删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Cd与羧基化多壁碳纳米管复合胁迫下蚕豆幼苗Cd的富集与分布

本站小编 Free考研考试/2022-01-01

刘玲,
王苏杭,
张进,
陈成,
赵薪程,
刘海涛,
汪承润,
淮南师范学院生物工程学院 淮南 232038
基金项目: 安徽省教育厅重点项目KJ2018A0472
安徽省重大专项项目18030701189
安徽省高校优秀青年人才支持计划gxyq2019078

详细信息
作者简介:刘玲, 主要研究方向为植物生态学及植物逆境生理。E-mail:lliiuu494@sina.com
通讯作者:汪承润, 主要研究方向为生态毒理学。E-mail:chengrunwang@163.com
中图分类号:X592

计量

文章访问数:366
HTML全文浏览量:17
PDF下载量:644
被引次数:0
出版历程

收稿日期:2019-11-19
录用日期:2020-02-02
刊出日期:2020-05-01

Cd enrichment and distribution in broad bean seedlings under stress of Cd combined with MWCNTs-COOH

LIU Ling,
WANG Suhang,
ZHANG Jin,
CHEN Cheng,
ZHAO Xincheng,
LIU Haitao,
WANG Chengrun,
School of Biological Engineering, Huainan Normal University, Huainan 232038, China
Funds: the Priority Projects of Education Department of Anhui ProvinceKJ2018A0472
the Major Special Projects of Anhui Province18030701189
the Excellent Young Talents Support Program for Colleges and Universities in Anhui Provincegxyq2019078

More Information
Corresponding author:WANG Chengrun, E-mail:chengrunwang@163.com


摘要
HTML全文
(0)(5)
参考文献(34)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:纳米材料因大量开发、生产和应用不可避免地被释放到环境中,给生态环境和人体健康带来潜在的风险。因此为了探究羧基化多壁碳纳米管(MWCNTs-COOH)和重金属Cd双重胁迫对植物器官中Cd的富集、转运及细胞中Cd分布的影响,以及为MWCNTs-COOH与Cd复合污染对植物的毒性和生态风险性评价提供理论依据,本研究以蚕豆幼苗为试验材料,采用水培方式,设置MWCNTs-COOH(0 mg·L-1、1.5 mg·L-1、3.0 mg·L-1、6.0 mg·L-1、12.0 mg·L-1)+10.0 μmol·L-1 Cd 5个处理组,用石墨炉原子吸收光谱法测定不同处理下蚕豆幼苗根茎叶及细胞中Cd的含量,分析MWCNTs-COOH复合Cd处理下蚕豆幼苗营养器官对Cd的富集、转运及细胞内分布状况。结果表明:复合胁迫下,3种营养器官Cd含量均高于对照;根茎叶对Cd的富集、Cd富集系数及器官间(根-茎、茎-叶)的转移系数均随MWCNTs-COOH浓度升高呈先升高后降低趋势,当MWCNTs-COOH浓度为6.0 mg·L-1时,以上指标均达到最大值。同时,随着MWCNTs-COOH浓度的增大,根茎叶细胞中Cd逐渐从细胞壁向原生质体转移,加深了对细胞的毒害。综上所述,中低浓度的MWCNTs-COOH不仅可促进蚕豆根茎叶对Cd的累积及向上转运,而且也能加强细胞中Cd的转移。
关键词:羧基化多壁碳纳米管/
/
复合胁迫/
富集系数/
转移系数/
蚕豆
Abstract:Nanomaterials are inevitably released into the environment because of developed production and application, which brings potential risks to the ecological environment and human health. The aim of this study was to explore the effect of MWCNTs-COOH and heavy metals Cd double stress on Cd enrichment, transport, and distribution in plant organs, and provide a theoretical basis for evaluating phytotoxicity and ecological risk of the combined pollution of MWCNTs-COOH and Cd. In this study, broad bean seedlings were cultured as experimental material using the hydroponics method, and MWCNTs-COOH (0 mg·L-1, 1.5 mg·L-1, 3.0 mg·L-1, 6.0 mg·L-1, 12.0 mg·L-1) and 10.0 μmol·L-1 Cd treatment groups were set. The contents of Cd in roots, stems, leaves, and cells of broad bean seedlings under the different treatments were determined by Graphite Furnace atomic absorption spectrometry; and Cd enrichment, transport in vegetative organs, and distribution in cells of broad bean were analyzed. The results showed that Cd contents in three kinds of vegetative organs under MWCNTs-COOH and Cd compound stresses were higher than those in CK. Cd enrichment in roots, stems, and leaves; Cd enrichment coefficient, and translocation coefficient between organs (root-stem and stem-leaf) all first increased and then decreased. The above indicators reached their maximum values when the concentration of MWCNTs-COOH was 6.0 mg·L-1. At the same time, with the increase of MWCNTs-COOH concentration, Cd in cells of roots, stems, and leaves gradually transferred from cell wall to protoplast, which deepened the toxicity to cells. In conclusion, medium and low concentrations of MWCNTs-COOH not only promoted Cd accumulation and upward transport in roots, stems, and leaves, but also enhanced Cd transfer in cells.
Key words:MWCNTs-COOH/
Cd/
Complex stress/
Enrichment coefficient/
Translocation coefficient/
Broad bean

