删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

华北平原潮土区粮田氮淋失阻控措施及效果分析

本站小编 Free考研考试/2022-01-01

孟凡乔1,,,
王坤2,
肖广敏1,
王开永3,
胡正江3,
张海霞3,
许秀春1,
张薇1,
杨轩1
1.中国农业大学资源与环境学院/农田土壤污染防控与修复北京市重点实验室 北京 100193
2.淄博市农业农村事业服务中心 淄博 255033
3.桓台县农业农村局 桓台 256400
基金项目: 国家重点研发计划项目2016YFD0800104
国家重点研发计划项目2017YFD0800605

详细信息
作者简介:孟凡乔, 主要研究方向为农业生态系统碳氮循环。E-mail:mengfq@cau.edu.cn
中图分类号:S19

计量

文章访问数:306
HTML全文浏览量:11
PDF下载量:243
被引次数:0
出版历程

收稿日期:2020-06-30
录用日期:2020-10-23
刊出日期:2021-01-01

Nitrogen leaching mitigation in fluvo-aquic soil in the North China Plain

MENG Fanqiao1,,,
WANG Kun2,
XIAO Guangmin1,
WANG Kaiyong3,
HU Zhengjiang3,
ZHANG Haixia3,
XU Xiuchun1,
ZHANG Wei1,
YANG Xuan1
1. College of Resources and Environmental Sciences, China Agricultural University/Beijing Key Laboratory of Prevention, Control and Restoration of Farmland Soil Pollution, Beijing 100193, China
2. Zibo Center of Rural and Agricultural Affairs Service, Zibo 255033, China
3. Huantai Bureau of Rural Affairs and Agriculture, Huantai 256400, China
Funds: the National Key Research and Development Program of China2016YFD0800104
the National Key Research and Development Program of China2017YFD0800605

More Information
Corresponding author:MENG Fanqiao, E-mail: mengfq@cau.edu.cn


摘要
HTML全文
(0)(2)
参考文献(97)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:华北平原潮土区是我国重要的粮食主产区,改革开放40多年来该区农业经历了以高水肥投入为主要特征的集约化进程,相应的氮淋失导致的面源污染自20世纪90年代以来不断加剧。本研究针对华北平原潮土为主要类型的粮田,对过去40多年间主要研究文献进行全面分析,梳理氮肥和水分投入与氮淋失之间的定量关系,比较主要农田管理措施对氮淋失的阻控效果及其机理,以期为我国农业面源污染提供决策支持。研究发现,氮肥和灌溉是影响华北平原潮土区粮田氮淋失的主要因素,其中氮淋失与氮盈余量之间呈指数关系,比与施氮量的指数关系更显著。基于机器学习的随机森林回归模型能够考虑包括施肥、灌溉、土壤条件和气象等多因素对氮淋失的影响,未来在定量预测中有较好前景。同等氮肥投入条件下,由于氮供应与作物吸收契合度高,有机无机配施能显著降低氮淋失。以缓控释肥、尿酶和硝化抑制剂为代表的肥料增效剂可以降低约1/3的氮淋失,值得重点推广应用。秸秆还田可以实现包括提高土壤有机物和微生物氮库、增加无机氮缓冲容量等综合效益,有利于降低氮淋失风险(降低比例达10%),但免耕的阻控效应较低且呈现较大不确定性。调整种植制度、休耕、间作套种和种植填闲作物等措施会影响粮食产量,推广过程中应慎重。氮淋失的阻控效果更多受到社会、经济和政策等因素的影响,今后应采取包括生态补偿等手段发挥农民主动性,从政策和法律法规层面创造实施氮淋失阻控措施的社会环境。
关键词:潮土区/
粮田/
氮淋失/
施氮肥/
灌溉/
肥料增效剂/
种植制度/
生态补偿
Abstract:The North China Plain is a grain production region with fluvo-aquic soil and has seen rapid agricultural development over the past four decades. Excessive fertilization and frequent irrigation have increased nitrogen (N) leaching and nonpoint source pollution since the 1990s. This study screened published nitrogen leaching data on the North China Plain grain farmlands to identify the relationship between fertilization and irrigation with N leaching and to evaluate the primary N leaching mitigation measures. The results showed that regional groundwater during the 1970s was shallow and then deeper. During the 2010s, the regional cropping system changed from one to two crops per annum, and the annual N fertilizer rapidly increased to 600 kg(N)·hm-2·a-1 but then slowly decreased to 500–550 kg(N)·hm-2·a-1. Since the 1990s, irrigation increased from zero (rainfed during the 1980s) to 150–400 mm per annum, crop straw had gradually been incorporated into farmlands, and the fertilizer synergist technology had been accepted. The soil organic matter and total N improved by 38%–47%, pH decreased by 0.5 units, and available potassium decreased slightly. Fertilization and irrigation were the main influencing factors of N leaching, and the exponential relationship between N leaching and the N fertilizer balance (N fertilizer rate - crop above-ground N uptake) was better than the relationship between N leaching and N fertilizer rate. Random forest (RF) regression modeling based on machine learning was used to determine the relationship between N leaching and impacting factors such as irrigation, soil properties, and climate; the prediction results were satisfactory. At the same rate of N fertilization, organic fertilization combined with chemical fertilization significantly decreased N leaching because the N supply and crop demand were synchronized. Fertilizer synergists, such as control-release fertilizers, ureases, and nitrification inhibitors, mitigated N leaching by 1/3 and should be used in the North China Plain. Crop straw incorporation microbially improved N fertilizer in the short term and increased the long-term soil total N stock and inorganic N buffering capacity and reducing N leaching by 10%. The no-tillage mitigation effects were low and variable among farmlands. Fallow farmland and rotation/intercropping of deep root and shallow root crops, leguminous crops with cereal crops, and grains with vegetable crops were effective at reducing N leaching, but the crop yields also reduced. Therefore, these techniques required careful examination during technical dissemination. Governmental support, technical training, and proper planning should be implemented during the 14th Five-Year Plan of China to prevent and mitigate N pollution. Ecological compensation and an agricultural sector water use charge could also be used to encourage farmer participation.
Key words:Fluvo-aquic soil area/
Grain farmland/
Nitrogen leaching/
Nitrogen fertilization/
Irrigation/
Fertilizer synergist/
Cropping system/
Ecological compensation

