删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

细菌性根腐病对三七光合特性的影响

本站小编 Free考研考试/2022-01-01

武洪敏1, 2, 3,,
沙本才1, 2,
张金燕1, 2, 3,
寸竹1, 2, 3,
陈军文1, 2, 3,,
1.云南农业大学西南中药材种质创新与利用国家地方联合工程研究中心 昆明 650201
2.云南农业大学云南省药用植物生物学重点实验室 昆明 650201
3.云南农业大学农学与生物技术学院 昆明 650201
基金项目: 国家自然科学基金项目81860676
国家自然科学基金项目81360609
云南省科技重大专项项目2017ZF001
云南省科技重大专项项目2016ZF001

详细信息
作者简介:武洪敏, 主要研究方向为药用植物生理生态。E-mail:1071251844@qq.com
通讯作者:陈军文, 主要研究方向为药用植物资源与生态种植。E-mail:cjw31412@163.com
中图分类号:S567.5+3

计量

文章访问数:182
HTML全文浏览量:1
PDF下载量:113
被引次数:0
出版历程

收稿日期:2020-04-08
录用日期:2020-07-01
刊出日期:2020-11-01

Effects of bacterial root rot on photosynthetic characteristics in Panax notoginseng

WU Hongmin1, 2, 3,,
SHA Bencai1, 2,
ZHANG Jinyan1, 2, 3,
CUN Zhu1, 2, 3,
CHEN Junwen1, 2, 3,,
1. National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, China
2. Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming 650201, China
3. College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
Funds: National Natural Science Foundation of China81860676
National Natural Science Foundation of China81360609
Key Science and Technology Project of Yunnan Province2017ZF001
Key Science and Technology Project of Yunnan Province2016ZF001

