | 0.968** | 0.952** | 0.046 | |
苗期速效磷 Available phosphorus at seedling stage | 0~20 | 0.560 | 0.532 | 0.160 |
20~40 | 0.669* | 0.655 | 0.371 | |
初果期速效磷 Available phosphorus at initial fruiting stage | 0~20 | -0.567 | -0.569 | 0.186 |
20~40 | 0.483 | 0.469 | 0.362 | |
盛果期速效磷 Available phosphorus at full fruit stage | 0~20 | -0.711* | -0.692* | -0.293 |
20~40 | -0.916** | -0.908** | 0.000 | |
拉秧期速效磷 Available phosphorus at withering stage | 0~20 | -0.731* | -0.733* | -0.099 |
20~40 | 0.020 | 0.002 | 0.217 | |
**和*分别代表α=0.01水平和α=0.05水平(双侧)显著相关。** and * indicate significant correlation at α=0.01 and α=0.05 (two tails) levels, respectively. |

参考文献
[1] | VINCENT A G, SCHLEUCHER J, GR?BNER G, et al. Changes in organic phosphorus composition in boreal forest humus soils:The role of iron and aluminium[J]. Biogeochemistry, 2012, 108(1/3):485-499 doi: 10.1007/s10533-011-9612-0 |
[2] | 唐立涛, 刘丹, 罗雪萍, 等.青海省森林土壤磷储量及其分布格局[J].植物生态学报, 2019, 43(12):1091-1103 doi: 10.17521/cjpe.2019.0194 TANG L T, LIU D, LUO X P, et al. Forest soil phosphorus stocks and distribution patterns in Qinghai, China[J]. Chinese Journal of Plant Ecology, 2019, 43(12):1091-1103 doi: 10.17521/cjpe.2019.0194 |
[3] | Food and Agriculture Organization of the United Nations. Food supply-crops primary equivalent[EB/OL]. (2018-02-05). http://faostat.fao.org/site/609/default.aspx |
[4] | YU H Y, LI T X, ZHANG X Z. Nutrient budget and soil nutrient status in greenhouse system[J]. Agricultural Sciences in China, 2010, 9(6):871-879 doi: 10.1016/S1671-2927(09)60166-8 |
[5] | JU X T, KOU C L, CHRISTIE P, et al. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain[J]. Environmental Pollution, 2007, 145(2):497-506 doi: 10.1016/j.envpol.2006.04.017 |
[6] | HUANG S W, JIN J Y, BAI Y L, et al. Evaluation of nutrient balance in soil-vegetable system using nutrient permissible surplus or deficit rate[J]. Communications in Soil Science and Plant Analysis, 2007, 38(7/8):959-974 doi: 10.1080/00103620701277973 |
[7] | BLOOM P R, MCBRIDE M B, WEAVER R M. Aluminum organic matter in acid soils:Buffering and solution aluminum activity[J]. Soil Science Society of America Journal, 1979, 43(3):488-493 doi: 10.2136/sssaj1979.03615995004300030012x |
[8] | MCDOWELL R W, MONAGHAN R M. Extreme phosphorus losses in drainage from grazed dairy pastures on marginal land[J]. Journal of Environmental Quality, 2015, 44(2):545-551 doi: 10.2134/jeq2014.04.0160 |
[9] | GRAY C W, MCDOWELL R W, CARRICK S, et al. The effect of irrigation and urine application on phosphorus losses to subsurface flow from a stony soil[J]. Agriculture, Ecosystems & Environment, 2016, 233:425-431 http://www.sciencedirect.com/science/article/pii/S0167880916304911 |
[10] | GUPPY C N, MENZIES N W, MOODY P W, et al. Competitive sorption reactions between phosphorus and organic matter in soil:A review[J]. Australian Journal of Soil Research, 2005, 43(2):189-202 doi: 10.1071/SR04049 |
[11] | YAN Y P, LIU JR F, LI W, et al. Sorption and desorption characteristics of organic phosphates of different structures on aluminium (oxyhydr) oxides[J]. European Journal of Soil Science, 2014, 65(2):308-317 doi: 10.1111/ejss.12119 |
[12] | 贾莉洁, 李玉会, 孙本华, 等.不同管理方式对土壤无机磷及其组分的影响[J].土壤通报, 2013, 44(3):612-616 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201303018.htm JIA L J, LI Y H, SUN B H, et al. Effect of diverse soil managements on inorganic phosphorus and its fractions in a loess soil from a long-term experiment[J]. Chinese Journal of Soil Science, 2013, 44(3):612-616 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201303018.htm |
[13] | 农业部办公厅.农业部办公厅关于印发《全国设施蔬菜重点区域发展规划(2015-2020年)》的通知[EB/OL]. (2017-11-29)[2017-11-29]. http://www.moa.gov.cn/nybgb/2015/san/201711/t20171129_5923411.htm General Office of the Ministry of Agriculture. Notice of general office of the Ministry of Agriculture on printing and distributing the national development plan for key areas of facility vegetables (2015-2020)[EB/OL]. (2017-11-29)[2017-11-29]. http://www.moa.gov.cn/nybgb/2015/san/201711/t20171129_5923411.htm |
[14] | LIANG H, HU K L, BATCHELOR W D, et al. Developing a water and nitrogen management model for greenhouse vegetable production in China:Sensitivity analysis and evaluation[J]. Ecological Modelling, 2018, 367:24-33 doi: 10.1016/j.ecolmodel.2017.10.016 |
