柏兆海1,
马林1, 2,,
1.中国科学院遗传与发育生物学研究所农业资源研究中心/河北省土壤生态学重点实验室/中国科学院农业水资源重点实验室 石家庄 050022
2.中国科学院大学 北京 100049
基金项目: 国家重点研发计划项目2016YFD0800106
国家自然基金项目31972517
详细信息
作者简介:金欣鹏, 研究方向为农业生态学。E-mail:jinxinpeng19@mails.ucas.ac.cn
通讯作者:马林, 研究方向为农业生态学。E-mail:malin1979@sjziam.ac.cn
中图分类号:X592计量
文章访问数:342
HTML全文浏览量:27
PDF下载量:187
被引次数:0
出版历程
收稿日期:2020-10-01
录用日期:2020-11-05
刊出日期:2021-01-01
Regional nitrogen and phosphorus leaching mitigation strategies based on nutrient losses vulnerable zones in China
JIN Xinpeng1, 2,,BAI Zhaohai1,
MA Lin1, 2,,
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Hebei Key Laboratory of Soil Ecology/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: the National Key R&D Program of China2016YFD0800106
the National Natural Science Foundation of China31972517
More Information
Corresponding author:MA Lin, E-mail: malin1979@sjziam.ac.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:农业面源污染研究多聚焦于田块尺度,缺少对区域尺度氮磷损失风险和消减途径的探索。因此,本研究提出在区域尺度依据养分损失风险制定管理策略,以期在现有技术条件下充分发挥减排措施潜力、全面提升面源污染区域阻控效力。本文利用水质监测数据、文献数据、地理要素空间数据和基于NUFER(NUtrient flows in Food chains,Environment and Resources use)模型模拟的养分损失结果,划定了我国养分损失脆弱区;在此基础上,按照我国农业生态区划和养分损失脆弱区级别确定了各区养分管控程度,并结合各区自然和社会经济条件选取可行、高效的养分管理技术,形成了我国氮磷淋溶区域消减策略和技术列单;最后通过模型再次评估了分区氮磷消减策略的效果。结果表明:养分损失脆弱区和潜在脆弱区覆盖了全国耕地面积的52%,广泛分布于主要农产品产区,呈现显著的空间聚集特征;分区养分管理可以消减51%的潜在脆弱区面积,消减潜力较大的区域集中在东北、长江中下游和西南地区;氮淋溶强度超过22.6 kg·hm-2的区域覆盖耕地面积3.1×107 hm2,通过实施基于养分损失脆弱区的分区氮磷消减措施,氮淋溶超标区内耕地面积减少至1.9×107 hm2,消减比例约为40%。上述养分损失脆弱性区划和区域氮磷消减草案可为农业绿色发展和面源污染控制提供科学依据。
关键词:氮磷淋溶/
农业面源污染/
养分损失脆弱区/
农业生态区/
区域消减策略
Abstract:Agricultural non-point source pollution control research has primarily focused on field-level technology development rather than regional mitigation options, reducing their large-scale effectiveness. This study proposed the mitigation strategies based on nutrient-loss risk at the regional level to achieve full potential of mitigation technologies. Nutrient-loss vulnerable zones (NLVZ) in China were designed from water quality monitoring and nutrient flow data and natural condition spatial characteristics. Based on the NLVZ, hierarchical management according to regional vulnerabilities were adopted, zone-specific mitigation methods based on natural and socio-economic conditions were selected, and regional mitigation strategies and nitrogen (N) and phosphorus (P) leaching technique lists were developed. Furthermore, using the NUtrient flows in Food chains, Environment and Resources model (NUFER), the effects of regional mitigation strategies were evaluated. The results indicated that NLVZ and potential NLVZ covered 52% of Chinese croplands and were widely distributed in major agricultural production areas. Regional mitigation strategies reduced potential NLVZ by 51%, particularly in the Northeast and Southwest China and the middle and lower reaches of the Yangtze River. Regional mitigation strategies reduced leaching by approximately 40% in cultivated areas with high N leaching (>22.6 kg(N)·hm-2), from 3.1×107 kg(N)·hm-2 to 1.9×107 kg(N)·hm-2. Designing regional mitigation strategies based on NLVZ reduced nonpoint source pollution, promoting ecological agricultural development in China.
Key words:Nitrogen and phosphorus leaching/
Agricultural non-point source pollution/
Nutrient losses vulnerable zone/
Agro-ecological zone/
Regional mitigation strategies
HTML全文

图1养分损失脆弱区划定原则与流程
NUFER:养分流动模型。NUFER: NUtrient flows in Food chains, Environment and Resources use.