HTML全文

表1华北平原潮土区冬小麦和夏玉米生产中氮淋失估算模型
Table1.Estimation models for nitrogen leaching from winter wheat and summer maize production in Fluvo-aquic soil areas of the North China Plain
作物
Crop
模型Model 参数Parameter 文献来源
Reference
冬小麦Winter wheat Y=4.93e0.0057X
(R2=0.50**)
Y为淋失的硝态氮, X为施氮量。
Y is the amount of nitrate leached, X is the fertilizer N rate.
[36]
Y=13.59e0.009X
(R2=0.28**)
Y为淋失的总氮; X为氮盈余量, 即施氮量减去地上部作物吸收量。
Y is the amount of total nitrogen leached; X is the surplus N, i.e., fertilizer N minus crop aboveground uptake N.
[37]
Y=17.3e0.0063X
(R2=0.31**)
Y为淋失的硝态氮; X为氮盈余量, 即施氮量减去地上部作物吸收量。
Y is the amount of nitrate leached; X is the surplus of N, i.e., fertilizer N minus crop aboveground uptake N.
[21]
Y=8.42+0.13X
(R2=0.22***)
Y为淋失的硝态氮, X为施氮量。
Y is the amount of nitrate leached, X is the fertilizer N rate.
[41]
Y=16.86e0.003X
(R2=0.17***)
Y为淋失的硝态氮, X为施氮量。
Y is the amount of nitrate leached, X is the fertilizer N rate.
[41]
Y=3.63e0.008X
(R2=0.27**)
Y为淋失的总氮, X为施氮量。
Y is the amount of total nitrogen leached, X is the fertilizer N rate.
[42]
夏玉米
Summer maize
Y=2.38e0.0041X
(R2=0.63**)
Y为淋失的硝态氮, X为施氮量。
Y is the amount of nitrate leached, X is the fertilizer N rate.
[36]
Y=25.31e0.0095X
(R2=0.55**)
Y为淋失的总氮; X为氮盈余量, 即施氮量减去地上部作物吸收量。
Y is the amount of total nitrogen leached; X is the surplus N, i.e., fertilizer N minus crop aboveground uptake N.
[37]
Y=12.14e0.0061X
(R2=0.35**)
Y为淋失的总氮; X为氮盈余量, 即施氮量减去地上部作物吸收量。
Y is the amount of total nitrogen leached; X is the surplus N, i.e., fertilizer N minus crop aboveground uptake N.
[35]
Y=25.87e0.0072X
(R2=0.39**)
Y为淋失的总氮, X为施氮量。
Y is the amount of total nitrogen leached, X is the fertilizer N rate.
[35]
Y=10.7e0.006X
(R2=0.30**)
Y为淋失的总氮, X为施氮量。
Y is the amount of total nitrogen leached, X is the fertilizer N rate.
[42]
Y=42.0e0.0072X
(R2=0.32**)
Y为淋失的硝态氮; X为氮盈余量, 即施氮量减去地上部作物吸收量。
Y is the amount of nitrate leached; X is the surplus N, i.e., fertilizer N minus crop aboveground uptake N.
[21]
Y=3.83+0.25X
(R2=0.51***)
Y为淋失的硝态氮, X为施氮量。
Y is the amount of nitrate leached, X is the fertilizer N rate.
[41]
旱地作物
Upland crops
Y=0.0192X+4.1463
(R2=0.0479)
Y为淋失的总氮, X为降雨量。
Y is the amount of total nitrogen leached, X is the precipitation.
[34]
Y=0.046X+4.2936
(R2=0.0938*)
Y为淋失的硝态氮, X为灌溉量。
Y is the amount of nitrate leached, X is the irrigation amount.
[34]
Y=0.0491X+7.6368
(R2=0.1883**)
Y为淋失的总氮, X为施氮量。
Y is the amount of total nitrogen leached, X is the fertilizer N rate.
[34]
Y=0.0594X+5.8362
(R2=0.4802)
Y为淋失的总氮, X为施氮量。
Y is the amount of total nitrogen leached, X is the fertilizer N rate.
[43]
Y=0.0459X-6.5932
(R2=0.3652)
Y为淋失的总氮, X为降雨量。
Y is the amount of total nitrogen leached, X is the precipitation.
[43]
Y=-12.16+0.041X1+0.035X2
(R2=0.522)
Y为淋失的总氮, X1为施氮量, X2为降雨量。
Y is the amount of total nitrogen leached, X1 is the fertilizer N rate, X2 is the precipitation.
[43]
Y=0.01X(2.84+0.030X)
(R2=0.22***)
Y为淋失的总氮, X为施氮量。
Y is the amount of total nitrogen leached, X is the fertilizer N rate.
[44]
Y=0.1+1.4e0.027X
(R2=0.84***)
Y为淋失的硝态氮, X为施氮量。
Y is the amount of nitrate leached, X is the fertilizer N rate.
[45]
秸秆还田
Straw returning: Y=1.3453e0.0074X(R2=0.94)
秸秆不还田
No straw returning: Y=1.2469e0.008X(R2=0.95)
Y为淋失的硝态氮, X为施氮量。
Y is the amount of nitrate leached, X is the fertilizer N rate.
[46]
YX的单位均为kg(N)×hm-2(X为降雨量或灌溉量时单位为mm); R2为方程的决定系数。*、**和***分别表示方程显著性水平为P < 0.05、P < 0.01和P < 0.001。The unit of both Y and X (X is precipitation or irrigation amount, its’ unit is mm) is kg(N)×hm-2. R2 is the coefficient of determination. *, ** and *** indicate the significance of regression at P < 0.05, P < 0.01 and P < 0.001 levels, respectively.