More Information
Corresponding author:CHEN Junwen, E-mail:cjw31412@163.com


摘要
HTML全文
(11)(3)
参考文献(47)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:根腐病是严重威胁三七生产的重要因素之一,常年发病率在5%~20%。其中,由假单胞杆菌(Pseudomon adaceae)引起的细菌性根腐病,因叶片出现缺水萎蔫症状时才能发现,目前尚无有效的预防措施。为探究细菌性根腐病对三七光合生理特性的影响,从而为三七病害生理学研究提供理论基础,本文以2年生三七为材料,设置2个处理[发病植株和健康对照植株(CK)],研究细菌性根腐病对三七形态结构、光合特性和光系统功能的影响。结果表明:1)根腐病导致三七的主根褐变腐烂,须根断损,茎基部腐烂中空,叶片萎蔫,各器官含水量比CK显著降低(P≤0.05);而株高、叶面积和叶片解剖结构(上表皮厚度、下表皮厚度、栅栏组织厚度和海绵组织厚度)在两处理间均无显著差异。2)发病植株叶片叶绿素含量、净光合速率(Pn)、气孔导度(Gs)、水分利用效率(WUE)和表观叶肉导度(AMC)显著低于CK(P≤0.05),且CK叶片胞间CO2浓度(Ci)与Pn呈反比。3)发病植株叶片的光系统Ⅰ(PSⅠ)反应中心P700最大荧光信号(Pm)根腐病初期暂不受影响,而叶片暗适应下最大量子效率(Fv/Fm)、光系统Ⅱ(PSⅡ)电子传递速率[ETR(Ⅱ)]、PSⅡ实际光化学量子产量[Y(Ⅱ)]、PSⅠ电子传递速率[ETR(Ⅰ)]、PSⅠ周围的环式电子流(CEF)和PSⅠ实际光化学量子产量[Y(Ⅰ)]均显著低于CK(P≤0.05);参与调节性能量耗散的量子产量[Y(NO)]则显著高于CK(P≤0.05);发病植株的快速叶绿素荧光动力学曲线上出现K相,且显著高于CK(P≤0.05)。总的来看,细菌性根腐病对三七发病植株各器官的损伤严重程度为根>茎>叶,且根腐病导致发病植株叶片叶绿素降解,PSⅡ受到不可逆损伤,PSⅠ的电子传递被抑制,且叶肉细胞CO2的同化能力降低,根腐病限制三七正常进行光合作用的条件。
关键词:三七/
细菌性根腐病/
缺水/
叶片解剖结构/
光合特性/
叶绿素荧光
Abstract:Root rot is an important factor that has threatened the cultivation of Panax notoginseng, with an incidence rate of 5% to 20%. Bacterial root rot caused by Pseudomon adaceaecan might only be discovered after infected leaves have wilted, and by then there will no longer be any effective control measures. The objective of this study was to explore the differences in effects of bacterial root rot on the photosynthetic physiological characteristics between control (CK) and diseased plants (DP), thus providing a theoretical basis for the understanding of disease physiology in P. notoginseng. The results showed that the taproot of DP was browned and rotted from root rot, accompanied by broken fibrous roots, decay and hollow stems, withering leaves, and low water content. There was no significant difference in plant height, leaf area, and thickness of leaf antomical strucutres (including thickness of upper epidermis, lower epidermis, palisade tissue, and sponge tissue) between DP and CK. However, the chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), instantaneous water use efficiency (WUEinst), intrinsic water use efficiency (WUEi), and apparent mesophyll conductance (AMC) were significantly lower in DP than in CK (P ≤ 0.05), with intercellular CO2 concentration (Ci) inversely proportional to Pn in DP individuals. The maximum fluorescence signal of the P700 reaction center (Pm) in DP was not affected during the period of initial infection, but the maximum quantum efficiency of photosystem Ⅱ (PSⅡ) under dark adaptation (Fv/Fm), electron transfer rate of PSⅡ[ETR(Ⅱ)], actual photochemical quantum yields of PSⅡ[Y(Ⅱ)], electron transfer rate of PSⅠ[ETR(Ⅰ)], cyclic electron flow around PSI (CEF), and actual photochemical quantum yields of PSⅠ[Y(Ⅰ)] were significantly lower in DP than in CK (P ≤ 0.05). Additionally, the fraction of energy passively dissipated in the forms of heat and fluorescence[Y(NO)] were significantly higher in DP than in CK (P ≤ 0.05). Furthermore, The K phase in the fast chlorophyll fluorescence kinetic curves was significantly higher in DP than in CK (P ≤ 0.05). Overall, the degree of damage for the various organs of DP was:root>stem>leaf. Root rot significantly degraded leaf chlorophyll, along with irreversible damage to PSⅡ and inhibition of PSⅠelectron transfer and reduced the assimilation ability of mesophyll cells, consequently restricting photosynthetic performance.
Key words:Panax notoginseng/
Bacterial root rot/
Water shortage/
Leaf anatomical structure/
Photosynthetic characteristics/
Chlorophyll fluorescence

HTML全文


图1细菌性根腐病对三七植株形态的影响
A:正常植株(CK)和发病植株(DP)盆栽图; B: CK和DP的表型性状; C: CK和DP的根系形态性状; D: CK和DP的主根横截面。
Figure1.Effect of bacterial root rot on the morphology of Panax notoginseng
A: potted healthy plants (CK) and diseased plants (DP); B: plant phenotypic traits of CK and DP; C: root traits of CK and DP; D: cross sections of taproots of CK and DP.


下载: 全尺寸图片幻灯片


图2细菌性根腐病对三七器官含水量的影响
CK:对照植株; DP:发病植株。*表示差异显著(P≤0.05)。
Figure2.Effect of bacterial root rot on water contents of Panax notoginseng organs
CK: healthy plant; DP: diseased plant. * indicates significant difference between CK and DP (P≤0.05).


下载: 全尺寸图片幻灯片


图3细菌性根腐病对三七株高和叶面积的影响
CK:对照植株; DP:发病植株。
Figure3.Effects of bacterial root rot on plant height and leaf area of Panax notoginseng
CK: healthy plant; DP: diseased plant.