Figure1.Principle and process of nutrient losses vulnerable zones (NLVZ) design in China


图2基于农业生态区和养分管理脆弱区的氮磷淋溶区域消减草案制定流程
1:兴安岭林区; 2:松嫩-三江平原农业区; 3:长白山地林农区; 4:辽宁平原丘陵农林区; 5:内蒙古北部牧区; 6:内蒙中南部牧农区; 7:长城沿线农牧区; 8:燕山太行山山麓平原农业区; 9:冀鲁豫低洼平原农业区; 10:黄淮平原农业区; 11:山东丘陵农林区; 12:晋东豫西丘陵山地农林牧区; 13:汾渭谷地农业区; 14:晋陕甘黄土丘陵沟壑牧林农区; 15:陇中青东丘陵农牧区; 16:长江下游平原丘陵农畜水产区; 17:豫皖鄂平原山地农林区; 18:长江中游平原农业水产区; 19:江南丘陵山地农林区; 20:浙闽丘陵山地林农区; 21:南岭丘陵山地林农区; 22:秦岭大巴山林农区; 23:四川盆地农林区; 24:川鄂湘黔边境山地林农牧区; 25:黔桂高原山地林农牧区; 26:川滇高原山地农林牧区; 27:闽南粤中农林水产区; 28:粤西桂南农林区; 29:滇南农林区; 30:琼雷及南海诸岛农林区; 31:台湾农林区; 32:蒙宁甘农牧区; 33:北疆农牧林区; 34:南疆农牧区; 35:藏南农牧区; 36:川藏林农牧区; 37:青甘牧农区; 38:青藏高寒牧区。
Figure2.Drafting process of regional mitigation of nitrogen and phosphorus leaching based on agricultural ecological zoning and nutrient management vulnerable zoning
1: Xing'anling forest area; 2: agricultural area in Songnen and Sanjiang Plain; 3: forestry and agricultural area in Changbaishan Mountain; 4: agricultural area in Liaoning plain-hill region; 5: pastoral area in the north of Inner Mongolia; 6: pastoral and agricultural area in the central and south of Inner Mongolia; 7: agricultural and pastoral area along the Great Wall; 8: agricultural area in the piedmont of Yanshan and Taihangshan Mountains; 9: agricultural area in low-lying plain of Hebei, Shandong and Henan; 10: agricultural area in Huang-Huai Plain; 11: agricultural and forestry area in the hilly regions in Shandong; 12: agricultural, forestry and pastoral areas in the hilly regions of eastern Shanxi and western Henan; 13: agricultural areas in valleys between Fenhe River and Weihe River; 14: pastoral, forestry and agricultural area in hilly-gully regions in Loess Plateau of Shaanxi, Shaanxi and Gansu; 15: agricultural and pastoral area in the central of Gansu and eastern Qinghai; 16: agricultural, livestock breeding and fishery area in the Lower Reach of Yangtze River Plain; 17: agricultural and forestry area in the plain-hilly regions of Henan, Anhui and Hubei; 18: agricultural and fishery area in the plain of Middle Reach of Yangtze River; 19: agricultural and forestry area in the south of Yangze River; 20: agricultural and forestry area in the hilly regions of Zhejiang and Fujian; 21: Nanling hilly agricultural and forestry area; 22: agricultural and forestry area of Qinling and Daba Mountain; 23: agricultural and forestry area of Sichuan basin; 24: agricultural, forestry and pastoral area in the border of Sichuan, Hubei, Hunan and Guizhou; 25: agricultural and pastoral area in plateau-mountain regions of Guizhou and Guangxi; 26: agricultural, forestry and pastoral area in the plateau-mountain region of Sichuan and Yunnan; 27: agricultural, forestry and fishery area from the South of Fujian to the center of Guangdong; 28: agricultural and forestry area from the west of Guangdong to the South of Guangxi; 29: agricultural and forestry area in the south of Yunnan; 30: agricultural area in Leizhou and the islands in South China Sea; 31: agricultural and forestry areas in Taiwan; 32: agricultural and pastoral area in Inner Mongolia, Ningxia and Gansu; 33: agricultural, pastoral and forestry area in the north of Xinjiang; 34: agricultural and pastoral area in the south of Xinjiang; 35: agricultural and pastoral area in the south of Tibet; 36: forestry, agricultural and pastoral area in Sichuan and Tibet; 37: pastoral and agricultural area in Qinghai, Gansu and Ningxia; 38: alpine pastoral area in Qinghai-Tibet Plateau.


