朱康莹1, 2, ?,,
龙步菊3,,,
田振荣1,
来剑斌1,
孙志刚1, 2,,
1.中国科学院地理科学与资源研究所/中国科学院生态系统网络观测与模拟重点实验室 北京 100101
2.中国科学院大学资源与环境学院 北京 100049
3.中国农业大学资源与环境学院 北京 100193
基金项目: 国家自然科学基金项目31570472
中国科学院战略性先导科技课题XDA230501002
详细信息
通讯作者:龙步菊, 主要研究方向为农业气象学, E-mail:longbuju@cau.edu.cn
孙志刚, 主要研究方向为生态遥感与区域生态, E-mail:sun.zhigang@igsnrr.ac.cn
†同等贡献者:赵风华, 主要研究方向为农田生态学, E-mail: zhaofh@igsnrr.ac.cn朱康莹, 主要研究方向为生态遥感与区域生态, E-mail:zhuky.18b@igsnrr.ac.cn
中图分类号:S429
计量
文章访问数:283
HTML全文浏览量:6
PDF下载量:148
被引次数:0
出版历程
收稿日期:2020-03-05
录用日期:2020-06-15
刊出日期:2020-10-01
Effect of brackish water irrigation on the resistibility of winter wheat leaf to dry-hot wind
ZHAO Fenghua1, ?,,ZHU Kangying1, 2, ?,,
LONG Buju3,,,
TIAN Zhenrong1,
LAI Jianbin1,
SUN Zhigang1, 2,,
1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences/Key Laboratory of Ecosystem Network Observation and Modeling, Chinese Academy of Sciences, Beijing 100101, China
2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
3. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
Funds: The study was supported by the National Natural Science Foundation of China31570472
The Strategic Leading Science and Technology Project of Chinese Academy of SciencesXDA230501002
More Information
Corresponding author:SUN Zhigang, E-mail:longbuju@cau.edu.cn;LONG Buju, E-mail:sun.zhigang@igsnrr.ac.cn
?Equiavlent contributors摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:干热风是华北地区冬小麦生产的主要气象灾害之一,同时该区农业用水资源严重短缺,为缓解灌溉水资源不足,华北地区开展了微咸水灌溉应用技术,而微咸水灌溉对冬小麦抗干热风能力的影响尚无定论。为此,在中国科学院禹城综合试验站设置1 g·L-1(淡水对照)、3 g·L-1和5 g·L-1 3个矿化度微咸水在返青—拔节期和开花—灌浆期分别对冬小麦进行灌溉处理,在灌浆期进行干热风模拟试验,观测冬小麦叶片光合速率、蒸腾速率、气孔导度等生理参数。综合4年(2016—2019年)4次试验结果,发现:1)与1 g·L-1矿化度微咸水灌溉相比,3 g·L-1和5 g·L-1矿化度微咸水灌溉可以显著降低冬小麦叶片光合速率32.2%和59.3%、蒸腾速率29.2%和51.9%、气孔导度30.7%和54.8%。2)干热风可以显著降低叶片光合速率35.4%~86.6%、蒸腾速率35.6%~67.5%、气孔导度36.4%~69.4%。3)在1 g·L-1、3 g·L-1和5 g·L-1矿化度微咸水灌溉下,叶片光合速率干热风胁迫指数4年均值分别为0.55、0.45和0.74;叶片标准化蒸腾速率(蒸腾速率/水汽压饱和差)热风胁迫指数4年均值分别为0.54、0.26和0.41;气孔导度干热风胁迫指数4年均值分别为0.56、0.28和0.43。这些结果表明:1)微咸水灌溉的生理胁迫作用与干热风的生理胁迫作用对叶片光合蒸腾和气孔行为产生的影响具有相似性;2)3 g·L-1矿化度微咸水灌溉比淡水提高了叶片对干热风的生理适应能力,证明适量微咸水灌溉可以提高冬小麦叶片适应干热风的能力。
关键词:盐分胁迫/
干旱胁迫/
微咸水灌溉/
干热风/
生理适应/
冬小麦
Abstract:Brackish water irrigation was carried out in the North China Plain to alleviate the shortage of irrigation water resources. Dry-hot wind is one of the main meteorological disasters for winter wheat in the region; the effect of brackish water irrigation on the ability of winter wheat to resist dry-hot wind is yet inconclusive. Therefore, we conducted field experiments on winter wheat at the Yucheng Comprehensive Experimental Station of the Chinese Academy of Sciences. Brackish water irrigation with three salinity levels of 1 g·L-1, 3 g·L-1, and 5 g·L-1 was set up, and the dry-hot wind simulation was conducted in the filling period. In this study, physiological parameters of winter wheat, such as photosynthetic rate, transpiration rate, and stomatal conductance of winter wheat were observed. The analysis of the experimental data during four consecutive years (2016-2019), showed the following results: 1) the brackish water with the salinities of 3 g·L-1 and 5 g·L-1 could reduce the photosynthetic rate of winter wheat leaves by 32.2% and 59.3%, the transpiration rate by 29.2% and 51.9%, and the stomatal conductance by 30.7% and 54.8% (P < 0.05), respectively. 2) Dry-hot wind could reduce the photosynthetic rate by 35.4%-86.6%, the transpiration rate by 35.6%-67.5%, and the stomatal conductance by 36.4%-69.4%, respectively. The irrigation with the salinity levels of 1 g·L-1, 3 g·L-1, and 5 g·L-1 decreased the four-year average dry-hot wind stress index of the photosynthetic rate of winter wheat leaves from 0.55 to 0.45 and then increased to 0.74, while the leaf transpiration rate (the difference in the saturation of water vapor pressure) decreased from 0.54 to 0.26, then increased to 0.41; the four-year average dry-hot wind stress index of the stomatal conductance decreased from 0.56 to 0.28, then increased to 0.43. The above results showed that the physiological stress of brackish water irrigation on photosynthesis, transpiration, and stomatal behavior was similar to that of dry-hot wind, and the brackish salinity water (3 g·L-1) irrigation could improve the physiological adaptability of winter wheat leaves to dry-hot wind, reducing the damage caused by dry-hot wind.
Key words:Salt stress/
Drought stress/
Brackish water irrigation/
Dry-hot wind/
Physiological adaption/
Winter wheat
?Equiavlent contributors
注释:
1) †同等贡献者:赵风华, 主要研究方向为农田生态学, E-mail: zhaofh@igsnrr.ac.cn
朱康莹, 主要研究方向为生态遥感与区域生态, E-mail:zhuky.18b@igsnrr.ac.cn
HTML全文