HTML全文

表1MWCNTs-COOH复合Cd胁迫下蚕豆幼苗各器官Cd含量
Table1.Contents of Cd in various organs of broad bean seedlings under stress of MWCNTs-COOH combined with Cd??μg·g-1
处理Treatment 叶Leaf 茎Stem 根系Root
Cd (CK, 10.0 μmol·L-1Cd) 5.79±0.48e 17.45±0.31e 75.15±1.82c
Cd+1.5 mg·L-1 MWCNTs-COOH 7.84±0.39d 21.10±0.22d 86.10±1.82b
Cd+3.0 mg·L-1 MWCNTs-COOH 10.34±0.13c 24.87±0.34c 89.22±0.49ab
Cd+6.0 mg·L-1 MWCNTs-COOH 14.02±0.16a 30.33±0.33a 90.62±1.39a
Cd+12.0 mg·L-1 MWCNTs-COOH 11.78±0.27b 26.42±0.33b 85.66±1.06b
同列不同小写字母表示不同处理间在P < 0.05水平差异显著。Different lowercase letters in the same column indicate significant differences among different treatments at P < 0.05 level.


下载: 导出CSV
表2MWCNTs-COOH复合Cd胁迫下蚕豆幼苗各器官对Cd的富集系数及转移系数
Table2.Bioconcentration factor and translocation factor of Cd in organs of broad bean seedlings under stress of MWCNTs-COOH combined with Cd
处理
Treatment
Cd富集系数
Cd bioconcentration factor (%)
Cd转移系数
Cd translocation factor (%)

root

Stem

Leaf
根-茎
From root to shoot
茎-叶
From stem to leaf
Cd (CK, 10.0 μmol·L-1Cd) 5.58±0.13c 1.30±0.02e 0.43±0.04e 23.23±0.14e 33.16±2.16d
Cd+1.5 mg·L-1 MWCNTs-COOH 6.39±0.13b 1.57±0.02d 0.58±0.03d 24.51±0.26d 37.13±1.46c
Cd+3.0 mg·L-1 MWCNTs-COOH 6.62±0.04ab 1.85±0.02c 0.77±0.01c 27.87±0.23c 41.58±0.06b
Cd+6.0 mg·L-1 MWCNTs-COOH 6.72±0.11a 2.25±0.03a 1.04±0.01a 33.47±0.16a 46.23±0.02a
Cd+12.0 mg·L-1 MWCNTs-COOH 6.35±0.08b 1.96±0.03b 0.88±0.02b 30.84±0.01b 44.60±0.46ab
同列不同小写字母表示不同处理间在P < 0.05水平差异显著。Different lowercase letters in the same column indicate significant differences among different treatments at P < 0.05 level.