图3我国不同农业生态分区养分损失脆弱区区划图(图中标号代表的农业生态区注释同图 2)
Figure3.Distribution of nutrient losses vulnerable zones in different agricultural ecological zones (AEZ) of China (explanations of the numbers in the figure are shown in the figure 2)


图4现状及按养分损失脆弱区级别消减氮素后的氮肥施用量和主要氮素损失量
图中a, b, c, d分别代表化肥氮、淋溶氮、径流氮和氨挥发氮, 字母后不带或带IM分别代表现状和基于养分损失脆弱区消减后的状况, 数字代表农业生态亚区编号, 其注释同图 2。因数据不全未计算台湾区域。
Figure4.Nitrogen fertilizer and main nitrogen losses in 2012 and in the optimized situation where regional mitigation strategies are applied based on nutrient losses vulnerable zones (NLVZs) hierarchy
a, b, c, and d stand for fertilizer N, leaching N, runoff N, NH3-N; without or with "IM" means in current situation (2012) or in the situation where regional mitigation strategies are applied based on NLVZs hierarchy. The numbers refer to different agro-ecological zones whose exact names are shown in figure 2. Duo to data shortage, Taiwan was not calculated.


图5现状(2012)及按养分损失脆弱区级别消减氮素后(IM)的养分损失潜在脆弱区分布
Figure5.Distribution of potential nutrient losses vulnerable zones in 2012 and in the optimized situation (IM) where regional mitigation strategies are applied based on nutrient losses vulnerable zones (NLVZs) hierarchy

表1基于养分损失脆弱区的氮磷淋溶消减策略
Table1.Regional mitigation strategies of nitrogen and phosphorus leaching based on nutrient losses vulnerable zone
养分损失脆弱区 Nutrient losses vulnerable zone | 农田生产系统 Crop production compartment | 畜牧生产系统 Livestock production compartment | 家庭消费系统 Human consumption compartment | |||||
科学施肥 Scientific fertilization | 优化灌溉 Optimized irrigation | 减排措施 Mitigation methods | 养分循环 Promoted nutrient recycle | 减排措施 Mitigation methods | 养分循环 Promoted nutrient recycle | |||
脆弱区 Vulnerable zones | 养分供需平衡、改进施肥方式、施用新型肥料 Balanced nutrient supply and demand, improvement of fertilization methods and application of modified fertilizer | 工程节水、农艺节水、水肥一体化 Engineering and agronomic water- saving methods, fertigation | 精准饲喂、饲舍改造、密闭储藏 Phrase feeding, reformation of livestock houses, covered or closed storage, efficient compost | 禁止畜禽粪尿直接排放、畜禽粪尿高效循环 Ban of direct discharge of livestock manure, recycling of livestock manure | 减少食物损失和浪费、细化落实饮食指南 Reducing food losses and waste, implementing the local dietary guidance | 禁止人粪尿直接排放, 人粪尿、厨余垃圾、食品加工副产品等有机废弃物循环 Ban of direct discharge of human manure, recycling of human manure, food byproduct and other organic waste | ||
潜在脆弱区 Potential vulnerable zones | 养分供需平衡、改进施肥方式 Balance between nutrient supply and demand, improvement of fertilization methods | 农艺节水、水肥一体化 Agronomic water- saving methods, fertigation | 饲舍改造、密闭储藏 Reformation of livestock of houses, covered or closed storage | 禁止畜禽粪尿直接排放、畜禽粪尿高效循环 Ban of direct discharge of livestock manure, recycling of livestock manure | — | — | ||
非脆弱区 Non- vulnerable zones | 养分供需平衡 Balance between nutrient supply and demand | 农艺节水 Agronomic water- saving methods | — | — | — | — | ||
“—”表示保持现状。“—” refers to maintain the status quo. |

表2养分管理和环境减排技术列单[37-38]
Table2.Techniques list of nutrient management and environmental emission mitigation[37-38]
减排策略 Mitigation strategy | 减排机理 Mitigation mechanism | 具体技术 Technique | 技术效果 Implementation effect | |
作物生产系统 Crop production compartment | 养分供需平衡 Balancing nutrient supply and demand | 根据作物养分需求和不同来源的养分供应能力, 科学施肥 Scientific fertilization according to crops nutrient requirement and nutrient supply capacities from different sources | 肥料效应函数 Fertilizer effect function | 节氮20%~35%, 节磷10%~20% Saving 20%-35% of fertilizer N and 10%-20% of fertilizer P |