下载: 导出CSV
表2华北平原潮土区农田氮淋失阻控措施评价
Table2.Evaluation of mitigation measures on nitrogen leaching from farmland of Fluvo-aquic soil areas in the North China Plain
阻控措施
Mitigation measures
阻控效果1)
Performances1)
优点
Advantages
缺点
Disadvantages
施肥
Fertilization
1)优化氮肥数量:冬小麦和夏玉米每季施肥150~250 kg (N)×hm-2, 采用土壤测试与计算、氮肥效应函数、氮素输入输出平衡、淋溶液硝态氮浓度控制等确定[95]
Optimization of fertilizer N rate: seasonal input of 150-250 kg (N)×hm-2 for winter wheat and summer maize
+++++ 节约肥料, 效果最好
Saving fertilizers with better performances
氮肥量确定方法中, 除氮肥效应函数法, 其他方法工作量大、技术难度较高, 较难实施, 适合于大规模种植
Except fertilizer nitrogen effect equation, other methods need high labor input and are technically difficult to be implemented.Applicable for large scale crop production
2)有机肥和化肥配施
Integration of organic with chemical fertilizers
+++ 充分发挥有机肥和化肥优点, 易实施, 提高土壤肥力
Achieving advantages both of organic and chemical fertilizers and easy to implement, improving soil fertility
需要养殖业配套
Requiring the coordination of livestock production
3)适当提高追肥比例
Increase of the ratio of top-dressing fertilizer
++ 实施成本低
Low implementation cost
基肥/追肥比例的确定技术要求较高
High technical competence for the determination of ratio of basal to topdressing fertilizers
4)磷钾肥配施
Combined use of phosphorous and
potassium fertilizers
++ 容易实施
Easy to implement
5)地下水高、砂壤等高风险地区减少氮肥
Reduction of N fertilization in regions of high groundwater and sandy soils
++++ 节约肥料和灌溉水
Saving fertilizer and water
需提前进行土壤勘查, 影响作物产量
Soil needs to be investigated beforehand; crop yield may be reduced.
6)施用缓控释肥和肥料增效剂, 如硝化抑制剂和脲酶抑制剂等
Use of control-released fertilizers and efficiency enhancement products, such as nitrification inhibitor and urease inhibitor
++++ 减少肥料综合损失, 提高养分利用效率
Reducing fertilizer N loss, and increasing nutrient efficiency
增加成本
Increasing cost
灌溉
Irrigation
1)节水灌溉(喷灌、滴灌等)
Saving water irrigation (sprinkle and drip irrigation)
+++++ 节约水资源和成本
Saving water resources and cost
一次性设施投资较高, 设备质量要求较高; 运营期持续维护
High basic investment, high equipment quality, and continuous maintenance during implementation
2)适当水分胁迫和增加根系深度的灌溉
Irrigation under water-stressed condition and increase of crop root depth
+++ 节约水资源和成本
Saving water resources and cost
技术要求高, 田间水分监测和管理复杂
High technical competence, difficult to monitor field water and manage
3)水肥一体化
Integrated fertilization and irrigation
++++ 节约水肥等双重效益, 降低成本
Saving water and fertilizer, and decreasing cost
一次性投资较高, 设备质量要求较高; 运营期持续维护
High basic investment, high equipment quality, and continuous maintenance during implementation
秸秆管理和耕作
Straw management and tillage
1)秸秆粉碎还田
Pulverized straw incorporation
+++ 提高土壤氮库和无机氮缓冲容量, 固碳减排
Improving soil N stock and buffering capacity for inorganic nitrogen with carbon sequestration and greenhouse gases reduction
增加机械投入等成本, 可能对出苗率有影响, 可能增加病虫害发生程度
Increasing mechanic input and cost, maybe influencing crop emerging rate and increasing pest and disease
秸秆管理和耕作
Straw management and tillage
2)秸秆深松还田
Deep straw incorporation
+++ 有利于创造蒙金土土体构型, 提高土壤肥力和固碳减排
Building up soil structure with loam texture at top and clay texture at bottom of profile; improving soil fertility, carbon sequestration and greenhouse gases reduction
增加机械投入等成本, 可能对出苗率有影响
Increasing mechanic input and cost, maybe influencing crop emerging rate
3)改良土壤质地等土壤质量
Improvement of soil quality, such as texture
++ 技术难度低
Low technical competence
成本较高, 较难实施
Higher cost and difficult to implement
种植制度和技术
Cropping structure and technologies
1)休耕
Fallow
++ 技术难度低
Low technical competence
可能减产, 需要经济补偿
Maybe decreasing yield, and needing eco-compensation
2)深根和浅根作物轮作、间作
Rotation/intercropping of deep root with shallow root crops
+++ 提高肥料利用率, 降低病虫害发生程度
Increasing fertilizer efficiencies and controlling pests and diseases
需调整种植结构, 增加生产、储存和销售复杂程度
Requiring cropping structure adjustment, increasing the complexities of production, storage and marketing
3)豆科与禾本科作物轮作、间作
Rotation/intercropping of leguminous with cereal crops
+++ 固氮, 提高肥料利用率, 降低病虫害发生程度
N fixation, increasing fertilizer efficiencies and controlling pests and diseases
需调整种植结构, 增加生产、储存和销售复杂程度
Requiring cropping structure adjustment, increasing the complexities of production, storage and marketing.
4)蔬菜与禾本科粮食作物轮作、间作
Rotation/intercropping of vegetables and cereal crops
+++ 提高肥料利用率, 降低病虫害发生程度
Increasing fertilizer efficiencies and controlling pests and diseases
需调整种植结构, 增加生产、储存和销售复杂程度
Requiring cropping structure adjustment, increasing the complexities of production, storage and marketing.
5)引进高产抗性品种
Introduction of high yield and high resistance crop varieties
++ 容易操作, 降低农药等投入
Easy to implement, reducing pesticide input
寻找适合的高产抗性作物品种较困难
Difficult to find crop varieties with high productivity and resistance
6)适当密植
Increase of sowing intensity
++ 容易操作
Easy to implement
易出现倒伏
Prone to lodge
7)优化播种数量和时期
Optimization of sowing timing and quantity
++ 成本较低
Lower cost
需结合土壤墒情和天气状况监测, 操作难度增加
Requiring soil moisture and weather monitor, increasing implementation difficulty
政策
Policies[96]
1)对氮淋失阻控措施进行生态补偿
Eco-compensation for practices of nitrogen leaching mitigation
++ 节约水肥资源, 发挥市场手段, 促进农民主动参与
Saving water and fertilizers, using market tools to promote farmer's participation
需要政府配套措施, 价值估算技术难度高
Requiring government measures, and difficult to quantify the economic value of nitrogen leaching
2)进行农业用水收费, 促进节水农业
Charging for water use in agriculture and promotion of water saving farming
++ 节约水资源, 发挥市场手段, 促进农民主动参与
Saving water and fertilizers, using market tools to promote farmer's participation
可能增加农民成本
Maybe increasing farmers'cost
1)“+”越多, 说明阻控效果越好。1) More “+” indicates better mitigation effects for nitrogen leaching.