图1不同矿化度微咸水灌溉和干热风对冬小麦叶片净光合速率的影响
图中不同小写字母表示不同处理间在P < 0.05水平差异显著。
Figure1.Effects of brackish water irrigation with differentsalinities and dry-hot wind (DHW) on winter wheat leaf net photosynthetic rate
Different lowercase letters above bars indicate significantdifferences at P < 0.05 level among different treatments.


图2冬小麦净光合速率(Pn)的干热风胁迫指数(SI)随灌溉水矿化度升高的变化
Figure2.Changes of dry-hot wind stress index (SI) of net photosynthetic rate (Pn) of winter wheat with increased salinity of irrigation water


图3不同矿化度微咸水灌溉和干热风对冬小麦叶片蒸腾速率标准化值(蒸腾速率/水汽压饱和差)的影响
图中不同小写字母表示不同处理间在P < 0.05水平差异显著。
Figure3.Effects of irrigation water with different salinities and dry-hot wind on winter wheat leaf standardized transpiration rate [transpiration rate (Tr)/vapor pressure saturation difference (VPDL)]
Different lowercase letters above bars indicate significant differences at P < 0.05 level among different treatments.


图4冬小麦叶片蒸腾速率标准化值(蒸腾速率/水汽压饱和差)的干热风胁迫指数(SI)随灌溉水矿化度升高的变化
Figure4.Changes of dry-hot wind stress index (SI) of standardized transpiration rate [transpiration rate (Tr)/vapor pressure saturation difference (VPDL)] of winter wheat leaf with increasing salinity of irrigation water


图5不同矿化度的灌溉水和干热风对冬小麦叶片气孔导度(Gs)的影响.
图中不同小写字母表示不同处理间在P < 0.05水平差异显著。
Figure5.Effects of irrigation water with different salinities and dry-hot wind on winter wheat leaf stomatal conductance (Gs)
Different lowercase letters with bars indicate significant differences at P < 0.05 level among different treatments.