下载: 全尺寸图片幻灯片


图4细菌性根腐病对三七茎基部显微结构的影响
CK:对照植株; DP:发病植株; Ep:表皮; Co:皮层; VC:维管束; Pi:髓。
Figure4.Effect of bacterial root rot on the anatomic structure of stem base of Panax notoginseng
CK: healthy plant; DP: diseased plant; Ep: epidermis; Co: cortex; VC: vascular bundle; Pi: pith.


下载: 全尺寸图片幻灯片


图5细菌性根腐病对三七叶片叶绿素含量的影响
CK:对照植株; DP:发病植株。*表示差异显著(P≤0.05)。
Figure5.Effect of bacterial root rot on chlorophyll content in leaves of Panax notoginseng
CK: healthy plant; DP: diseased plant. * indicates significant difference between CK and DP (P≤0.05).


下载: 全尺寸图片幻灯片


图6细菌性根腐病对三七叶片气体交换参数的影响
CK:对照植株; DP:发病植株。
Figure6.Effect of bacterial root rot on gas exchange parameters in leaves of Panax notoginseng
CK: healthy plant; DP: diseased plant.


下载: 全尺寸图片幻灯片


图7细菌性根腐病对三七叶片PSⅡ和PSⅠ光合电子传递的影响
CK:对照植株; DP:发病植株。
Figure7.Effect of bacterial root rot on electron transport of PSⅡ and PSⅠ in 1eaves of Panax notoginseng
CK: healthy plant; DP: diseased plant.


下载: 全尺寸图片幻灯片


图8细菌性根腐病对三七叶片荧光猝灭动力学的影响
CK:对照植株; DP:发病植株。
Figure8.Effect of bacterial root rot on fluorescence quenching kinetics in 1eaves of Panax notoginseng
CK: healthy plant; DP: diseased plant.


下载: 全尺寸图片幻灯片


图9细菌性根腐病对三七叶片中光能分配的影响
CK:对照植株; DP:发病植株。
Figure9.Effect of bacterial root rot on light energy distribution in leaves of Panax notoginseng
CK: Healthy plant; DP: Diseased plant.


下载: 全尺寸图片幻灯片


图10细菌性根腐病对三七叶片快速叶绿素荧光动力学曲线(O-K-J-I-P曲线)的影响
CK:对照植株; DP:发病植株。O、K、J、I和P分别代表时间为20 μs、300 μs、2 ms、30 ms和300 ms的荧光。
Figure10.Effect of bacterial root rot on chlorophyll fluorescence kinetics curve (O-K-J-I-P curve) in leaves of Panax notoginseng
O, K, J, I and P represent the fluorescence at time=20 μs, 300 μs, 2 ms, 30 ms, and 300 ms, respectively. CK: healthy plant; DP: diseased plant.


下载: 全尺寸图片幻灯片


图11细菌性根腐病对三七叶绿素可变荧光FkFo-Fj振幅的比例(Wk, A)与可变荧光FjFo-Fp振幅比例(Vj, B)的影响
*表示差异显著(P≤0.05)。*
Figure11.Effects of bacterial root rot on ratio of variable fluorescence Fk to Fo-F j amplitude (Wk) and ratio of variable fluorescence Fj to Fo-Fp amplitude (Vj)
indicates significant difference be-tween CK and DP (P≤0.05).