下载: 导出CSV

参考文献(97)
[1]胡春胜, 张玉铭, 秦树平, 等.华北平原农田生态系统氮素过程及其环境效应研究[J].中国生态农业学报, 2018, 26(10):1501-1514 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1009&flag=1
HU C S, ZHANG Y M, QIN S P, et al. Nitrogen processes and related environmental effects on agro-ecosystem in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10):1501-1514 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1009&flag=1
[2]LI X X, HU C S, DELGADO J A, et al. Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in North China Plain[J]. Agricultural Water Management, 2007, 89(1/2):137-147
[3]李晓欣, 张菲菲, 马洪斌, 等.华北平原地区农田硝态盐淋失研究进展[J].华北农学报, 2011, 26(S2):131-139 doi: 10.7668/hbnxb.2011.S2.030
LI X X, ZHANG F F, MA H B, et al. Nitrate leaching in North China Plain:A review[J]. Acta Agriculturae Boreali-Sinica, 2011, 26(S2):131-139 doi: 10.7668/hbnxb.2011.S2.030
[4]茹淑华, 张国印, 耿暖, 等.氮肥施用量对华北集约化农区作物产量和土壤硝态氮累积的影响[J].华北农学报, 2015, 30(S1):405-409 doi: 10.7668/hbnxb.2015.S1.073
RU S H, ZHANG G Y, GENG N, et al. Effect of nitrogen application rate on crop yield and the soil nitrate nitrogen accumulation in the intensive agriculture region in north China[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(S1):405-409 doi: 10.7668/hbnxb.2015.S1.073
[5]周健, 张永祥, 段佐亮.公元2020年农村面源污染控制战略目标研究[J].国外农业环境保护, 1993, (3):24-26 https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ199303007.htm
ZHOU J, ZHANG Y X, DUAN Z L. Study on the controlling objective in rural surface source pollution in 2020 in China[J]. Journal of Agricultural Resources and Environment, 1993, (3):24-26 https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ199303007.htm
[6]张维理, 田哲旭, 张宁, 等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报, 1995, 1(2):80-87 doi: 10.3321/j.issn:1008-505X.1995.02.012
ZHANG W L, TIAN Z X, ZHANG N, et al. Investigation of nitrate pollution in ground water due to nitrogen fertilization in agriculture in north China[J]. Journal of Plant Nutrition and Fertilizers, 1995, 1(2):80-87 doi: 10.3321/j.issn:1008-505X.1995.02.012
[7]刘光栋, 吴文良, 刘仲兰, 等.华北农业高产粮区地下水面源污染特征及环境影响研究——以山东省桓台县为例[J].中国生态农业学报, 2005, 13(2):125-129 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2005241&flag=1
LIU G D, WU W L, LIU Z L, et al. Characteristics and environmental impact of non-point pollution of groundwater under the high-yield farmlands of North China-A case study from Huantai County, Shandong Province[J]. Chinese Journal of Eco-Agriculture, 2005, 13(2):125-129 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2005241&flag=1
[8]中华人民共和国环境保护部, 中华人民共和国国家统计局, 中华人民共和国农业部.第一次全国污染源普查公报[EB/OL]. (2010-02-11). http://www.stats.gov.cn/tjsj/tjgb/qttjgb/qgqttjgb/201002/t20100211_30641.html
Ministry of Ecology and Environment of the People's Republic of China, National Bureau of Statistics of the People's Republic of China, Ministry of Agriculture and Rural Affairs of the People's Republic of China. Bulletin of the first national census on pollution resources[EB/OL]. (2010-02-11). http://www.stats.gov.cn/tjsj/tjgb/qttjgb/qgqttjgb/201002/t20100211_30641.html
[9]中华人民共和国生态环境部, 国家统计局, 中华人民共和国农业农村部.第二次全国污染源普查公报[EB/OL]. (2020-06-16). http://www.mee.gov.cn/home/ztbd/rdzl/wrypc/zlxz/202006/t20200616_784745.html
Ministry of Ecology and Environment of the People's Republic of China, National Bureau of Statistics of the People's Republic of China, Ministry of Agriculture and Rural Affairs of the People's Republic of China. Bulletin of the second national census on pollution resources[EB/OL]. (2020-06-16). http://www.mee.gov.cn/home/ztbd/rdzl/wrypc/zlxz/202006/t20200616_784745.html
[10]PADILLA F M, GALLARDO M, MANZANO-AGUGLIARO F. Global trends in nitrate leaching research in the 1960-2017 period[J]. Science of the Total Environment, 2018, 643:400-413 doi: 10.1016/j.scitotenv.2018.06.215
[11]YING H, XUE Y F, YAN K, et al. Safeguarding food supply and groundwater safety for maize production in China[J]. Environmental Science & Technology, 2020, 54(16):9939-9948
[12]中华人民共和国统计局. 2018年中华人民共和国统计年鉴[EB/OL].[2020-02-05]. http://www.stats.gov.cn/tjsj/ndsj/
National Bureau of Statistics of China. 2018 yearbook of people's republic of China[EB/OL].[2020-02-05]. http://www.stats.gov.cn/tjsj/ndsj/
[13]全国土壤普查办公室.中国土壤[M].北京:中国农业出版社, 1998
National Soil Survey Office of China. China Soil[M]. Beijing:China Agricultural Press, 1998
[14]USDA-NRCS. Soil Taxonomy:A Basic System of Soil Classification for Making and Interpreting Soil Surveys[M]. 2nd ed. Washington:Natural Resources Conservation Service, United States Department of Agriculture, 1999
[15]王兴科.河南省砂姜黑土与潮土系统分类研究[D].郑州: 郑州大学, 2013
WANG X K. Study on Chinese soil taxonomy for lime calcic black soil and alluvial soil in Henan Province[D]. Zhengzhou: Zhengzhou University, 2013
[16]李九五.近25年来山东省三种主要类型土壤有机质及氮、磷、钾养分变化特征研究[D].泰安: 山东农业大学, 2013
LI J W. Changes of soil organic matter and nutrients in three soils of Shandong Province over 25 years[D]. Tai'an: Shandong Agricultural University, 2013
[17]刘立晶, 高焕文, 李洪文.玉米-小麦一年两熟保护性耕作体系试验研究[J].农业工程学报, 2004, 20(3):70-73 doi: 10.3321/j.issn:1002-6819.2004.03.016
LIU L J, GAO H W, LI H W. Conservation tillage for corn-wheat two crops a year region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(3):70-73 doi: 10.3321/j.issn:1002-6819.2004.03.016
[18]邹军, 朱颖璇, 杨雨豪, 等. 1981-2015年华北地区种植结构演变及其驱动机制分析[J].中国农业大学学报, 2019, 24(12):23-32 https://www.cnki.com.cn/Article/CJFDTOTAL-NYDX201912004.htm
ZOU J, ZHU Y X, YANG Y H, et al. Analysis of planting structure evolution and its driving mechanism in North China from 1981 to 2015[J]. Journal of China Agricultural University, 2019, 24(12):23-32 https://www.cnki.com.cn/Article/CJFDTOTAL-NYDX201912004.htm
[19]谢花林, 程玲娟.地下水漏斗区农户冬小麦休耕意愿的影响因素及其生态补偿标准研究——以河北衡水为例[J].自然资源学报, 2017, 32(12):2012-2022 doi: 10.11849/zrzyxb.20161418