图6冬小麦叶片气孔导度(Gs)的干热风胁迫指数(SI)随灌溉水矿化度升高的变化
Figure6.Changes of dry-hot wind stress index (SI) of stomatal conductance (Gs) of winter wheat leaf with increasing salinity of irrigation water


图7灌溉水矿化度与干热风胁迫指数(SI)、生理适应指数(PAI)的关系
Figure7.Patterns of dry-hot wind stress index (SI) and physiological adaptation index (PAI) with increasing salinity of irrigation water


图8微咸水灌溉对作物干热风适应能力的驯化提高作用示意图
Figure8.Schematic diagram of the acclimation by brackish water irrigation against the dry-hot wind stress on crops

表1不同矿化度微咸水灌溉处理的土壤表层0~10 cm含盐量和相对含水量
Table1.Salt content and relative water content in top 10 cm soil layer under irrigation treatments of brackish water with different salinities
测定日期(年-月-日) Measure date (year-month-day) | 灌溉水矿化度Salinity of irrigation water (g?L–1) | |||||||
1 | 3 | 5 | ||||||
含盐量 Salt content (g?kg–1) | 相对含水量 Relative water content (%) | 含盐量 Salt content (g?kg–1) | 相对含水量 Relative water content (%) | 含盐量 Salt content (g?kg–1) | 相对含水量 Relative water content (%) | |||
2016-05-26 | 0.751 | 65.1 | 0.974 | 66.5 | 1.092 | 65.1 | ||
2017-05-27 | 0.643 | 63.4 | 0.871 | 64.9 | 1.004 | 62.3 | ||
2018-05-24 | 0.806 | 66.7 | 1.012 | 64.8 | 1.134 | 64.9 | ||
2019-05-25 | 0.755 | 62.7 | 0.982 | 63.8 | 1.064 | 62.6 |