下载: 导出CSV
表3MWCNTs-COOH复合Cd胁迫下蚕豆根细胞亚显微结构Cd含量及分配比例
Table3.Cd contents and distribution ratios of submicrostructure in broad bean root cells under stress of MWCNTs-COOH combined with Cd
处理
Treatment
Cd含量
Cd content (μg·g-1)
分配比例
Distribution ratio (%)
细胞壁
F1 Cell wall
原生质
F2 Protoplast
细胞壁
F1 Cell wall
原生质体
F2 Protoplast
Cd (CK, 10.0 μmol·L-1Cd) 7.51±0.33d 4.04±0.33e 67.03±3.64a 32.98±3.64d
Cd+1.5 mg·L-1 MWCNTs-COOH 8.68±0.04bc 6.41±0.25d 57.52±0.87b 42.49±0.87c
Cd+3.0 mg·L-1 MWCNTs-COOH 8.99±0.11ab 8.59±0.18c 51.14±0.23c 48.86±0.23b
Cd+6.0 mg·L-1 MWCNTs-COOH 9.28±0.06a 12.23±0.16a 43.14±0.16d 56.86±0.16a
Cd+12.0 mg·L-1 MWCNTs-COOH 8.42±0.13c 10.20±0.05b 45.23±0.25d 54.77±0.25a
同列不同小写字母表示不同处理间在P < 0.05水平差异显著。Different lowercase letters in the same column indicate significant differences among different treatments at P < 0.05 level.


下载: 导出CSV
表4MWCNTs-COOH复合Cd胁迫下蚕豆茎细胞亚显微结构Cd含量及分配比例
Table4.Cd contents and distribution ratios of submicrostructure in broad bean stem cells under stress of MWCNTs-COOH combined with Cd
处理
Treatment
Cd含量
Cd content (μg·g-1)
分配比例
Distribution ratio (%)
细胞壁
F1 Cell wall
原生质
F2 Protoplast
细胞壁
F1 Cell wall
原生质体
F2 Protoplast
Cd (CK, 10.0 μmol·L-1Cd) 2.23±0.07d 2.14±0.10d 51.04±0.36a 48.97±0.36d
Cd+1.5 mg·L-1 MWCNTs-COOH 2.79±0.08c 3.23±0.23c 46.26±1.03b 53.74±1.03c
Cd+3.0 mg·L-1 MWCNTs-COOH 3.19±0.13b 4.02±0.07b 44.24±0.55c 55.76±0.55b
Cd+6.0 mg·L-1 MWCNTs-COOH 3.71±0.17a 4.80±0.08a 43.60±0.67bc 56.40±0.67bc
Cd+12.0 mg·L-1 MWCNTs-COOH 3.29±0.03b 4.46±0.12a 42.49±0.45d 57.52±0.45a
同列不同小写字母表示不同处理间在P < 0.05水平差异显著。Different lowercase letters in the same column indicate significant differences among different treatments at P < 0.05 level.


下载: 导出CSV
表5MWCNTs-COOH复合Cd胁迫下蚕豆叶细胞亚显微结构Cd含量及分配比例
Table5.Cd contents and distribution ratio of submicrostructure in broad bean leaf cells under stress of MWCNTs-COOH combined with Cd
处理
Treatment
Cd含量
Cd content (μg·g-1)
分配比例
Distribution ratio (%)
细胞壁F1 Cell wall 原生质F2 Protoplast 细胞壁F1 Cell wall 原生质体F2 Protoplast
Cd (CK, 10.0 μmol·L-1Cd) 0.51±0.06e 0.45±0.02e 54.45±0.01a 46.66±1.58c
Cd+1.5 mg·L-1 MWCNTs-COOH 0.77±0.03d 0.78±0.01d 49.83±0.69b 50.17±0.69b
Cd+3.0 mg·L-1 MWCNTs-COOH 1.01±0.04c 1.13±0.05c 47.19±0.22c 52.82±0.22a
Cd+6.0 mg·L-1 MWCNTs-COOH 1.39±0.03a 1.67±0.08a 45.44±0.76d 54.57±0.76a
Cd+12.0 mg·L-1 MWCNTs-COOH 1.14±0.06b 1.33±0.06b 46.04±0.33cd 53.97±0.33a
同列不同小写字母表示不同处理间在P < 0.05水平差异显著。Different lowercase letters in the same column indicate significant differences among different treatments at P < 0.05 level.