XIE H L, CHENG L J. Influence factors and ecological compensation standard of winter wheat-fallow in the groundwater funnel area[J]. Journal of Natural Resources, 2017, 32(12):2012-2022 doi: 10.11849/zrzyxb.20161418
[20]张雅芳, 郭英, 沈彦俊, 等.华北平原种植结构变化对农业需水的影响[J].中国生态农业学报(中英文), 2020, 28(1):8-16 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0102&flag=1
ZHANG Y F, GUO Y, SHEN Y J, et al. Impact of planting structure changes on agricultural water requirement in North China Plain[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1):8-16 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0102&flag=1
[21]ZHANG X, BOL R, RAHN C, et al. Agricultural sustainable intensification improved nitrogen use efficiency and maintained high crop yield during 1980-2014 in Northern China[J]. Science of the Total Environment, 2017, 596/597:61-68 doi: 10.1016/j.scitotenv.2017.04.064
[22]刘钰, 汪林, 倪广恒, 等.中国主要作物灌溉需水量空间分布特征[J].农业工程学报, 2009, 25(12):6-12 doi: 10.3969/j.issn.1002-6819.2009.12.002
LIU Y, WANG L, NI G H, et al. Spatial distribution characteristics of irrigation water requirement for main crops in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(12):6-12 doi: 10.3969/j.issn.1002-6819.2009.12.002
[23]刘涛, 周广胜, 谭凯炎, 等.华北地区冬小麦灌溉制度及其环境效应研究进展[J].生态学报, 2016, 36(19):5979-5986 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201619001.htm
LIU T, ZHOU G S, TAN K Y, et al. Review on research of irrigation regime and its environmental effect in winter wheat field of North China Plain[J]. Acta Ecologica Sinica, 2016, 36(19):5979-5986 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201619001.htm
[24]石祖梁, 王飞, 王久臣, 等.我国农作物秸秆资源利用特征、技术模式及发展建议[J].中国农业科技导报, 2019, 21(5):8-16 https://www.cnki.com.cn/Article/CJFDTOTAL-NKDB201905002.htm
SHI Z L, WANG F, WANG J C, et al. Utilization characteristics, technical model and development suggestion on crop straw in China[J]. Journal of Agricultural Science and Technology, 2019, 21(5):8-16 https://www.cnki.com.cn/Article/CJFDTOTAL-NKDB201905002.htm
[25]王文岩, 董文旭, 陈素英, 等.连续施用控释肥对小麦/玉米农田氮素平衡与利用率的影响[J].农业工程学报, 2016, 32(S2):135-141 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2016S2018.htm
WANG W Y, DONG W X, CHEN S Y, et al. Effect of continuously applying controlled-release fertilizers on nitrogen balance and utilization in winter wheat-summer maize cropping system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2):135-141 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU2016S2018.htm
[26]王艳群.华北小麦/玉米轮作体系氮素调控综合效应研究[D].保定: 河北农业大学, 2018
WANG Y Q. Comprehensive effects of nitrogen regulation on wheat and maize rotation system in the north China[D]. Baoding: Agricultural University of Hebei Province, 2018
[27]李瑾璞, 石垚, 袁大鹏.河北省典型样带土壤类型空间格局特征[J].农业资源与环境学报, 2020, 37(5):681-688, doi: 10.13254/j.jare.2019.0268
LI J P, SHI Y, YUAN D P. Spatial pattern characteristics of soil types in typical transects of Hebei Province, North China[J]. Journal of Agricultural Resources and Environment, 2020, 37(5):681-688, doi: 10.13254/j.jare.2019.0268
[28]王乐, 张淑香, 马常宝, 等.潮土区29年来土壤肥力和作物产量演变特征[J].植物营养与肥料学报, 2018, 24(6):1435-1444 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201806005.htm
WANG L, ZHANG S X, MA C B, et al. Characteristics of soil fertility and crop yield evolution in fluvo-aquic soil area in the past 29 years[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6):1435-1444 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201806005.htm
[29]张晓勇.豫北平原潮土不同质地养分现状分析[J].安徽农业科学, 2014, 42(21):7003-7004 doi: 10.3969/j.issn.0517-6611.2014.21.036
ZHANG X Y. Nutrient status and texture analysis of calcareous soil in North Henan Plain[J]. Journal of Anhui Agriculture Science, 2014, 42(21):7003-7004 doi: 10.3969/j.issn.0517-6611.2014.21.036
[30]刘战东, 张凯, 米兆荣, 等.豫北潮土灌区土壤肥力特征与作物产量的关系研究[J].灌溉排水学报, 2019, 38(8):31-37 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201908005.htm
LIU Z D, ZHANG K, MI Z R, et al. Characteristics of soil fertility and its relation with crop yield in fluvo-aquic soil irrigation area of north Henan[J]. Journal of Irrigation and Drainage, 2019, 38(8):31-37 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201908005.htm
[31]CANNAVO P, HARMAND J M, ZELLER B, et al. Low nitrogen use efficiency and high nitrate leaching in a highly fertilized Coffea Arabica-Inga densiflora agroforestry system:A 15N labeled fertilizer study[J]. Nutrient Cycling in Agroecosystems, 2013, 95(3):377-394 doi: 10.1007/s10705-013-9571-z
[32]史奕, 徐星凯, 周礼恺, 等.抑制剂及其组合对尿素15N在小麦土壤系统中的行为和归宿的影响[J].应用生态学报, 1998, 9(2):168-170 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB199802012.htm
SHI Y, XU X K, ZHOU L K, et al. Effect of inhibitors and their combination on the behavior and fate of urea 15N in wheat-soil system[J]. Chinese Journal of Applied Ecology, 1998, 9(2):168-170 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB199802012.htm
[33]王迎春.华北平原典型农田生态系统氮磷平衡动态模拟研究[D].北京: 中国农业科学院, 2009
WANG Y C. Modelling nitrogen and phosphorous balances in agro-ecosystem in the North China Plain[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009
[34]胡玉婷, 廖千家骅, 王书伟, 等.中国农田氮淋失相关因素分析及总氮淋失量估算[J].土壤, 2011, 43(1):19-25 doi: 10.3969/j.issn.1674-5906.2011.01.004
HU Y T, LIAO Q J H, WANG S W, et al. Statistical analysis and estimation of N leaching from agricultural fields in China[J]. Soils, 2011, 43(1):19-25 doi: 10.3969/j.issn.1674-5906.2011.01.004
[35]WANG G L, CHEN X P, CUI Z L, et al. Estimated reactive nitrogen losses for intensive maize production in China[J]. Agriculture, Ecosystems & Environment, 2014, 197:293-300
[36]CUI Z L, ZHANG X Y, CHEN X P, et al. Pursuing sustainable productivity with millions of smallholder farmers[J]. Nature, 2018, 555(7696):363-366 doi: 10.1038/nature25785