土壤测试推荐施肥 Soil nutrient test for fertilizer recommendation | 播前和生育期测试节氮60%和50%左右 Saving about 60% and 50% of fertilizer N respectively by testing before sowing and during growth period | |||
植株诊断推荐施肥 Plant diagnosis for fertilizer recommendation | SPAD诊断、叶色卡诊断和硝酸盐诊断分别节氮30%、30%和20%左右 Saving about 30%, 30% and 20% of fertilizer N respectively by plant diagnosis of SPAD, Leaf Color Charts diagnosis and nitrate quick test | |||
改进施肥方式 Improvement of fertilization methods | 精准控制施肥位置和深度, 减少表面施肥的氨挥发损失 Controlling fertilization placement and depth to reduce ammonia volatilization from soil surface | 条施Band application | 氮径流和氨挥发分别减少50%和20%左右 Reducing about 50% of runoff N and 20% of NH3 emission | |
注射施用 Injection | 氨挥发减少50%~80% Reducing 50%-80% of NH3 emission | |||
新型肥料 Application of modified fertilizer | 控制养分释放与作物吸收规律匹配, 减少环境损失 Controlling nutrient release to be consistent with crops nutrition absorb rate to reduce nutrient losses | 包膜肥料 Coated fertilizer | 氮淋溶和氨挥发分别减少60%和40%左右 Reducing about 60% of leaching N and 40% of NH3 emission | |
添加抑制剂 Adding inhibitor | 抑制土壤氮素转化关键过程, 减少环境排放 Inhibiting the key process of N transformation in soil to reduce N losses | 添加硝化抑制剂 Adding nitrification inhibitor | 氮淋溶减少50%左右 Reducing about 50% of leaching N | |
添加脲酶抑制剂 Adding urease inhibitors | 氨挥发减少20%~30% Reducing 20%-30% of NH3 emission | |||
优化灌溉 Optimized irrigation | 通过优化灌溉数量、方式和水肥耦合, 提高肥料利用效率以减少养分淋溶和径流损失 Improving nutrient use efficiency to reduce nutrient leaching and runoff by optimizing amount, method and degree of water-fertilizer coupling | 工程节水技术 Engineering water-saving methods | 氮淋溶减少40%左右 Reducing about 40% of leaching N | |
农艺节水技术 Agronomic water-saving methods | 氮淋溶减少20%左右 Reducing about 20% of leaching N | |||
水肥一体化技术 Fertigation | 氮淋溶、氮径流和氨挥发分别减少 30%、34%和30%左右Reducing about 30% of leaching N, 34% of runoff N and 30% of NH3 emission | |||
农田耕作 Better cultivation | 减少耕作对土壤的扰动, 蓄水保墒、防止土壤侵蚀 Reducing soil disturbance to conserve water and prevent soil erosion | 少免耕 Less tillage or no-tillage | 径流和土壤流失分别减少50%左右和50%~80% Reducing about 50% of runoff and 50%-80% of soil erosion | |
覆盖栽培 Mulching cultivation | 径流和土壤流失分别减少30%左右和30%~60% Reducing 30% of runoff and 30%-60% of soil erosion | |||
畜牧生产系统 Livestock production compartment | 精准饲喂 Accurate feeding | 合理调控饲料蛋白摄入, 减少畜禽排泄氮, 降低环境风险 Controlling total feed protein consumed by livestock to reduce total N excretion which is the source of manure N losses | 低蛋白饲喂 Low protein feeding | 氨挥发减少5%~10% Reducing 5%-10% of NH3 emission of livestock manure |
分阶段饲养 Phrase feeding | 氮排泄和氨挥发分别减少20%左右和30%~60% Reducing about 20% of excretion N and 30%-60% of NH3 emission of livestock manure | |||
畜牧生产系统 Livestock production compartment | 饲舍改造 Reformation of livestock houses | 减少尿素与脲酶的接触, 从而减少氨气的产生, 对已产生的氨气固定和回收 Controlling contact of urea and urease to reduce NH3 release, and fix/recycle NH3 | 固液分离 Solid-liquid separation | 氨挥发减少20%左右 Reducing about 20% of NH3 emission in housing section |
快速清理和干燥 Frequent manure removal and rapid manure drying | 氨挥发减少40%左右 Reducing about 40% of NH3 emission in housing section | |||
空气净化和过滤 Filter exhaust air and air scrubbing | 氨挥发减少40%~60% Reducing 40%-60% of NH3 emission in housing section | |||
密闭储藏 Covered or improved storage facilities | 冬季密闭储存粪尿, 从减少粪尿施用和氨挥发两方面减少养分损失 Saving manure in covered facility in winter to reduce nutrient loss through reducing manure application and preventing NH3 volatilization. | 覆盖储存 Cover | 氨挥发减少50%左右 Reducing about 50% of NH3 emission in storage section | |