[15] | ZHOU K, SUI Y Y, XU X, et al. The effects of biochar addition on phosphorus transfer and water utilization efficiency in a vegetable field in Northeast China[J]. Agricultural Water Management, 2018, 210:324-329 doi: 10.1016/j.agwat.2018.08.007 |
[16] | HUANG J, XU C C, RIDOUTT B G, et al. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China[J]. Journal of Cleaner Production, 2017, 159:171-179 doi: 10.1016/j.jclepro.2017.05.008 |
[17] | CHEN Y M, ZHANG J Y, XU X, et al. Effects of different irrigation and fertilization practices on nitrogen leaching in facility vegetable production in northeastern China[J]. Agricultural Water Management, 2018, 210:165-170 doi: 10.1016/j.agwat.2018.07.043 |
[18] | 张锦源, 徐欣, 陈一民, 等.减水和减施化肥对设施黑土菜田茄子产量及水分利用率的影响[J].土壤与作物, 2018, 7(4):374-379 https://www.cnki.com.cn/Article/CJFDTOTAL-TRZW201804002.htm ZHANG J Y, XU X, CHEN Y M, et al. Effects of reducing irrigation and chemical fertilizers on eggplant yield and water utilization efficiency in a facility vegetable field in black soil region[J]. Soils and Crops, 2018, 7(4):374-379 https://www.cnki.com.cn/Article/CJFDTOTAL-TRZW201804002.htm |
[19] | 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000 LU R K. Soil Agrochemical Analysis Method[M]. Beijing:China Agricultural Science and Technology Press, 2000 |
[20] | 张敬禹.连续负压供水对茄子生长发育及生理学机制的影响[D].大庆: 黑龙江八一农垦大学, 2020 ZHANG J Y. Effect of continuous negative water pressure supply on growth, development, and physiological mechanism of eggplant[D]. Daqing: Heilongjiang Bayi Agricultural University, 2020 |
[21] | ASHRAF M Y, AKHTAR K, SARWAR G, et al. Role of the rooting system in salt tolerance potential of different guar accessions[J]. Agronomy for Sustainable Development, 2005, 25(2):243-249 http://agris.fao.org/openagris/search.do?recordID=US201301020159 |
[22] | 别婧雅, 杜伟, 孙本华, 等.吉林省春玉米种植区土壤磷库特征及磷素淋失风险评价[J].西北农林科技大学学报:自然科学版, 2020, 48(7):123-130 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY202007015.htm BIE J Y, DU W, SUN B H, et al. Characteristics of soil phosphorus pool and risk assessment of phosphorus leaching in spring maize planting area of Jilin[J]. Journal of Northwest A & F University:Natural Science Edition, 2020, 48(7):123-130 https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY202007015.htm |
[23] | LIU X B, BURRAS C L, KRAVCHENKO Y S, et al. Overview of Mollisols in the world:Distribution, land use and management[J]. Canadian Journal of Soil Science, 2012, 92(3):383-402 doi: 10.4141/cjss2010-058 |
[24] | 隋跃宇, 赵军, 冯学民.关于黑土、白浆土、沼泽土的论述——张之一文选[M].哈尔滨:哈尔滨地图出版社, 2013 SUI Y Y, ZHAO J, FENG X M. Discussion on Mollisols, Albisols and Gleysols-Selection from Professor Zhiyi Zhang's Work[M]. Harbin:Harbin Map Press, 2013 |
[25] | 宋佳明, 蔡红光, 张秀芝, 等.施用不同种类有机肥对黑土磷素含量的影响[J].吉林农业大学学报, 2019, 41(6):707-712 https://www.cnki.com.cn/Article/CJFDTOTAL-JLNY201906011.htm SONG J M, CAI H G, ZHANG X Z, et al. Effects of different organic manures application on phosphorus content in black soil[J]. Journal of Jilin Agricultural University, 2019, 41(6):707-712 https://www.cnki.com.cn/Article/CJFDTOTAL-JLNY201906011.htm |
[26] | GUO R Y, NENDEL C, RAHN C, et al. Tracking nitrogen losses in a greenhouse crop rotation experiment in North China using the EU-Rotate_N simulation model[J]. Environmental Pollution, 2010, 158(6):2218-2229 doi: 10.1016/j.envpol.2010.02.014 |
[27] | 刘津, 李春越, 邢亚薇, 等.长期施肥对黄土旱塬农田土壤有机磷组分及小麦产量的影响[J].应用生态学报, 2020, 31(1):157-164 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202001021.htm LIU J, LI C Y, XING Y W, et al. Effects of long-term fertilization on soil organic phosphorus fractions and wheat yield in farmland of Loess Plateau[J]. Chinese Journal of Applied Ecology, 2020, 31(1):157-164 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202001021.htm |
[28] | KOPPELAAR R H E M, WEIKARD H P. Assessing phosphate rock depletion and phosphorus recycling options[J]. Global Environmental Change, 2013, 23(6):1454-1466 doi: 10.1016/j.gloenvcha.2013.09.002 |
[29] | NOACK S R, MCBEATH T M, MCLAUGHLIN M J. Erratum to:Potential for foliar phosphorus fertilisation of dryland cereal crops:A review[J]. Crop and Pasture Science, 2011, 62(5):444 doi: 10.1071/CP10080_ER |
[30] | BASTIDA F, TORRES I F, ROMERO-TRIGUEROS C, et al. Combined effects of reduced irrigation and water quality on the soil microbial community of a citrus orchard under semi-arid conditions[J]. Soil Biology and Biochemistry, 2017, 104:226-237 doi: 10.1016/j.soilbio.2016.10.024 |