[37]CHEN X P, CUI Z L, FAN M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523):486-489 doi: 10.1038/nature13609
[38]李晓欣, 马洪斌, 胡春胜, 等.华北山前平原农田土壤硝态氮淋失与调控研究[J].中国生态农业学报, 2011, 19(5):1109-1114 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110520&flag=1
LI X X, MA H B, HU C S, et al. Soil nitrate leaching and control methods in the piedmont of North China Plain[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5):1109-1114 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110520&flag=1
[39]孙昭安, 陈清, 吴文良, 等.冬小麦对基肥和追肥15N的吸收与利用[J].植物营养与肥料学报, 2018, 24(2):553-560 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201802030.htm
SUN Z A, CHEN Q, WU W L, et al. Nitrogen uptake and recovery from basal and top-dressing fertilizer 15N in winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(2):553-560 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201802030.htm
[40]赵坤, 李一平, 卫臻, 等.小麦生长季土壤不同形态氮素的含量及淋失特征[J].节水灌溉, 2013, (11):12-16 doi: 10.3969/j.issn.1007-4929.2013.11.004
ZHAO K, LI Y P, WEI Z, et al. Different forms of nitrogen contents and distribution characteristics of soil at wheat growth season[J]. Water Saving Irrigation, 2013, (11):12-16 doi: 10.3969/j.issn.1007-4929.2013.11.004
[41]ZHOU M H, BUTTERBACH-BAHL K. Assessment of nitrate leaching loss on a yield-scaled basis from maize and wheat cropping systems[J]. Plant and Soil, 2014, 374(1/2):977-991
[42]ZHANG C, JU X T, POWLSON D, et al. Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China[J]. Environmental Science & Technology, 2019, 53(12):6678-6687
[43]杨旺鑫.我国农田氮磷损失影响因素及损失量初步估算[D].南京: 南京农业大学, 2015
YANG W X. Influencing factors and estimation of nitrogen and phosphorus losses from farmlands in China[D]. Nanjing: Nanjing Agricultural University, 2015
[44]WANG Y C, YING H, YIN Y L, et al. Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis[J]. The Science of the Total Environment, 2019, 657:96-102 doi: 10.1016/j.scitotenv.2018.12.029
[45]DELIN S, STENBERG M. Effect of nitrogen fertilization on nitrate leaching in relation to grain yield response on loamy sand in Sweden[J]. European Journal of Agronomy, 2014, 52:291-296 doi: 10.1016/j.eja.2013.08.007
[46]MANEVSKI K, B?RGESEN C D, LI X X, et al. Optimising crop production and nitrate leaching in China:Measured and simulated effects of straw incorporation and nitrogen fertilisation[J]. European Journal of Agronomy, 2016, 80:32-44 doi: 10.1016/j.eja.2016.06.009
[47]KRAMER S B, REGANOLD J P, GLOVER J D, et al. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils[J]. Proceedings of the National Academy of the Sciences of the United States of America, 2006, 103(12):4522-4527
[48]沈灵凤, 白玲玉, 曾希柏, 等.施肥对设施菜地土壤硝态氮累积及pH的影响[J].农业环境科学学报, 2012, 31(7):1350-1356 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201207017.htm
SHEN L F, BAI L Y, ZENG X B, et al. Effects of fertilization on NO3--N accumulation in greenhouse soils[J]. Journal of Agro-Environment Science, 2012, 31(7):1350-1356 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201207017.htm
[49]GU L M, LIU T N, ZHAO J, et al. Nitrate leaching of winter wheat grown in lysimeters as affected by fertilizers and irrigation on the North China Plain[J]. Journal of Integrative Agriculture, 2015, 14(2):374-388
[50]ZHENG F X. Effects of long-term application of chemical fertilizer and organic manure on nitrogen flow and water use efficiency in winter wheat field[J]. Tai'an:Shandong Agricultural University, 2017
[51]郭树芳.华北平原农田生态系统氮损失及其环境效应研究[D].北京: 中国农业科学院, 2019
GUO S F. Nitrogen loss and related environmental effects in agricultural ecosystem in the North China Plain[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019
[52]BAKHSH A, KANWAR R S, KARLEN D L. Effects of liquid swine manure applications on NO3-N leaching losses to subsurface drainage water from loamy soils in Iowa[J]. Agriculture, Ecosystems & Environment, 2005, 109(1/2):118-128
[53]HANSEN B, KRISTENSEN E S, GRANT R, et al. Nitrogen leaching from conventional versus organic farming systems-a systems modelling approach[J]. European Journal of Agronomy, 2000, 13(1):65-82
[54]宁建凤, 徐培智, 杨少海, 等.有机无机肥配施对菜地土壤氮素径流流失的影响[J].水土保持学报, 2011, 25(3):17-21 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201103003.htm
NING J F, XU P Z, YANG S H, et al. Effects of combined application of organic and inorganic fertilizer on soil nitrogen runoff in vegetable field[J]. Journal of Soil and Water Conservation, 2011, 25(3):17-21 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201103003.htm
[55]TAN D S, JIANG L H, TAN S Y, et al. An in situ study of inorganic nitrogen flow under different fertilization treatments on a wheat-maize rotation system surrounding Nansi Lake, China[J]. Agricultural Water Management, 2013, 123:45-54 doi: 10.1016/j.agwat.2013.03.011
[56]LIU J, BI X Q, MA M T, et al. Precipitation and irrigation dominate soil water leaching in cropland in Northern China[J]. Agricultural Water Management, 2019, 211:165-171 doi: 10.1016/j.agwat.2018.09.053
[57]张玉铭, 张佳宝, 胡春胜.水肥耦合对华北高产农区小麦-玉米产量和土壤硝态氮淋失风险的影响[J].中国生态农业学报, 2011, 19(3):532-539 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110309&flag=1
ZHANG Y M, ZHANG J B, HU C S. Effect of fertilization and irrigation on wheat-maize yield and soil nitrate nitrogen leaching in high agricultural yield region in North China Plain[J]. Chinese Journal of Eco-Agriculture, 2011, 19(3):532-539 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110309&flag=1
[58]WANG Q, LI F R, ZHANG E H, et al. The effects of irrigation and nitrogen application rates on yield of spring wheat (Longfu-920), and water use efficiency and nitrate nitrogen accumulation in soil[J]. Australian Journal of Crop Science, 2012, 6(4):662-672 http://www.cabdirect.org/abstracts/20123167036.html