下载: 全尺寸图片幻灯片

表1细菌性根腐病对三七叶片组织解剖结构参数的影响
Table1.Effect of bacterial root rot on anatomic structure of leaf of Panax notoginseng
性状 Trait 对照植株 Healthy plant 发病植株 Diseased plant
上表皮厚度 Upper epidermis thickness (μm) 19.82±2.28 14.99±0.81
栅栏组织厚度 Palisade tissue thickness (μm) 23.60±2.21 26.93±2.83
海绵组织厚度 Spongy tissue thickness (μm) 37.61±2.63 41.28±5.19
下表皮厚度 Lower epidermis thickness (μm) 18.32±8.06 12.13±1.05
叶片厚度 Blade thickness (μm) 99.37±7.32 95.37±7.88
栅栏组织厚度/海绵组织厚度 Palisade tissue thickness/spongy tissue thickness 0.64±0.06 0.68±0.07


下载: 导出CSV
表2细菌性根腐病对三七光合相关参数的影响
Table2.Effect of bacterial root rot on photosynthetic related trait parameters in leaves of Panax notoginseng
性状 Trait 对照植株 Healthy plant 发病植株 Diseased plant
瞬时水分利用效率 (WUE inst) Instantaneous water use efficiency (μmo·lmol-1) 3.56±0.24 2.03±0.93*
内禀水分利用效率 (WUEi) Intrinsic water use efficiency (μmol·mmol-1) 88.57±4.18 13.32±2.07*
表观叶肉导度 (AMC) Apparent mesophyll conductance (mol·m-2·s-1) 0.01±0.001 0.001±0.000 4*
??*表示差异显著 (P≤0.05), 数据为平均值±标准差(n=7)。* indicates significant difference between CK and DP (P≤0.05). Values are means ± SD (n=7).


下载: 导出CSV
表3三七对照植株与发病植株的PSⅡ和PSⅠ活性变化
Table3.Effect of bacterial root rot on PSⅡ and PSⅠactivities in leaves of Panax notoginseng
参数 Parameter 对照植株
Healthy plant
发病植株
Diseased plant
最大荧光强度 (Fm) Maximum fluorescence intensity 2.08±0.02 2.64±0.29
暗适应下最大量子效率 (Fv/Fm) Maximum quantum efficiency under dark adaptation 0.82±0.00 0.76±0.02*
PSⅠ反应中心P700最大荧光信号 (Pm) Maximum fluorescence signal of the P700 reaction center 1.18±0.14 0.98±0.13
??*表示差异显著(P≤0.05), 数据为平均值±标准差(n=7)。* indicates significant difference between CK and DP (P≤0.05). Values are means ± SD (n=7).