下载: 导出CSV

参考文献(34)
[1]邹鹏, 黄德欢.碳纳米管的应用进展[J].科学, 2014, 66(6):30-32 http://d.old.wanfangdata.com.cn/Periodical/hgxxcl201002004
ZOU P, HUANG D H. Application progress of carbon nanotubes[J]. Science, 2014, 66(6):30-32 http://d.old.wanfangdata.com.cn/Periodical/hgxxcl201002004
[2]文海若, 邵安良, 陈亮, 等.适合纳米材料遗传毒性评价方法的选择[J].癌变·畸变·突变, 2018, 30(4):326-331 http://d.old.wanfangdata.com.cn/Periodical/abjbtb201804016
WEN H R, SHAO A L, CHEN L, et al. The selection of genetic toxicity evaluation method is suitable for nanometer materials[J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2018, 30(4):326-331 http://d.old.wanfangdata.com.cn/Periodical/abjbtb201804016
[3]董萌, 赵运林, 周小梅, 等.土壤镉污染现状与重金属修复方法研究[J].绿色科技, 2012, (4):212-215 http://d.old.wanfangdata.com.cn/Periodical/lsdsj201204103
DONG M, ZHAO Y L, ZHOU X M, et al. Current situation of soil cd pollution and research progress of heavy metal repairing[J]. Journal of Green Science and Technology, 2012, (4):212-215 http://d.old.wanfangdata.com.cn/Periodical/lsdsj201204103
[4]杨树深, 孙衍芹, 郑鑫, 等.重金属污染农田安全利用:进展与展望[J].中国生态农业学报, 2018, 26(10):1555-1572 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201810015
YANG S S, SUN Y Q, ZHENG X, et al. Safe utilization of farmland contaminated with heavy metals in China:Progress and outlook[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10):1555-1572 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201810015
[5]李烨, 孙约兵, 徐应明, 等.镉污染区水稻土磷素含量特征及其形态分布规律[J].环境化学, 2017, 36(3):542-548 http://d.old.wanfangdata.com.cn/Periodical/hjhx201703010
LI Y, SUN Y B, XU Y M, et al. Characteristics and speciation distribution of phosphorus in Cd contaminated paddy soil[J]. Environmental Chemistry, 2017, 36(3):542-548 http://d.old.wanfangdata.com.cn/Periodical/hjhx201703010
[6]郄明丽, 李志慧, 张伟伟, 等.羧基化多壁碳纳米管对雌性小鼠卵泡发育的影响[J].生态毒理学报, 2018, 13(6):369-374 http://d.old.wanfangdata.com.cn/Periodical/cyyhj201806038
QIE M L, LI Z H, ZHANG W W, et al. Effects of MWCNTs-COOH on follicular development in female mice[J]. Asian Journal of Ecotoxicology, 2018, 13(6):369-374 http://d.old.wanfangdata.com.cn/Periodical/cyyhj201806038
[7]董霞, 宋丽萍, 冷希岗.羟基化多壁碳纳米管对RAW264.7细胞增殖及功能影响研究[J].生物医学工程与临床, 2012, 16(5):415-419 http://d.old.wanfangdata.com.cn/Periodical/swyxgcylc201205001
DONG X, SONG L P, LENG X G. Impact of hydroxyl multi-walled carbon nanotubes on viability and function of RAW264.7 cells[J]. Biomedical Engineering and Clinical Medicine, 2012, 16(5):415-419 http://d.old.wanfangdata.com.cn/Periodical/swyxgcylc201205001
[8]杨思楠, 刘玲, 郑刘根.多壁碳纳米管与镉复合污染对水稻生长的影响[J].环境化学, 2019, 38(5):1113-1118 http://d.old.wanfangdata.com.cn/Periodical/hjhx201905019
YANG S N, LIU L, ZHENG L G. Effects of multiple wall carbon nanotubes and cadmium on rice growth[J]. Environmental Chemistry, 2019, 38(5):1113-1118 http://d.old.wanfangdata.com.cn/Periodical/hjhx201905019
[9]周金鹏, 张方方, 黄红英, 等.多壁碳纳米管职业接触致工人氧化损伤及炎症反应水平研究[J].职业卫生与应急救援, 2019, 37(3):213-217 http://d.old.wanfangdata.com.cn/Periodical/zywsyyjjy201903002