[59]叶优良, 李隆, 张福锁, 等.灌溉对大麦/玉米带田土壤硝态氮累积和淋失的影响[J].农业工程学报, 2004, 20(5):105-109 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200405022.htm
YE Y L, LI L, ZHANG F S, et al. Effect of irrigation on soil NO3--N accumulation and leaching in maize/barley intercropping field[J]. Transactions of the Chinese Society of Agricultrual Engineering, 2004, 20(5):105-109 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200405022.htm
[60]孙美.华北平原作物产量与土壤氮素淋失对灌溉施肥的响应模拟[D].北京: 中国农业大学, 2014
SUN M. Simulation of crop yield and nitrogen leaching response to irrigation and fertilization in the North China Plain[D]. Beijing: China Agricultural University, 2014
[61]郑文魁.控施尿素在小麦-玉米轮作体系中的养分高效利用研究[D].泰安: 山东农业大学, 2017
ZHENG W K. Nutrient efficient utilization of controlled-release urea in wheat-maize cropping system[D]. Tai'an: Shandong Agricultural University, 2017
[62]茹淑华, 张国印, 耿暖, 等.不同施肥措施对夏玉米产量和土壤硝态氮淋失的影响[J].河北农业科学, 2012, 16(2):46-50 https://www.cnki.com.cn/Article/CJFDTOTAL-HBKO201202013.htm
RU S H, ZHANG G Y, GENG N, et al. Effects of different fertilization measures on summer maize yield and soil nitrate leaching[J]. Journal of Hebei Agricultural Sciences, 2012, 16(2):46-50 https://www.cnki.com.cn/Article/CJFDTOTAL-HBKO201202013.htm
[63]YU Q G, CHEN Y X, YE X Z, et al. Evaluation of nitrification inhibitor 3, 4-dimethyl pyrazole phosphate on nitrogen leaching in undisturbed soil columns[J]. Chemosphere, 2007, 67(5):872-878
[64]CHAVES B, OPOKU A, DE NEVE S, et al. Influence of DCD and DMPP on soil N dynamics after incorporation of vegetable crop residues[J]. Biology and Fertility of Soils, 2006, 43(1):62-68 doi: 10.1007/s00374-005-0061-6
[65]LI H, LIANG X Q, CHEN Y X, et al. Effect of nitrification inhibitor DMPP on nitrogen leaching, nitrifying organisms, and enzyme activities in a rice-oilseed rape cropping system[J]. Journal of Environmental Sciences, 2008, 20(2):149-155
[66]GIOACCHINI P, NASTRI A, MARZADORI C, et al. Influence of urease and nitrification inhibitors on N losses from soils fertilized with urea[J]. Biology and Fertility of Soils, 2002, 36(2):129-135
[67]陈振华, 陈利军, 武志杰.脲酶-硝化抑制剂对减缓尿素转化产物氧化及淋溶的作用[J].应用生态学报, 2005, 16(2):238-242 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200502008.htm
CHEN Z H, CHEN L J, WU Z J. Effects of urease and nitrification inhibitors on alleviating the oxidation and leaching of soil urea's hydrolyzed product ammonium[J]. Chinese Journal of Applied Ecology, 2005, 16(2):238-242 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200502008.htm
[68]肖广敏.华北潮土区种植模式和增效剂对土壤氮淋失和氨挥发的影[D].北京: 中国农业大学, 2020
XIAO G M. Effects of cropping system and synergist on nitrogen leaching and ammonia volatilization in fluvo-aquic soils of North China[D]. Beijing: China Agricultural University, 2020
[69]ZAMAN M, NGUYEN M L, BLENNERHASSETT J D, et al. Reducing NH3, N2O and NO3--N losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers[J]. Biology and Fertility of Soils, 2008, 44(5):693-705 http://jxb.oxfordjournals.org/external-ref?access_num=10.1007/s00374-007-0252-4&link_type=DOI
[70]SANZ-COBENA A, SáNCHEZ-MARTíN L, GARCíA-TORRES L, et al. Gaseous emissions of N2O and NO and NO3--leaching from urea applied with urease and nitrification inhibitors to a maize (Zea mays) crop[J]. Agriculture, Ecosystems & Environment, 2012, 149:64-73 http://www.sciencedirect.com/science/article/pii/S0167880911004427
[71]MAHARJAN B, VENTEREA R T, ROSEN C. Fertilizer and irrigation management effects on nitrous oxide emissions and nitrate leaching[J]. Agronomy Journal, 2014, 106(2):703-714 doi: 10.2134/agronj2013.0179
[72]王龙宇, 郑国亮, 华元刚, 等.保水剂对橡胶树专用肥氮钾淋出特性的影响[J].水土保持通报, 2016, 36(1):212-218 https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201601038.htm
WANG L Y, ZHENG G L, HUA Y G, et al. Effects of water-retaining agent on leaching loss of nitrogen and potassium from special fertilizer for rubber tree[J]. Bulletin of Soil and Water Conservation, 2016, 36(1):212-218 https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201601038.htm
[73]马妍, 刘振海, 刘陆涵, 等.三种环境材料复合对土壤水肥保持同步增效的影响[J].农业环境科学学报, 2017, 36(12):2471-2478 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201712014.htm
MA Y, LIU Z H, LIU L H, et al. Study of composites of three kinds of environmental materials on the synergism of soil moisture conservation and nitrogen-phosphorus fertilizer efficiency[J]. Journal of Agro-Environment Science, 2017, 36(12):2471-2478 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201712014.htm
[74]杨世琦, 王永生, 韩瑞芸, 等.宁夏引黄灌区秸秆还田对麦田土壤硝态氮淋失的影响[J].生态学报, 2015, 35(16):5537-5544 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201516029.htm
YANG S Q, WANG Y S, HAN R Y, et al. Effect of nitrate leaching of winter wheat field based on straw application in the Yellow River irrigation area of Ningxia[J]. Acta Ecologica Sinica, 2015, 35(16):5537-5544 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201516029.htm
[75]杨晓梅, 尹昌斌, 李贵春, 等.氮肥减量及秸秆替代过量氮肥下冬小麦/夏玉米轮作体系氮素淋失风险研究[J].中国农业资源与区划, 2016, 37(7):116-122 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201607017.htm
YANG X M, YIN C B, LI G C, et al. Effects of reducing nitrogen application and replacing part of nitrogen fertilizer by crop residue on nitrogen leaching in winter wheat-summer corn system[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2016, 37(7):116-122 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ201607017.htm
[76]黄涛.长期碳氮投入对土壤有机碳氮库及环境影响的机制[D].北京: 中国农业大学, 2014
HUANG T. The effects of long-term C and N inputs on soil organic C and N pools and environments[D]. Beijing: China Agricultural University, 2014