下载: 导出CSV

参考文献(47)
[1]谢联辉.普通植物病理学[M]. 2版.北京:科学出版社, 2013:14-18
XIE L H. General Plant Pathology[M]. Second edition. Beijing:Science Press, 2013:14-18
[2]FUNAYAMA S, SONOIKE K, TERASHIMA I. Photosynthetic properties of leaves of Eupatorium makinoi infected by a geminivirus[J]. Photosynthesis Research, 1997, 53(2):253-261 doi: 10.1023/A%3A1005884007183
[3]ZHOU Y H, PENG Y H, LEI J L, et al. Effects of potato virus YNTN infection on gas exchange and photosystem 2 function in leaves of Solanum tuberosum L.[J]. Photosynthetica, 2004, 42(3):417-423 doi: 10.1023/B:PHOT.0000046161.16215.dd
[4]MANDAL K, SARAVANAN R, MAITI S, et al. Effect of downy mildew disease on photosynthesis and chlorophyll fluorescence in Plantago ovata Forsk[J]. Journal of Plant Diseases and Protection, 2009, 116(4):164-168 doi: 10.1007/BF03356305
[5]张战备, 张慧杰, 段国琪, 等.西葫芦叶上遗传性银斑与银叶病病斑光合生理及解剖特征比较[J].中国生态农业学报, 2007, 15(6):123-125 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj200706030
ZHANG Z B, ZHANG H J, DUAN G Q, et al. Comparison of photosynthetic physiological and anatomical features of gene and virus controlled silver-leaf mottling of summer squash[J]. Chinese Journal of Eco-Agriculture, 2007, 15(6):123-125 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj200706030
[6]杨志晓, 丁燕芳, 张小全, 等.赤星病胁迫对不同抗性烟草品种光合作用和叶绿素荧光特性的影响[J].生态学报, 2015, 35(12):4146-4154 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201512030
YANG Z X, DING Y F, ZHANG X Q, et al. Impacts of Alternaria alternata stress on characteristics of photosynthesis and chlorophyll fluorescence in two tobacco cultivars with different resistances[J]. Acta Ecologica Sinica, 2015, 35(12):4146-4154 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201512030
[7]柯思佳, 毕研飞, 任琴琴, 等.蔓枯病菌侵染影响抗感甜瓜品种及杂种的光合特性分析[J].植物病理学报, 2019, 49(4):465-473 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwblxb201904004
KE S J, BI Y F, REN Q Q, et al. Analysis of photosynthetic characteristics of anti-allergic melon varieties and hybrids after inoculated with Didymella bryoniae[J]. Acta Phytopathologica Sinica, 2019, 49(4):465-473 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwblxb201904004
[8]李玥仁, 商鸿生.小麦条锈病罹病植株对水分胁迫的响应[J].植物生理学报, 2000, 26(5):417-421 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxb200005009
LI Y R, SHANG H S. Responses of wheat plants infected with stripe rust to water stress[J]. Acta Phytophysiologica Sinica, 2000, 26(5):417-421 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxb200005009
[9]RISTAINO J B, DUNIWAY J M. Effect of preinoculation and postinoculation water-stress on the severity of Phytophthora root-rot in processing tomatoes[J]. Plant Disease, 1989, 73(4):349-352 doi: 10.1094/PD-73-0349
[10]冯汉青, 吴强, 李红玉, 等.干旱与条锈病复合胁迫对小麦的生理影响[J].生态学报, 2006, 26(6):1963-1974 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb200606043
FENG H Q, WU Q, LI H Y, et al. Combined effect of water stress and pathogen infection on wheat physiology[J]. Acta Ecologica Sinica, 2006, 26(6):1963-1974 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb200606043
[11]赵鸿, 王润元, 马鹏里, 等.半干旱区春小麦受条锈菌侵染后光合作用和蒸腾作用的变化规律[J].干旱气象, 2004, 22(4):56-59 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqx200404012
ZHAO H, WANG R Y, MA P L, et al. Effect of stripe rust infection on photosynthesis and transpiration of wheat in the semi-arid region[J]. Arid Meteorology, 2004, 22(4):56-59 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqx200404012
[12]崔振华.葡萄试管苗对葡萄卷叶病和PEG诱导的干旱胁迫的响应及耐病毒砧木评价的研究[D].杨凌: 西北农林科技大学, 2017
CUI Z H. Responses of in vitro grapevine plantlets to grapevine leafroll-associated virus infection and peg-induced drought stress, and preliminary evaluations of tolerance of grapevine rootstocks to grapevine leafroll disease[D]. Yangling: Northwest A & F University, 2017