改进存储设备 Improvement on storage facilities | 氨挥发减少30%左右 Reducing about 30% of NH3 emission in storage section | |||
高效处理 Efficient compost | 控制碳氮转化过程, 降低氮损失 Regulating collaborative transformation of C and N, reducing N losses by efficient compost technique | 反应器堆肥 Compost in reactors | 氨挥发减少40%左右 Reducing about 40% of NH3 emission than traditional compost method | |
家庭消费系统 Human consumption compartment | 减少食物损失和浪费 Reduction of food losses and waste | 减少从农田到餐桌的损失和浪费 Reducing food losses and waste during the entire proceeding from farmland to dining-table | 采后减损技术 Techniques for reducing post-harvest losses | 减少食物损失10%~20% Reduce 10%-20% of food losses |
减少食物餐桌浪费 Campaign for reducing food waste | 减少食物浪费20%~30% Reduce 20%-30% of food waste | |||
落实饮食指南 Implementing local dietary guidance | 健康饮食, 提倡减少红肉消费, 减少食物消费的环境足迹 Encourage healthy diet with low red meat consumption to reduce ecological footprint | 健康饮食 Healthy diet recommendation | 节氮10%左右, 氮损失和温室气体排放分别减少10%~20%和10%~20% Saving 10% of N footprint, reducing of 10%-20% food N losses, and 10%-20% of greenhouse gases emission | |
养分循环 Nutrient recycle | 促进系统间养分循环 Promoting nutrient recycling between compartments | 促进各系统有机废弃物养分循环, 部分替代化肥, 减少整个系统养分环境损失 Promoting higher recycle rate of organic waste in different compartments to substitute chemical fertilizer application and reduce nutrient losses. | 秸秆还田 Return crop straw to field | 还田率60%~80% Return rate reaching 60%-80% |
畜禽粪尿还田 Return livestock manure to field | 还田率80%以上 Return rate higher than 80% | |||
厨余垃圾还田 Return kitchen waste to field | 还田率50%~60% Return rate reaching 50%-60% | |||
食品加工副产品还田 Return food byproduct to field | 还田率30%~50% Return rate reaching 30%-50% | |||
人粪尿还田 Return human manure to field | 还田率50%以上 Return rate reaching higher than 50% |

参考文献
[1] | 张维理, 武淑霞, 冀宏杰, 等.中国农业面源污染形势估计及控制对策Ⅰ. 21世纪初期中国农业面源污染的形势估计[J].中国农业科学, 2004, 37(7):1008-1017 doi: 10.3321/j.issn:0578-1752.2004.07.012 ZHANG W L, WU S X, JI H J, et al. Estimation of agricultural non-point source pollution in China and the alleviating strategies I. Estimation of agricultural non-point source pollution in China in early 21 century[J]. Scientia Agricultura Sinica, 2004, 37(7):1008-1017 doi: 10.3321/j.issn:0578-1752.2004.07.012 |
[2] | GU B J, GE Y, CHANG S X, et al. Nitrate in groundwater of China:Sources and driving forces[J]. Global Environmental Change, 2013, 23(5):1112-1121 doi: 10.1016/j.gloenvcha.2013.05.004 |
[3] | 全为民, 严力蛟.农业面源污染对水体富营养化的影响及其防治措施[J].生态学报, 2002, 22(3):291-299 doi: 10.3321/j.issn:1000-0933.2002.03.002 QUAN W M, YAN L J. Effects of agricultural non-point source pollution on eutrophication of water body and its control measure[J]. Acta Ecologica Sinica, 2002, 22(3):291-299 doi: 10.3321/j.issn:1000-0933.2002.03.002 |
[4] | ZHANG J, MAUZERALL D L, ZHU T, et al. Environmental health in China: Progress towards clean air and safe water[J]. 2010, 375(9720): 1110-1119 |
[5] | 张维理, 田哲旭, 张宁, 等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报, 1995, 1(2):82-89 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF199502011.htm ZHANG W L, TIAN Z X, ZHANG N, et al. Investigation of nitrate pollution in ground water due to nitrogen fertilization in agriculture in North China[J]. Plant Nutrition and Fertilizer Sciences, 1995, 1(2):82-89 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF199502011.htm |