[77]SENEVIRATNE G. Litter quality and nitrogen release in tropical agriculture:A synthesis[J]. Biology and Fertility of Soils, 2000, 31(1):60-64 http://europepmc.org/abstract/AGR/IND22436211
[78]QIU S J, JU X T, INGWERSEN J, et al. Role of carbon substrates added in the transformation of surplus nitrate to organic nitrogen in a calcareous soil[J]. Pedosphere, 2013, 23(2):205-212 http://www.sciencedirect.com/science/article/pii/S1002016013600089
[79]盖霞普, 刘宏斌, 翟丽梅, 等.长期增施有机肥/秸秆还田对土壤氮素淋失风险的影响[J].中国农业科学, 2018, 51(12):2336-2347 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201812010.htm
GAI X P, LIU H B, ZHAI L M, et al. Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk[J]. Scientia Agricultura Sinica, 2018, 51(12):2336-2347 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201812010.htm
[80]BLANCO-CANQUI H, LAL R. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till[J]. Soil and Tillage Research, 2007, 95(1/2):240-254 http://www.sciencedirect.com/science/article/pii/S0167198707000451
[81]DI H J, CAMERON K C. The use of a nitrification inhibitor, dicyandiamide (DCD), to decrease nitrate leaching and nitrous oxide emissions in a simulated grazed and irrigated grassland[J]. Soil Use and Management, 2002, 18(4):395-403 doi: 10.1111/j.1475-2743.2002.tb00258.x
[82]LINQUIST B A, BROUDER S M, HILL J E. Winter straw and water management effects on soil nitrogen dynamics in California rice systems[J]. Agronomy Journal, 2006, 98(4):1050-1059
[83]MENG F Q, DUNGAIT J A J, XU X L, et al. Coupled incorporation of maize (Zea mays L.) straw with nitrogen fertilizer increased soil organic carbon in Fluvic Cambisol[J]. Geoderma, 2017, 304:19-27
[84]CHENG Y, WANG J, WANG J Y, et al. The quality and quantity of exogenous organic carbon input control microbial NO3- immobilization:A meta-analysis[J]. Soil Biology and Biochemistry, 2017, 115:357-363
[85]WANG J, SUN N, XU M G, et al. The influence of long-term animal manure and crop residue application on abiotic and biotic N immobilization in an acidified agricultural soil[J]. Geoderma, 2019, 337:710-717
[86]巨晓棠.理论施氮量的改进及验证——兼论确定作物氮肥推荐量的方法[J].土壤学报, 2015, 52(2):249-261 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201502001.htm
JU X T. Improvement and validation of theoretical N rate (TNR)-Discussing the methods for N fertilizer recommendation[J]. Acta Pedologica Sinica, 2015, 52(2):249-261 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201502001.htm
[87]胡立峰, 胡春胜, 安忠民, 等.不同土壤耕作法对作物产量及土壤硝态氮淋失的影响[J].水土保持学报, 2005, 19(6):186-189 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200506045.htm
HU L F, HU C S, AN Z M, et al. Impacts of different tillage on crop yields and soil nitrate losses[J]. Journal of Soil and Water Conservation, 2005, 19(6):186-189 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200506045.htm
[88]ZHOU J B, XI J G, CHEN Z J, et al. Leaching and transformation of nitrogen fertilizers in soil after application of N with irrigation:A soil column method[J]. Pedosphere, 2006, 16(2):245-252
[89]FANGUEIRO D, SURGY S, NAPIER V, et al. Impact of slurry management strategies on potential leaching of nutrients and pathogens in a sandy soil amended with cattle slurry[J]. Journal of Environmental Management, 2014, 146:198-205 http://www.sciencedirect.com/science/article/pii/s0301479714003764
[90]HOFFMANN M, JOHNSSON H, GUSTAFSON A, et al. Leaching of nitrogen in Swedish agriculture-a historical perspective[J]. Agriculture, Ecosystems & Environment, 2000, 80(3):277-290
[91]MANTOVIA P, FUMAGALLI L, BERETTAC G P, et al. Nitrate leaching through the unsaturated zone following pig slurry applications[J]. Journal of Hydrology, 2006, 316(1/4):195-212
[92]同延安, 石维, 吕殿青, 等.陕西三种类型土壤剖面硝酸盐累积、分布与土壤质地的关系[J].植物营养与肥料学报, 2005, 11(4):435-441 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF200504001.htm
TONG Y A, SHI W, LYU D Q, et al. Relationship between soil texture and nitrate distribution and accumulation in three types of soil profile in Shaanxi[J]. Journal of Plant Nutrition and Fertilizers, 2005, 11(4):435-441 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF200504001.htm
[93]MALONE R W, JAYNES D B, KASPAR T C, et al. Cover crops in the upper midwestern United States:Simulated effect on nitrate leaching with artificial drainage[J]. Journal of Soil and Water Conservation, 2014, 69(4):292-305 http://www.researchgate.net/publication/270094608_Cover_crops_in_the_upper_midwestern_United_States_Simulated_effect_on_nitrate_leaching_with_artificial_drainage
[94]马心灵, 朱启林, 赵胜利, 等.不同种植模式粮田土壤氮素淋失的研究进展[J].土壤通报, 2015, 46(6):1529-1536 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201506039.htm
MA X L, ZHU Q L, ZHAO S L, et al. Research progress of nitrogen leaching in grain field under different cropping patterns[J]. Chinese Journal of Soil Science, 2015, 46(6):1529-1536 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201506039.htm
[95]KLADIVKO E J, KASPAR T C, JAYNES D B, et al. Cover crops in the upper midwestern United States:Potential adoption and reduction of nitrate leaching in the Mississippi River Basin[J]. Journal of Soil and Water Conservation, 2014, 69(4):279-291
[96]刘朝巍, 张恩和, 王琦, 等.留茬对小麦/玉米间作氮素吸收和硝态氮分布、淋失的影响[J].水土保持学报, 2012, 26(1):72-76 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201201015.htm
LIU C W, ZHANG E H, WANG Q, et al. Effects of wheat-maize intercropping and stubble treatment on nitrogen uptake and nitrate nitrogen distribution and leaching[J]. Journal of Soil and Water Conservation, 2012, 26(1):72-76 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201201015.htm
[97]张永利.深根植物提取深层土壤累积硝态氮研究[D].北京: 中国农业大学, 2010
ZHANG Y L. Mining the accumulated nitrate from deep soil layers by deep-rooted plants[D]. Beijing: China Agricultural University, 2010

相关话题/土壤 作物 农业 农田 生态