ZHOU J P, ZHANG F F, HUANG H Y, et al. Oxidative stress and inflammatory response levels of workers occupationally exposed to multiple wall carbon nanotubes[J]. Occupational Health and Emergency Rescue, 2019, 37(3):213-217 http://d.old.wanfangdata.com.cn/Periodical/zywsyyjjy201903002
[10]王应军, 李娜, 罗潇宇, 等.多壁碳纳米管对铜绿微囊藻生长及生理特征的影响[J].生态毒理学报, 2018, 13(6):316-325 http://d.old.wanfangdata.com.cn/Periodical/cyyhj201806032
WANG Y J, LI N, LUO X Y, et al. Effects of multi-walled carbon nanotubes on the growth and physiology of Microcystis aeruginosa[J]. Asian Journal of Ecotoxicology, 2018, 13(6):316-325 http://d.old.wanfangdata.com.cn/Periodical/cyyhj201806032
[11]罗潇宇, 任垠安, 高浩杰, 等. 2种类型多壁碳纳米管对蛋白核小球藻的毒理研究[J].生态毒理学报, 2018, 13(6):333-341 http://d.old.wanfangdata.com.cn/Periodical/cyyhj201806034
LUO X Y, REN Y A, GAO H J, et al. The toxicology effects of two types of multi-walled carbon nanotubes on the physiology of Chlorella pyrenoidosa[J]. Asian Journal of Ecotoxicology, 2018, 13(6):333-341 http://d.old.wanfangdata.com.cn/Periodical/cyyhj201806034
[12]王萌, 陈世宝, 李娜, 等.纳米材料在污染土壤修复及污水净化中应用前景探讨[J].中国生态农业学报, 2010, 18(2):434-439 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201002041
WANG M, CHEN S B, LI N, et al. A review on the development and application of Nano-scale amendment in remediating polluted soils and waters[J]. Chinese Journal of Eco-Agriculture, 2010, 18(2):434-439 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201002041
[13]姚欢, 魏永鹏, 尹双, 等.碳纳米材料与共存污染物的联合毒性[J].中国科学:化学, 2018, 48(5):491-503 http://www.cnki.com.cn/Article/CJFDTotal-JBXK201805003.htm
YAO H, WEI Y P, YIN S, et al. Joint toxicity of carbon nanomaterials and coexisting pollutants[J]. Scientia Sinica Chimica, 2018, 48(5):491-503 http://www.cnki.com.cn/Article/CJFDTotal-JBXK201805003.htm
[14]WANG C R, LIU H T, CHEN J Y, et al. Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium[J]. Journal of Hazardous Materials, 2014, 274:404-412 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0581fdc0a4763e0d7b0ae10598f83a71
[15]YADAV T, MUNGRAY A A, MUNGRAY A K. Effect of multiwalled carbon nanotubes on UASB microbial consortium[J]. Environmental Science and Pollution Research, 2016, 23(5):4063-4072 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e8238e8dc18256ee16a68cd437dab043
[16]WU Y, WANG Y J, LI Y W, et al. Effects of single-walled carbon nanotubes on growth and physiological characteristics of Microcystis aeruginosa[J]. Journal of Central South University, 2018, 25(7):1628-1641 http://d.old.wanfangdata.com.cn/Periodical/zngydxxb-e201807010
[17]李冬香, 陈清西.锌在再力花体内的富集性及亚细胞分布和化学形态研究[J].中国生态农业学报, 2013, 21(9):1114-1118 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201309011
LI D X, CHEN Q X. Determinating zinc accumulation, sub-cellular distribution and chemical forms of Thalia dealbata Fraser[J]. Chinese Journal of Eco-Agriculture, 2013, 21(9):1114-1118 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201309011
