删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于根系形态对磷吸收的贡献解析小麦||蚕豆间作促进磷吸收的作用

本站小编 Free考研考试/2022-01-01

王宇蕴1, 2,,
李兰2,
郑毅1, 2, 3,
汤利1, 2, 4,,
1.云南农业大学植物保护学院 昆明 650201
2.云南农业大学资源与环境学院 昆明 650201
3.云南开放大学 昆明 650223
4.云南农业大学烟草学院 昆明 650201
基金项目: 国家重点研发计划项目2017YFD0200207
国家自然科学基金项目31760615
云南省农业基础研究联合专项项目2018FG001-104

详细信息
作者简介:王宇蕴, 主要研究方向为多样性种植体系根系-养分互作机制。E-mail:yuyunwhere@163.com
通讯作者:TANG Li, E-mail:ltang@ynau.edu.cn
中图分类号:S311

计量

文章访问数:371
HTML全文浏览量:8
PDF下载量:230
被引次数:0
出版历程

收稿日期:2020-03-05
录用日期:2020-04-03
刊出日期:2020-07-01

Contribution of root morphology to phosphorus absorption in wheat and faba bean intercropping system

WANG Yuyun1, 2,,
LI Lan2,
ZHENG Yi1, 2, 3,
TANG Li1, 2, 4,,
1. College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
2. College of Resources and Environmental Sciences, Yunnan Agricultural University, Kunming 650201, China
3. Yunnan Open University, Kunming 650223, China
4. College of Tobacco, Yunnan Agricultural University, Kunming 650201, China
Funds: the National Key Research & Development Program of China2017YFD0200207
the National Natural Science Foundation of China31760615
the Joint Project of Basic Agriculture Research in Yunnan Province2018FG001-104



摘要
HTML全文
(2)(2)
参考文献(27)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:间作模式是充分挖掘作物自身生物学潜力,促进磷资源高效利用的有效手段。为进一步探明间作诱导的根系形态适应性变化对磷吸收的相对贡献,理解小麦||蚕豆间作系统促进磷吸收的作用机制,本研究采用水培法,研究了常规磷(Hoagland营养液磷水平)和低磷(1/2-Hoagland营养液磷水平)条件下,小麦||蚕豆间作对小麦和蚕豆磷吸收、生长性状和根系形态变化的影响,并结合集成推进树算法(ABT)分析小麦和蚕豆根系形态对小麦和蚕豆磷吸收的相对贡献。结果表明,在低磷水平下,与单作小麦相比,小麦||蚕豆间作可以显著促进小麦对磷的吸收;而在正常磷水平下,间作小麦的磷吸收量显著低于单作小麦。在常规磷和低磷水平下,间作均能够显著促进蚕豆对磷的吸收。正常磷水平,间作系统的磷吸收量是小麦和蚕豆单作系统平均磷吸收量的1.04倍;低磷水平,间作系统的磷吸收量是小麦和蚕豆单作系统磷吸收量的1.28倍。种植模式和供磷水平能够显著影响小麦的株高,且有显著的交互作用;间作显著降低蚕豆的株高。ABT分析结果表明,小麦根长、根平均直径主导了小麦根系对磷的吸收,其解释量分别为74.7%和25.3%;蚕豆根长、根平均直径和根表面积共同解释了根系对磷的吸收,其解释量分别为48.0%、35.2%和16.9%。因此,低磷条件下,小麦||蚕豆间作主要通过增加小麦的根长,显著降低小麦根系平均直径,促进小麦对磷的吸收;而间作系统中的蚕豆则通过增加根长促进其对磷的吸收。
关键词:集成推进树算法(ABT)/
小麦||蚕豆间作/
根系形态/
磷素吸收
Abstract:Intercropping is an effective way of enhancing efficient use of phosphorus resources through using the biological potential of crops. This study aims to explore the relative contribution of root morphological adaptations to phosphorus absorption under intercropping, and to explore how the wheat||faba bean intercropping system promotes phosphorus uptake. Wheat and faba bean were grown hydroponically under either adequate or deficient phosphorus levels. The effect of intercropping on their phosphorus uptake, growth traits, and root morphology were analyzed. The relative contribution of root traits to phosphorus uptake by wheat and faba bean were then analyzed using the aggregated boosted trees (ABT) method. Our results showed that under phosphorus deficient conditions, the uptake of phosphorus by wheat was higher in the wheat||faba bean intercropping system than in the monoculture. Conversely, phosphorus uptake by wheat under adequate phosphorus conditions was lower in the intercropping system. The uptake of phosphorus by faba bean was higher in the intercropping system than in the monoculture under both phosphorus conditions. The intercropping system led to a total phosphorus uptake that was 1.04 and 1.28 times higher than that of the corresponding monocrop system under adequate and deficient phosphorus conditions, respectively. This result indicated an advantage of intercropping over monocropping. Crop patterns and phosphorus availability resulted in significant effect in wheat height; interaction between these two factors was also observed (P < 0.05). Intercropping led to a decrease in plant height for both species. The ABT analysis suggested that root length and diameter played a major role in phosphorus uptake by wheat, accounting for 74.4% and 25.3% uptake, respectively. Root length, diameter, and surface area all appeared to account for the uptake of phosphorus by faba bean, accounting for 48.0%, 35.2%, and 16.9% uptake, respectively. To conclude, under phosphorus deficient condition, the improved phosphorus uptake by wheat in wheat||faba bean intercropping system was the result of an increase in root length and a decrease in root diameter, while the phosphorus uptake by faba bean was improved owing to an increase in root length.
Key words:Aggregated Boosted Trees (ABT)/
Wheat||faba bean intercropping/
Root morphology/
Phosphorus uptake