参考文献
[1] | 于静洁, 吴凯.华北地区农业用水的发展历程与展望[J].资源科学, 2009, 31(9):1493-1497 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200909006 YU J J, WU K. Past and perspective of agricultural water supply in the North China[J]. Resources Science, 2009, 31(9):1493-1497 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zykx200909006 |
[2] | 马文军, 程琴娟, 李良涛, 等.微咸水灌溉下土壤水盐动态及对作物产量的影响[J].农业工程学报, 2010, 26(1):73-80 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201001013 MA W J, CHENG Q J, LI L T, et al. Effect of slight saline water irrigation on soil salinity and yield of crop[J]. Transactions of the CSAE, 2010, 26(1):73-80 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201001013 |
[3] | 刘静, 高占义.中国利用微咸水灌溉研究与实践进展[J].水利水电技术, 2012, 43(1):101-104 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsdjs201201024 LIU J, GAO Z Y. Advances in study and practice of brackish water irrigation in China[J]. Water Resources and Hydropower Engineering, 2012, 43(1):101-104 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsdjs201201024 |
[4] | 陈素英, 邵立威, 孙宏勇, 等.微咸水灌溉对土壤盐分平衡与作物产量的影响[J].中国生态农业学报, 2016, 24(8):1049-1058 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016806&flag=1 CHEN S Y, SHAO L W, SUN H Y, et al. Effect of brackish water irrigation on soil salt balance and yield of both winter wheat and summer maize[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8):1049-1058 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016806&flag=1 |
[5] | 张朝, 王品, 陈一, 等. 1990年以来中国小麦农业气象灾害时空变化特征[J].地理学报, 2013, 68(11):1453-1460 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201311001 ZHANG C, WANG P, CHEN Y, et al. Spatio-temporal changes of agrometrorological disasters for wheat production across China since 1990[J]. Acta Geographica Sinica, 2013, 68(11):1453-1460 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201311001 |
[6] | 邓振镛, 王强, 张强, 等.中国北方气候暖干化对粮食作物的影响及应对措施[J].生态学报, 2010, 30(22):6278-6288 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201022030 DENG Z Y, WANG Q, ZHANG Q, et al. Impact of climate warming and drying on food crops in northern China and the countermeasures[J]. Acta Ecologica Sinica, 2010, 30(22):6278-6288 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201022030 |
[7] | IPCC. Synthesis Report of the IPCC Fourth Assessment Report 2007[M]. Geneva, Switzerland:IPCC, 2007 |
[8] | 赵风华, 居辉, 欧阳竹.干热风对灌浆期冬小麦旗叶光合蒸腾的影响[J].华北农学报, 2013, 28(5):144-148 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbnxb201305035 ZHAO F H, JU H, OUYANG Z. Effects of dry-hot wind on photosynthesis and transpiration of flag leaf of winter wheat at filling stage[J]. Acta Agriculturae Boreali-Sinica, 2013, 28(5):144-148 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbnxb201305035 |
[9] | 张志红, 成林, 李书岭, 等.干热风天气对冬小麦生理的影响[J].生态学杂志, 2015, 34(3):712-717 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201503017 ZHANG Z H, CHENG L, LI S L, et al. Dry-hot wind effects on physiology of winter wheat[J]. Chinese Journal of Ecology, 2015, 34(3):712-717 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxzz201503017 |
[10] | EL-HENDAWY S E, HU Y C, YAKOUT G M, et al. Evaluating salt tolerance of wheat genotypes using multiple parameters[J]. European Journal of Agronomy, 2005, 22(3):243-253 doi: 10.1016/j.eja.2004.03.002 |
[11] | 陈素英, 张喜英, 邵立威, 等.微咸水非充分灌溉对冬小麦生长发育及夏玉米产量的影响[J].中国生态农业学报, 2011, 19(3):579-585 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110316&flag=1 CHEN S Y, ZHANG X Y, SHAO L W, et al. Effect of deficit irrigation with brackish water on growth and yield of winter wheat and summer maize[J]. Chinese Journal of Eco-Agriculture, 2011, 19(3):579-585 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20110316&flag=1 |
[12] | 吴忠东, 王全九.黄淮海平原冬小麦对盐分胁迫的响应研究[J].农业机械学报, 2010, 41(12):99-104 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjxxb201012021 WU Z D, WANG Q J. Response to salt stress about winter wheat in Huanghuaihai Plain[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(12):99-104 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjxxb201012021 |
[13] | 杨婷, 谢志霞, 喻琼, 等.局部根系盐胁迫对冬小麦生长和光合特征的影响[J].中国生态农业学报, 2014, 22(9):1074-1078 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014911&flag=1 YANG T, XIE Z X, YU Q, et al. Effects of partial root salt stress on seedling growth and photosynthetic characteristics of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2014, 22(9):1074-1078 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2014911&flag=1 |
[14] | 中华人民共和国气象行业标准.小麦干热风灾害等级[M].北京:气象出版社, 2007 Meteorological Industry Standards of the People's Republic of China. Grades of Dry and Hot Wind Disasters in Wheat[M]. Beijing:Meteorological Press, 2007 |
[15] | BIERHUIZEN J F, SLATYER R O. Effect of atmospheric concentration of water vapour and CO2 in determining transpiration-photosynthesis relationships of cotton leaves[J]. Agricultural Meteorology, 1965, 2(4):259-270 doi: 10.1016/0002-1571(65)90012-9 |
[16] | STEDUTO P, ALBRIZIO R. Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea:Ⅱ. Water use efficiency and comparison with radiation use efficiency[J]. Agricultural and Forest Meteorology, 2005, 130(3/4):269-281 http://www.ingentaconnect.com/content/el/01681923/2005/00000130/00000003/art00010 |
[17] | 刘恩良, 任崴, 马林, 等. 3种盐胁迫对小麦三叶期生理功能的影响[J].新疆农业大学学报, 2009, 32(6):21-25 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjnydxxb200906005 LIU E L, REN W, MA L, et al. Influence of three salt stress on physiological function of wheat trefoil stage[J]. Journal of Xinjiang Agricultural University, 2009, 32(6):21-25 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjnydxxb200906005 |
[18] | 于潇, 侯云寒, 徐征和, 等.微咸水灌溉对冬小麦光合及荧光动力学参数的影响[J].节水灌溉, 2019, (2):102-106 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsgg201902020 YU X, HOU Y H, XU Z H, et al. Effects of brackish water irrigation on photosynthetic characteristics and fluorescence kinetics parameters of winter wheat[J]. Water Saving Irrigation, 2019, (2):102-106 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsgg201902020 |
[19] | 燕辉, 胡笑涛, 姚付启.限量灌溉对冬小麦光合与叶绿素荧光的影响[J].农业机械学报, 2011, 42(11):49-54 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjxxb201111010 YAN H, HU X T, YAO F Q. Effects of limited irrigation on photosynthesis and fluorescence of winter wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(11):49-54 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyjxxb201111010 |