[18]舒启豪, 孔艳艳, 罗坤, 等.干旱与Cd双重胁迫对土壤-小麦-蚜虫系统Cd转移规律影响的研究[J].中国生态农业学报(中英文), 2019, 27(11):1656-1662 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-1105&flag=1
SHU Q H, KONG Y Y, LUO K, et al. Cadmium transfer in the ecosystem of soil-wheat-aphid under dual stress of cadmium and drought[J]. Chinese Journal of Eco-Agriculture, 2019, 27(11):1656-1662 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-1105&flag=1
[19]卢垟杰, 刘淑慧, 郭建忠, 等.盐碱胁迫对紫花苜蓿和草木樨发芽及出苗的影响[J].种子, 2017, 36(8):83-87 http://d.old.wanfangdata.com.cn/Periodical/zhongz201708020
LU Y J, LIU S H, GUO J Z, et al. Effect of salt and alkaline stress on the seed germination and emergence of Medicago sativa Linn and Melilotus suaveolens Ledeb[J]. Seed, 2017, 36(8):83-87 http://d.old.wanfangdata.com.cn/Periodical/zhongz201708020
[20]周劲松, 闫平, 张伟明, 等.生物炭对水稻苗期生长、养分吸收及土壤矿质元素含量的影响[J].生态学杂志, 2016, 35(11):2952-2959 http://d.old.wanfangdata.com.cn/Periodical/stxzz201611012
ZHOU J S, YAN P, ZHANG W M, et al. Effects of biochar on seedling growth, nutrient absorption of japonica rice and mineral element contents of substrate soil[J]. Chinese Journal of Ecology, 2016, 35(11):2952-2959 http://d.old.wanfangdata.com.cn/Periodical/stxzz201611012
[21]王伟, 蔡晓东, 李惠华, 等.湿式消解-石墨炉原子吸收光谱法测定金线莲铅、铜、镉含量[J].亚热带植物科学, 2014, 43(4):298-301 http://d.old.wanfangdata.com.cn/Periodical/yrdzwkx201404007
WANG W, CAI X D, LI H H, et al. Determination of Pb, Cu and Cd in Anoectochilus roxburghii with wet digestion and graphite furnace atomic absorption spectrometry[J]. Subtropical Plant Science, 2014, 43(4):298-301 http://d.old.wanfangdata.com.cn/Periodical/yrdzwkx201404007
[22]吴彩霞, 张洪荣.微波消解石墨炉原子吸收光谱法测定植物中的铅[J].草业科学, 2010, 27(2):66-70 http://d.old.wanfangdata.com.cn/Periodical/caoyekx201002013
WU C X, ZHANG H R. A determination of lead content in plant by microwave-heating and GF-AAS[J]. Pratacultural Science, 2010, 27(2):66-70 http://d.old.wanfangdata.com.cn/Periodical/caoyekx201002013
[23]唐杰, 徐强, 罗成, 等.灌浆期镉胁迫下水稻Cd在组织细胞中的特征研究[J].环境科学与技术, 2017, 40(S1):49-55 http://www.cnki.com.cn/Article/CJFDTotal-FJKS2017S1010.htm
TANG J, XU Q, LUO C, et al. Filling stage of rice under cadmium stress Cd characteristics research in tissue cells[J]. Environmental Science & Technology, 2017, 40(S1):49-55 http://www.cnki.com.cn/Article/CJFDTotal-FJKS2017S1010.htm
[24]张路, 张锡洲, 李廷轩, 等. Cd胁迫对水稻亲本材料Cd吸收分配的影响[J].农业环境科学学报, 2014, 33(12):2288-2295 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201412002
ZHANG L, ZHANG X Z, LI T X, et al. Effects of Cadmium stress on uptake and distribution of cadmium in different rice varieties[J]. Journal of Agro-Environment Science, 2014, 33(12):2288-2295 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201412002
[25]DE VOOGT P. Reviews of Environmental Contamination and Toxicology[M]. Amsterdam:Springer International Publishing, 2017:73-137
[26]NISHIZONO H, ICHIKAWA H, SUZIKI S, et al. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense[J]. Plant and Soil, 1987, 101(1):15-20 doi: 10.1007-BF02371025/