HTML全文


图1间作和供磷水平对小麦和蚕豆磷吸收的影响
P:正常供磷处理; 1/2 P:低磷处理。不同小写字母表示不同处理间差异显著(P < 0.05)。
Figure1.Effects of intercropping and phosphorus supply levels on phosphorus uptake of wheat and faba bean
P: Hoagland nutrient solution with normal phosphorus concentration; 1/2 P: Hoagland solution with 1/2-phosphorus concentration. Different lowercase letters indicate significant differences among treatments at P < 0.05 level.


下载: 全尺寸图片幻灯片


图2小麦和蚕豆根系形态指标对作物磷吸收的相对贡献
RL:根长; RD:根平均直径; RSA:根表面积。
Figure2.Relative influences of root morphological indicators on phosphorus uptake of wheat and faba bean
RL: root length; RD: average root diameter; RSA: root surface area.


下载: 全尺寸图片幻灯片

表1间作和不同供磷水平对小麦和蚕豆生长性状的影响
Table1.Effects of intercropping and phosphorus supply level on growth traits of wheat and faba bean
磷水平
P level
种植模式
Planting pattern
小麦
Wheat
蚕豆
Faba bean
根系鲜重
Root weight (g)
根冠比
Root-shoot ratio
株高
Plant height (cm)
根系鲜重
Root weight (g)
根冠比
Root-shoot ratio
株高
Plant height (cm)
1/2 P 单作Monocropping 0.72±0.11b 0.49±0.06ab 31.00±1.71b 3.49±0.64a 0.37±0.02a 41.95±5.21a
间作Intercropping 0.52±0.09c 0.52±0.05a 30.25±1.06b 3.87±0.57a 0.32±0.06a 34.10±4.31b
P 单作Monocropping 1.29±0.17a 0.55±0.11a 34.10±4.38ab 3.49±1.81a 0.34±0.02a 43.30±1.07a
间作Intercropping 0.92±0.19b 0.46±0.16b 41.95±5.28a 3.87±0.21a 0.31±0.06a 35.50±1.69b
显著性Significance
供磷水平P level (T) * ns ** ns ns ns
种植模式Planting pattern (M) * ns * ns ns **
T × M ** ns * ns ns ns
P:正常供磷处理; 1/2 P:低磷处理。同列数据后不同字母表示不同处理间差异显著(P < 0.05)。*: P < 0.05; **: P < 0.01; ns:不显著。P: Hoagland nutrient solution with normal phosphorus concentration; 1/2 P: Hoagland solution with 1/2-phosphorus concentration. Different lowercase letters in the same column indicate significant differences among treatments at P < 0.05 level. *: P < 0.05; **: P < 0.01; ns: no significance.