[13]缪作清, 李世东, 刘杏忠, 等.三七根腐病病原研究[J].中国农业科学, 2006, 39(7):1371-1378 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx200607011
LIAO Z Q, LI S D, LIU X Z, et al. The causal microorganisms of Panax notoginseng root rot disease[J]. Scientia Agricultura Sinica, 2006, 39(7):1371-1378 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykx200607011
[14]王朝梁, 崔秀明, 李忠义, 等.三七根腐病发生与环境条件关系的研究[J].中国中药杂志, 1998, 23(12):714-716 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800743483
WANG C L, CUI X M, LI Z Y, et al. Studies on relationship between root rot on Panax notoginseng Burk. F. H. Chen and its environmental conditions[J]. China Journal of Chinese Materia Medica, 1998, 23(12):714-716 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800743483
[15]官会林, 杨建忠, 陈煜君, 等.三七设施栽培根际微生物菌群变化及其与三七根腐病的相关性研究[J].土壤, 2010, 42(3):378-384 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201003008
GUAN H L, YANG J Z, CHEN Y J, et al. Change of rhizospheric microbe colony in cultivated soil and its correlation to root rot disease in Panax notoginseng[J]. Soils, 2010, 42(3):378-384 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201003008
[16]罗文富, 喻盛甫, 黄琼, 等.三七根腐病复合侵染中病原细菌的研究[J].云南农业大学学报, 1999, 14(2):123-127 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900771231
LUO W F, YU S F, HUANG Q, et al. Studies on pathogenic bacteria in complex infection of Panax notoginseng root rot[J]. Journal of Yunnan Agricultural University, 1999, 14(2):123-127 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900771231
[17]刘筱, 王锐洁, 杨淑君, 等.干旱胁迫对何首乌生长和叶绿素荧光参数的影响[J].河南农业科学, 2019, 48(1):50-56 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnnykx201901008
LIU X, WANG R J, YANG S J, et al. Effects of drought stress on growth and chlorophyll fluorescence parameters of Polygonum multiflorum[J]. Journal of Henan Agricultural Sciences, 2019, 48(1):50-56 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnnykx201901008
[18]JAMES S A, BELL D T. Influence of light availability on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances[J]. Tree Physiology, 2000, 20(15):1007-1018 doi: 10.1093/treephys/20.15.1007
[19]赵世杰, 苍晶.植物生理学实验指导[M].北京:中国农业出版社, 2016:77-80
ZHAO S J, CANG J. Plant Physiology Experiment Guide[M]. Beijing:China Agriculture Press, 2016:77-80
[20]BASSMAN J B, ZWIER J C. Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa×P. deltoids clone[J]. Tree Physiology, 1991, 8(2):145-149 doi: 10.1093/treephys/8.2.145
[21]赵福年, 杨红燕, 王润元, 等.作物内禀水分利用效率变化[J].核农学报, 2019, 33(9):1873-1881 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnxb201909024
ZHAO F N, YANG H Y, WANG R Y, et al. Variation of intrinsic water use efficiency for crop[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(9):1873-1881 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnxb201909024
[22]刘晓龙, 徐晨, 徐克章, 等.盐胁迫对水稻叶片光合作用和叶绿素荧光特性的影响[J].作物杂志, 2014, (2):88-92 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwzz201402022
LIU X L, XU C, XU K Z, et al. Effects on characteristics of photosynthesis and chlorophyll fluorescence of rice under salt stress[J]. Crops, 2014, (2):88-92 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwzz201402022
[23]ZHANG S B, HUANG W, ZHANG J L, et al. Differential responses of photosystems Ⅰ and Ⅱ to seasonal drought in two Ficus species[J]. Acta Oecologica, 2016, 73:53-60 doi: 10.1016/j.actao.2016.03.001
[24]MIYAKE C, MIYATA M, SHINZAKI Y, et al. CO2 response of cyclic electron flow around PSI (CEF-PSⅠ) in tobacco leaves-relative electron fluxes through PSⅠ and PSⅡ determine the magnitude of non-photochemical quenching (NPQ) of chl fluorescence[J]. Plant and Cell Physiology, 2005, 46(4):629-637 doi: 10.1093/pcp/pci067