[6] | 赵同科, 张成军, 杜连凤, 等.环渤海七省(市)地下水硝酸盐含量调查[J].农业环境科学学报, 2007, 26(2):779-783 doi: 10.3321/j.issn:1672-2043.2007.02.072 ZHAO T K, ZHANG C J, DU L F, et al. Investigation on nitration in groundwater in seven province (cities) surrounding the Bohai Sea[J]. Journal of Agro-Environment Science, 2007, 26(2):779-783 doi: 10.3321/j.issn:1672-2043.2007.02.072 |
[7] | 李立娜.吉林玉米带典型区域地下水硝态氮污染状况调查分析[D].长春: 吉林农业大学, 2006 LI L N. Typical regions groundwater nitrate-nitrogen pollution condition diagnosis in the corn belt of Jilin Province[D]. Jilin Agricultural University, 2006 |
[8] | 牛世伟, 邹晓锦, 何志刚, 等.辽宁省典型农区地下水硝态氮含量调查与监测[J].江苏农业科学, 2015, 43(10):452-454 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201510142.htm NIU S W, ZOU X J, HE Z G, et al. Investigation and monitoring on nitrate-nitrogen in typical agricultural areas in Liaoning Province[J]. Jiangsu Agricultural Science, 2015, 43(10):452-454 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201510142.htm |
[9] | 唐学芳, 吴勇, 韩莉璧, 等.成都平原典型样区浅层地下水水质调查与污染评价[J].水土保持通报, 2019, 39(6):163-169 https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201906026.htm TANG X F, WU Y, HAN L B, et al. Water quality investigation and pollution evaluation of shallow groundwater in typical sample area of Chengdu Plain[J]. Bulletin of Soil and Water Conservation, 2019, 39(6):163-169 https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201906026.htm |
[10] | 史静, 张乃明, 褚素贞, 等.滇池流域地下水硝酸盐污染特征及影响因素研究[J].农业环境科学学报, 2005, 24(S1):104-107 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH2005S1024.htm SHI J, ZHANG N M, CHU S Z, et al. Groundwater nitrate pollution and the influencing factors in Dianchi Watershed[J]. Journal of Agro-Environment Science, 2005, 24(S1):104-107 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH2005S1024.htm |
[11] | 金赞芳, 王飞儿, 陈英旭, 等.城市地下水硝酸盐污染及其成因分析[J].土壤学报, 2004, 41(2):252-258 doi: 10.3321/j.issn:0564-3929.2004.02.014 JIN Z F, WANG F E, CHEN Y X, et al. Nitrate pollution of groundwater in urban area[J]. Acta Pedologica Sinca, 2004, 41(2):252-258 doi: 10.3321/j.issn:0564-3929.2004.02.014 |
[12] | 邢光熹, 曹亚澄, 施书莲, 等.太湖地区水体氮的污染源和反硝化[J].中国科学:B辑化学, 2001, 31(2):130-137 https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK200102005.htm XING G X, CAO Y C. SHI S L, et al. N pollution sources and deitrification in waterbodies in Taihu Lake region[J]. Science in China:Series B, 2001, 31(2):130-137 https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK200102005.htm |
[13] | CHEN X, CUI Z, FAN M, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523):486-489 doi: 10.1038/nature13609 |
[14] | 马文奇, 张福锁, 陈新平.中国养分资源综合管理研究的意义与重点[J].科技导报, 2006, 24(10):64-67 https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB200610019.htm MA W Q, ZHANG F S, CHEN X P. Significance and keystone of research of integrated nutrient resource management in China[J]. Science & Technology Review, 2006, 24(10):64-67 https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB200610019.htm |
[15] | ICE G. History of innovative best management practice development and its role in addressing water quality limited waterbodies[J]. Journal of Environmental Engineering, 2004, 130(6):684-689 |
[16] | OENEMA O, BLEEKER A, BRAATHEN N A, et al. Nitrogen in Current European Policies[M]. Cambridge:Cambridge University Press, 2011 |
[17] | CHEN X P, CUI Z L, VITOUSEK P M, et al. Integrated soil-crop system management for food security[J]. Proceedings of the National Academy of Sciences, 2011, 108(16):6399 |