下载: 导出CSV
表2间作和供磷水平对小麦和蚕豆根系形态的影响
Table2.Effects of intercropping and phosphorus supply levels on root morphology of wheat and faba bean
磷水平
P level
种植模式
Planting pattern
小麦Wheat 蚕豆Faba bean
根长
Root length (cm)
根平均直径
Average root diameter (mm)
根表面
Root surface area (cm2)
根长
Root length (cm)
根平均直径
Average root diameter (mm)
根表面
Root surface area (cm2)
1/2 P 单作Monocropping 252.51±4.11b 0.24±0.02a 18.33±0.27b 249.81±5.54d 0.47±0.09a 17.23±0.91ab
间作Intercropping 268.35±3.23a 0.19±0.01b 20.39±0.59a 274.24±4.96c 0.48±0.02a 19.90±0.88a
P 单作Monocropping 270.54±2.32a 0.25±0.01a 19.87±0.36ab 294.87±5.06b 0.51±0.03a 20.62±0.66a
间作Intercropping 273.00±2.21a 0.20±0.01b 20.40±0.68a 315.56±6.13a 0.51±0.05a 21.76±0.68a
显著性Significance
供磷水平P level (T) * ns ns * ns *
种植模式Planting pattern (M) ns * ns * ns ns
T × M ns ns * * ns ns
P:正常供磷处理; 1/2 P:低磷处理。同列数据后不同字母表示不同处理间差异显著(P < 0.05)。*: P < 0.05; **: P < 0.01; ns:不显著。P: Hoagland nutrient solution with normal phosphorus concentration; 1/2 P: Hoagland solution with 1/2-phosphorus concentration. Different lowercase letters in the same column indicate significant differences among treatments at P < 0.05 level. *: P < 0.05; **: P < 0.01; ns: no significance.