[25]HUANG W, YANG Y J, ZHANG S B, et al. Cyclic electron flow around photosystem Ⅰ promotes ATP synthesis possibly helping the rapid repair of photodamaged photosystem Ⅱ at low light[J]. Frontiers in Plant Science, 2018, 9:239 doi: 10.3389/fpls.2018.00239
[26]STRASSER R J, TSIMILLI-MICHAEL M, SRIVASTAVA A. Analysis of the chlorophyll a fluorescence transient[C]//GOVINDJEE P G. Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration. Dordrecht: Springer, 2004: 1-47
[27]黄伟.环式电子传递在植物抗环境胁迫过程中的重要作用[D].合肥: 中国科学技术大学, 2012
HUANG W. The significant role of cyclic electron flow in plants' adaptation to environmental stresses[D]. Hefei: University of Science and Technology of China, 2012
[28]李耕, 高辉远, 赵斌, 等.灌浆期干旱胁迫对玉米叶片光系统活性的影响[J].作物学报, 2009, 35(10):1916-1922 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb200910021
LI G, GAO H Y, ZHAO B, et al. Effects of drought stress on activity of photosystems in leaves of maize at grain filling stage[J]. Acta Agronomica Sinica, 2009, 35(10):1916-1922 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zuowxb200910021
[29]杨峰, 黄山, 武晓玲, 等.根腐病胁迫对大豆光谱特征和叶绿素荧光特性的影响[J].大豆科学, 2013, 32(4):490-495 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddkx201304012
YANG F, HUANG S, WU X L, et al. Effects of phytophthora root rot stress on canopy spectra reflectance and chlorophyll fluorescence characteristics of soybean[J]. Soybean Science, 2013, 32(4):490-495 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddkx201304012
[30]王晓森, 孟兆江, 段爱旺, 等.充分灌溉和干旱胁迫对棉花茎直径变化的影响[J].灌溉排水学报, 2009, 28(5):75-78 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ggps200905020
WANG X S, MENG Z J, DUAN A W, et al. Stem diameter variation subjected to full irrigation and drought stress in cotton[J]. Journal of Irrigation and Drainage, 2009, 28(5):75-78 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ggps200905020
[31]孙冬梅, 刘惕若, 杨凤军, 等.小麦叶枯性病害生理学研究[J].黑龙江八一农垦大学学报, 1999, 11(4):27-31 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hljbynkdxxb199904006
SUN D M, LIU T R, YANG F J, et al. The study on the disease physiology of wheat blight[J]. Journal of Heilongjiang August First Land Reclamation University, 1999, 11(4):27-31 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hljbynkdxxb199904006
[32]叶子飘, 段世华, 康华靖.不同CO2浓度下大豆叶片的水分利用效率比较[J].核农学报, 2019, 33(5):1006-1015 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnxb201905021
YE Z P, DUAN S H, KANG H J. Comparison of water use efficiency for Glycine max leaves under different CO2 concentration[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(5):1006-1015 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnxb201905021
[33]LI X G, MENG Q W, JIANG G Q, et al. The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle[J]. Photosynthetica, 2003, 41(2):259-265 doi: 10.1023/B:PHOT.0000011959.30746.c0
[34]郭兴启, 李向东, 朱汉城, 等.马铃薯Y病毒(PVY)的侵染对烟草叶片光合作用的影响[J].植物病理学报, 2000, 30(1):94-95 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwblxb200001021
GUO X Q, LI X D, ZHU H C, et al. Effect of PVY-infection on photosynthesis of tobacco[J]. Acta Phytopathologica Sinica, 2000, 30(1):94-95 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwblxb200001021
[35]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯, 1997, 33(4):241-244 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx199704001
XU D Q. Some problems in stomatal limitation analysis of photosynthesis[J]. Plant Physiology Communications, 1997, 33(4):241-244 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx199704001
[36]FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33(1):317-345 doi: 10.1146/annurev.pp.33.060182.001533
[37]王连水, 张云霞, 黄江华, 等. Vuculic acid对空心莲子草叶片光合作用的影响[J].植物病理学报, 2012, 42(3):319-322 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwblxb201203014