[18] | BAI Z H, MA L, JIN S, et al. Nitrogen, phosphorus, and potassium flows through the manure management chain in China[J]. Environmental Science & Technology, 2016, 50(24):13409-13418 doi: 10.1021/acs.est.6b03348 |
[19] | BAI Z H, LU J, ZHAO H, et al. Designing vulnerable zones of nitrogen and phosphorus transfers to control water pollution in China[J]. Environmental Science & Technology, 2018, 52(16):8987-8988 http://d.wanfangdata.com.cn/periodical/32adf90d8a56016c3388992291cc82cb |
[20] | 储茵.合肥市地下水硝酸盐氮污染程度及其防治对策的研究[J].安徽农业大学学报, 2001, 28(1):98-101 https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU200101022.htm CHU Y. Studies on nitrate contamination and its prevention countermeasures in groundwater of Hefei[J]. Journal of Anhui Agricultural University, 2001, 28(1):98-101 https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU200101022.htm |
[21] | 刘宏斌, 张云贵, 李志宏, 等.北京市平原农区深层地下水硝态氮污染状况研究[J].土壤学报, 2005, (3):411-418 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200503009.htm LIU H B, ZHANG Y G, LI Z H, et al. Nitrate contamination of deep groundwater in rural plain areas of Beijing[J]. Acta Pedologica Sinca, 2005, (3):411-418 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200503009.htm |
[22] | 刘宏斌, 雷宝坤, 张云贵, 等.北京市顺义区地下水硝态氮污染的现状与评价[J].植物营养与肥料学报, 2001, 7(4):385-390 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF200104004.htm LIU H B, LEI B K, ZHANG Y G, et al. Investigation and evaluation on nitrate pollution in groundwater of Shunyi District[J]. Plant Nutrition and Fertilizer Science, 2001, 7(4):385-390 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF200104004.htm |
[23] | YANG R, LIU W J. Nitrate contamination of groundwater in an agroecosystem in Zhangye Oasis, Northwest China[J]. Environmental Earth Sciences, 2010, 61(1):123-129 doi: 10.1007/s12665-009-0327-7 |
[24] | 潘涌璋, 朱峰, 李健忠.广州市白云区露天蔬菜地土壤及地下水硝酸盐污染调查研究[J].安徽农业科学, 2008, 36(12):5147-5148 https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY200812149.htm PAN Y Z, ZHU F, LI J Z. Preliminary investigation of the nitrate contamination in soil and groundwater in vegetable area in Baiyun District of Guangzhou City[J]. Journal of Anhui Agricultural Science, 2008, 36(12):5147-5148 https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY200812149.htm |
[25] | 王凌, 张国印, 孙世友, 等.河北省蔬菜高产区化肥施用对地下水硝态氮含量的影响[J].河北农业科学, 2008, 12(10):75-77 https://www.cnki.com.cn/Article/CJFDTOTAL-HBKO200810033.htm WANG L, ZHANG G Y, SUN S Y, et al. Effect of fertilization on nitrate N contamination of groundwater in high-yield vegetable land of Hebei Province[J]. Journal of Hebei Agricultural Sciences, 2008, 12(10):75-77 https://www.cnki.com.cn/Article/CJFDTOTAL-HBKO200810033.htm |
[26] | 郭战玲, 沈阿林, 寇长林, 等.河南省地下水硝态氮污染调查与监测[J].农业环境与发展, 2008, 25(5):125-128 https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ200805037.htm GUO Z L, SHEN A L, KOU C L, et al. Investigation and monitoring on nitrate-nitrogen in groundwater in Henan Province[J]. Agro-Environment & Development, 2008, 25(5):125-128 https://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ200805037.htm |
[27] | 熊江波, 李雁勇, 王翠红, 等.长沙市城区周边地区地下水硝酸盐态氮含量及污染状况评价[J].湖南农业科学, 2010, (7):88-90 https://www.cnki.com.cn/Article/CJFDTOTAL-HNNK201007030.htm XIONG J B, LI Y Y, WANG C H, et al. The nitrate nitrogen content in groundwater in surrounding area of Changsha City and evaluation of pollution status[J]. Hunan Agricultural Science, 2010, (7):88-90 https://www.cnki.com.cn/Article/CJFDTOTAL-HNNK201007030.htm |