下载: 导出CSV

参考文献(27)
[1]SHEN J B, YUAN L X, ZHANG J L. Phosphorus dynamics:From soil to plant[J]. Plant Physiology, 2011, 156:997-1005 doi: 10.1104/pp.111.175232
[2]LI L, TILMAM D, LAMBERS H, et al. Plant diversity and over yielding:Insights from belowground facilitation of intercropping in agriculture[J]. New Phytologist, 2014, 203(1):63-69 doi: 10.1111/nph.12778
[3]李隆.间套作强化农田生态系统服务功能的研究进展与应用展望[J].中国生态农业学报, 2016, 24(4):403-415 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2016401&journal_id=zgstny
LI L. Intercropping enhances agroecosystem services and functioning:Current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4):403-415 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?flag=1&file_no=2016401&journal_id=zgstny
[4]LI H G, ZHANG F S, RENGEL Z, et al. Rhizosphere properties in monocropping and intercropping systems between faba bean (Vicia faba L.) and maize (Zea mays L.) grown in a calcareous soil[J]. Crop and Pasture Science, 2014, 64(10):976-984 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=97e51c120aff0970c1e312588f380204
[5]LI L, TANG C X, RENGEL Z, et al. Chickpea facilitates phosphorus uptake by intercropped wheat from an organic phosphorus source[J]. Plant and Soil, 2003, 248(1/2):297-303 doi: 10.1023/A:1022389707051
[6]LI S M, LI L, ZHANG F S, et al. Acid phosphatase role in chickpea/maize intercropping[J]. Annals of Botany, 2004, 94(2):297-303 doi: 10.1093/aob/mch140
[7]HE Y, DING N, SHI J C, et al. Profiling of microbial PLFAs:Implications for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soils[J]. Soil Biology and Biochemistry, 2013, 57:625-634 doi: 10.1016/j.soilbio.2012.07.027
[8]ZHANG D S, ZHANG C C, TANG X Y, et al. Increased soil phosphorus availability induced by faba bean root exudation stimulates toot growth and phosphorus uptake in neighbouring maize[J]. New Phytologist, 2016, 209(2):823-831 doi: 10.1111/nph.13613
[9]DARCH T, GILES C D, BLACKWELL M S A, et al. Inter- and intra-species intercropping of barley cultivars and legume species, as affected by soil phosphorus availability[J]. Plant and Soil, 2018, 427:125-138 doi: 10.1007/s11104-017-3365-z
[10]王宇蕴, 任家兵, 郑毅, 等.间作小麦根际和土体磷养分的动态变化[J].云南农业大学学报, 2011, 26(6):851-855 doi: 10.3969/j.issn.1004-390X(n).2011.06.021
WANG Y Y, REN J B, ZHENG Y, et al. Dynamics of available phosphorus in rhizosphere and bulk soil of wheat under intercropping[J]. Journal of Yunnan Agricultural University, 2011, 26(6):851-855 doi: 10.3969/j.issn.1004-390X(n).2011.06.021
[11]张德闪, 王宇蕴, 汤利, 等.小麦蚕豆间作对红壤有效磷的影响及其与根际pH值的关系[J].植物营养与肥料学报, 2013, 19(1):127-133 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201301015
ZHANG D S, WANG Y Y, TANG L, et al. Effects of wheat and fababean intercropping on available phosphorus of red soils and its relationship with rhizosphere soil pH[J]. Plant Nutrition and Fertilizer Science, 2013, 19(1):127-133 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201301015
[12]TANG X, LAETITIA B, ALAIN B, et al. Increase in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditions[J]. Soil Biology & Biochemistry, 2014, 75:86-93 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f143c054cd48d97e5bef298141a45d06
[13]TANG X Y, PLACELLA S A, DAYD? F, et al. Phosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradient[J]. Plant and Soil, 2016, 407(1):119-134 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=90f383ab57ca2cc7f998cfd4b027dff3
[14]张梦瑶, 肖靖秀, 汤利, 等.不同磷水平下小麦蚕豆间作对根际有效磷及磷吸收的影响[J].植物营养与肥料学报, 2019, 25(7):1157-1165 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201907009
ZHANG M Y, XIAO J X, TANG L, et al. Effects of wheat and faba bean intercropping on the available phosphorus contents in rhizospheric soil and phosphorus uptake by crops under different phosphorus levels[J]. Plant Nutrition and Fertilizer Science, 2019, 25(7):1157-1165 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201907009
[15]FERNANDES A M, SORATTO R P, GONSALES J R. Root morphology and phosphorus uptake by potato cultivars grown under deficient and sufficient phosphorus supply[J]. Scientia Horticulturae, 2014, 180:190-198 doi: 10.1016/j.scienta.2014.10.035
[16]LI L, SUN J H, ZHANG F S, et al. Root distribution and interactions between intercropped species[J]. Oecologia, 2006, 147(2):280-290 doi: 10.1007/s00442-005-0256-4
[17]陈杨.种间相互作用对大豆、蚕豆和小麦根系形态的影响[D].北京: 中国农业大学, 2005: 14-16 http://cdmd.cnki.com.cn/Article/CDMD-10019-2005084350.htm
CHEN Y. Effect of interspecific interaction on root morphology of soybean, faba bean and wheat[D]. Beijing: China Agricultural University, 2005: 14-16 http://cdmd.cnki.com.cn/Article/CDMD-10019-2005084350.htm
[18]D?ATH G. Boosted trees for ecological modelling and prediction[J]. Ecology, 2007, 88(1):243-251
[19]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000
LU R K. Soil and Agricultural Chemistry Analysis[M]. Beijing:Chinese Agricultural Science Press, 2000
[20]PERET B, CLEMENT M, NUSSAUME L, et al. Root developmental adaptation to phosphate starvation:better safe than sorry[J]. Trends in Plant Science, 2011, 16:442-450 https://www.ncbi.nlm.nih.gov/pubmed/21684794
[21]JIAO X Q, LYU Y, WU X B, et al. Grain production versus resource and environmental costs:towards increasing sustainability of nutrient use in China[J]. Journal of Experimental Botany, 2016, 67:4935-4949 doi: 10.1093/jxb/erw282
[22]WEN Z H, LI H B, SHEN J B, et al. Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation[J]. Plant and Soil, 2017, 416:377-389 doi: 10.1007/s11104-017-3214-0
[23]WEN Z H, LI H B, SHEN J B, et al. Trade-offs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species[J]. New Phytologist, 2019, 223:882-895 doi: 10.1111/nph.15833
[24]YUAN H, LIU D. Signaling components involved in plan responses to phosphate starvation[J]. Journal of Integrative Plant Biology, 2008, 50:849-859 doi: 10.1111/j.1744-7909.2008.00709.x
[25]TANG H L, SHEN J B, ZHANG F S, et al. Interactive effects of phosphorus deficiency and exogenous auxin on root morphological and physiological traits in white lupin (Lupinus albus L.)[J]. Science China, 2013, 56:313-323
[26]PERET B, DESNOS T, JOST R, et al. Root architecture responses:in search for phosphate[J]. Plant Physiology, 2014, 166:1713-1723 doi: 10.1104/pp.114.244541
[27]LAVENUS J, GOH T, ROBERTS I, et al. Lateral root development in Arabidopsis:Fifty shades of auxin[J]. Trends in Plant Science, 2013, 18:450-458 doi: 10.1016/j.tplants.2013.04.006

相关话题/系统 云南农业大学 作物 蚕豆 数据