WANG L S, ZHANG Y X, HUANG J H, et al. Effect of vuculic acid produced by Nimbya alternantherae on photosynthesis of alligatorweed leaf[J]. Acta Phytopathologica Sinica, 2012, 42(3):319-322 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwblxb201203014
[38]左应梅, 杨维泽, 杨天梅, 等.干旱胁迫下4种人参属植物抗性生理指标的比较[J].作物杂志, 2016, (3):84-88 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwzz201603016
ZUO Y M, YANG W Z, YANG T M, et al. Comparison of resistant physiological index among four species in the Genus Panax under water stress[J]. Crops, 2016, (3):84-88 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwzz201603016
[39]薛娴, 许会敏, 吴鸿洋, 等.植物光合作用循环电子传递的研究进展[J].植物生理学报, 2017, 53(2):145-158 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201702002
XUE X, XU H M, WU H Y, et al. Research progress of cyclic electron transport in plant photosynthesis[J]. Plant Physiology Journal, 2017, 53(2):145-158 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201702002
[40]DEMMIG-ADAMS B, ADAMS Ⅲ W W. Photoprotection and other responses of plants to high light stress[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43(1):599-626 doi: 10.1146/annurev.pp.43.060192.003123
[41]王春梅, 施定基, 朱水芳, 等.黄瓜花叶病毒对烟草叶片和叶绿体光合活性的影响[J].植物学报, 2000, 42(4):388-392 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwxb200004009
WANG C M, SHI D J, ZHU S F, et al. Effects of cucumber mosaic virus infection on photosynthetic activities of tobacco leaves and chloroplasts[J]. Acta Botanica Sinica, 2000, 42(4):388-392 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwxb200004009
[42]杜国栋, 李爽, 刘志琨, 等.苹果褐斑病菌侵染对苹果叶片光合机构功能的影响[J].植物生理学报, 2013, 49(9):902-908 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201309009
DU G D, LI S, LIU Z K, et al. Effects of apple brown spot pathogen infection on the function of photosynthetic apparatus in apple leaves[J]. Plant Physiology Journal, 2013, 49(9):902-908 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx201309009
[43]WILHELMOVá N, PROCHá ZKOVá D, ?INDELá ?OVá M, et al. Photosynthesis in leaves of Nicotiana tabacum L. infected with tobacco mosaic virus[J]. Photosynthetica, 2005, 43(4):597-602 doi: 10.1007/s11099-005-0093-z
[44]李燕宏, 洪健, 谢礼, 等.蚕豆萎蔫病毒2号分离物侵染对蚕豆叶片光合活性和叶绿体超微结构的影响[J].植物生理与分子生物学学报, 2006, 32(4):490-496 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxb200604014
LI Y H, HONG J, XIE L, et al. Effects of broad bean wilt virus 2 isolate infection on photosynthetic activities and chloroplast ultrastructure in broad bean leaves[J]. Journal of Plant Physiology and Molecular Biology, 2006, 32(4):490-496 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxb200604014
[45]部建雯, 姚广, 高辉远, 等.核盘菌(Sclerotinia sclerotiorum (Lib.) de Bary)侵染抑制黄瓜光合作用的机理[J].植物病理学报, 2009, 39(6):613-621 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwblxb200906008
BU J W, YAO G, GAO H Y, et al. Inhibition mechanism of photosynthesis in cucumber leaves infected by Sclerotinia sclerotiorum (Lib.) de Bary[J]. Acta Phytopathologica Sinica, 2009, 39(6):613-621 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwblxb200906008
[46]王振兴, 陈丽, 艾军, 等.不同干旱胁迫对山葡萄的光合作用和光系统Ⅱ活性的影响[J].植物生理学报, 2014, 50(8):1171-1176 http://www.cqvip.com/QK/90791A/20148/662157129.html
WANG Z X, CHEN L, AI J, et al. Effects of different drought stress on photosynthesis and activity of photosystem Ⅱ in leaves of amur grape (Vitis amurensis)[J]. Plant Physiology Journal, 2014, 50(8):1171-1176 http://www.cqvip.com/QK/90791A/20148/662157129.html
[47]张园园, 徐秀德, 王振东, 等.高粱靶斑病菌侵染对高粱光系统Ⅱ的影响[J].作物杂志, 2012, (2):42-46 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwzz201202010
ZHANG Y Y, XU X D, WANG Z D, et al. Effects of infection of Bipolaris sorghicola on PSⅡ of sorghum[J]. Crops, 2012, (2):42-46 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwzz201202010

相关话题/植物 图片 生理 结构 组织