[28] | MA L, MA W Q, VELTHOF G L, et al. Modeling nutrient flows in the food chain of China[J]. Journal of Environmental Quality, 2010, 39(4):1279-1289 http://www.europepmc.org/abstract/MED/20830916 |
[29] | WANG M R, MA L, STROKAL M, et al. Hotspots for nitrogen and phosphorus losses from food production in China:A county-scale analysis[J]. Environmental Science & Technology, 2018, 52(10):5782-5791 http://smartsearch.nstl.gov.cn/paper_detail.html?id=7e42d114a22045d9bd4d705f3b6a348e |
[30] | 国家统计局农村社会经济调查司.中国县域统计年鉴2013[M].北京:中国统计出版社, 2014 Department of Rural Social and Economic Investigation of National Bureau of Statistics. China Statistical Yearbook 2013[M]. Beijing:China Statistics Press, 2014 |
[31] | 国家发展和改革委员会价格司.全国农产品成本收益资料汇编2013[M].北京:中国统计出版社, 2014 Department of Price of National Development and Reform Commission. Compilation of National Agricultural Product Cost and Benefit Data 2013[M]. Beijing:China Statistics Press, 2014 |
[32] | 徐新良, 刘纪远, 张树文, 等. 2010年中国土地利用现状遥感监测数据[DB/OL].北京: 中国科学院资源环境科学数据中心.[2020-09-10].http://www.resdc.cn/data.aspx?DATAID=99 XU X L, LIU J Y, ZHANG S W, et al. China remote sensing dataset of land use monitoring in 2010[DB/OL]. Beijing: Resource and Environment Science and Data Center.[2020-09-10]. http://www.resdc.cn/data.aspx?DATAID=99 |
[33] | 徐新良.基于DEM提取的中国流域、河网数据集[DB/OL].北京: 中国科学院资源环境科学数据中心.[2020-09-10].http://www.resdc.cn/DOI/doi.aspx?DOIid=44 XU X L. China watershed and river network dataset based on DEM[DB/OL]. Beijing: Resource and Environment Science and Data Center.[2020-09-10]. http://www.resdc.cn/DOI/doi.aspx?DOIid=44 |
[34] | 全国农业区划委员会.中国综合农业区划[M].北京:农业出版社, 1981 National Committee for Zoning of Agriculture Areas. Integrated Agricultural Zones of China[M]. Beijing:China Agriculture Press, 1981 |
[35] | DE VRIES W, KROS J, KROEZE C, et al. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts[J]. Current Opinion in Environmental Sustainability, 2013, 5(3/4):392-402 http://www.sciencedirect.com/science/article/pii/S1877343513000833 |
[36] | LU J, BAI Z H, CHADWICK D, et al. Mitigation options to reduce nitrogen losses to water from crop and livestock production in China[J]. System Dynamics and Sustainability, 2019, 40:95-107 http://www.sciencedirect.com/science/article/pii/S1877343519300430 |
[37] | 张福锁, 崔振岭, 陈新平, 等.最佳养分管理技术列单[M].北京:中国农业大学出版社, 2010 ZHANG F S, CUI Z L, CHEN X P, et al. Best Nutrient Management Technology List[M]. Beijing:China Agricultural University Press, 2010 |
[38] | 曹玉博, 邢晓旭, 柏兆海, 等.农牧系统氨挥发减排技术研究进展[J].中国农业科学, 2018, 51(3):566-580 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201803014.htm |
[39] | CAO Y B, XING X X, BAI Z H, et al. Review on ammonia emission mitigation techniques of crop-livestock production system[J], Scientia Agricultura Sinica, 2018, 51(3):566-580 http://www.sciencedirect.com/science/article/pii/S0048969713004920 |
[40] | VELTHOF G L, OUDENDAG D, WITZKE H R, et al. Integrated assessment of nitrogen losses from agriculture in EU-27 using MITERRA-EUROPE[J]. Journal of Environmental Quality, 2009, 38(2):402-417 http://www.cqvip.com/QK/72225X/201811/7000955860.html |
[41] | 金书秦, 邢晓旭.农业面源污染的趋势研判、政策评述和对策建议[J].中国农业科学, 2018, 51(3):593-600 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201803016.htm JIN S Q, XING X X. Trend analysis, policy evaluation, and recommendations of agricultural non-point source pollution[J]. Scientia Agricultura Sinica, 2018, 51(3):593-600 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201803016.htm |