[27]AHMAD P, NABI G, ASHRAF M. Cadmium-induced oxidative damage in mustard[Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid[J]. South African Journal of Botany, 2011, 77(1):36-44 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=963c5aa03834ecd0015030d1108085d8
[28]周建, 张毅川, 齐安国, 等.镉胁迫对刺槐幼苗的生长、镉离子富集及其细胞分布的影响[J].河南科技学院学报:自然科学版, 2018, 46(1):1-7 http://d.old.wanfangdata.com.cn/Periodical/hnzjsyxb201801001
ZHOU J, ZHANG Y C, QI A G, et al. Effects of cadmium stress on growth, ions accumulation and cellular distribution in Robinia pseudoacacia seedlings[J]. Journal of Henan Institute of Science and Technology:Natural Science Edition, 2018, 46(1):1-7 http://d.old.wanfangdata.com.cn/Periodical/hnzjsyxb201801001
[29]邓祥元, 胡小丽, 成婕, 等.纳米二氧化铈对蛋白核小球藻生物学效应研究[J].生态毒理学报, 2016, 11(5):111-116 http://d.old.wanfangdata.com.cn/Periodical/cyyhj201605015
DENG X Y, HU X L, CHENG J, et al. Effects of nanoparticle CeO2 on the physiology of Chlorella pyrenoidosa[J]. Asian Journal of Ecotoxicology, 2016, 11(5):111-116 http://d.old.wanfangdata.com.cn/Periodical/cyyhj201605015
[30]张玉秀, 于飞, 张媛雅, 等.植物对重金属镉的吸收转运和累积机制[J].中国生态农业学报, 2008, 16(5):1317-1321 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200805049
ZHANG Y X, YU F, ZHANG Y Y, et al. Uptake, translocation and accumulation of cadmium in plant[J]. Chinese Journal of Eco-Agriculture, 2008, 16(5):1317-1321 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200805049
[31]潘智立, 李军.硫、硅对水稻体内NPT含量及镉亚细胞分布的影响[J].土壤通报, 2016, 47(5):1253-1258 http://d.old.wanfangdata.com.cn/Periodical/trtb201605035
PAN Z L, LI J. The response of non-protein thiols and subcellular distribution of cadmium in rice to the exogenous sulfur and silicon[J]. Chinese Journal of Soil Science, 2016, 47(5):1253-1258 http://d.old.wanfangdata.com.cn/Periodical/trtb201605035
[32]方继宇, 贾永霞, 张春梅, 等.马缨丹对镉的生长响应及其富集、转运和亚细胞分布特点研究[J].生态环境学报, 2014, 23(10):1677-1682 http://d.old.wanfangdata.com.cn/Periodical/tryhj201410017
FANG J Y, JIA Y X, ZHANG C M, et al. Effects of cadmium on growth response of Lantana camara L. and its accumulation, translocation and subcellular distribution of Cd[J]. Ecology and Environmental Sciences, 2014, 23(10):1677-1682 http://d.old.wanfangdata.com.cn/Periodical/tryhj201410017
[33]唐杰, 徐强, 王昌全, 等. Cd胁迫下不同水稻品种组织细胞中Cd的转运分配研究[J].生态环境学报, 2016, 25(12):2014-2020 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj201612017
TANG J, XU Q, WANG C Q, et al. Research of Cd stress on transfer and distribution of Cd in histocyte of different rice varieties[J]. Ecology and Environmental Sciences, 2016, 25(12):2014-2020 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj201612017
[34]林道辉, 冀静, 田小利, 等.纳米材料的环境行为与生物毒性[J].科学通报, 2009, 54(23):3590-3604 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200923002
LIN D H, JI J, TIAN X L, et al. Environmental behavior and toxicity of engineered nanomaterials[J]. Chinese Science Bulletin, 2009, 54(23):3590-3604 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200923002

相关话题/细胞 植物 比例 生态 科学