黄高鉴,
王永亮,
郭军玲,
杨治平,
山西省农业科学院农业环境与资源研究所/山西省土壤环境与养分资源重点实验室 太原 030031
基金项目: 山西省农业科学院特色农业技术攻关项目YGG17039
详细信息
作者简介:郭彩霞, 主要从事作物氮素营养相关研究。E-mail:sxplant@163.com
通讯作者:杨治平, 主要研究方向为养分资源管理。E-mail:yzpsx0208@163.com
中图分类号:S143.1;S318计量
文章访问数:295
HTML全文浏览量:2
PDF下载量:211
被引次数:0
出版历程
收稿日期:2019-12-12
录用日期:2020-04-10
刊出日期:2020-07-01
Optimal nitrogen application rate and nitrogen requirement characteristics of red kidney bean
GUO Caixia,HUANG Gaojian,
WANG Yongliang,
GUO Junling,
YANG Zhiping,
Institute of Agricultural Environment & Resources, Shanxi Academy of Agricultural Sciences/Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Taiyuan 030031, China
Funds: the Program for Science and Technology Development of Characteristic Agriculture of Shanxi Academy of Agricultural SciencesYGG17039
More Information
Corresponding author:YANG Zhiping, E-mail:yzpsx0208@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为探明山西省红芸豆的氮素需求规律与分配特征,并明确其适宜施氮量,以‘英国红’为试验材料,通过田间试验,系统监测了不同生育时期红芸豆干物质和养分的累积与分配特征,并研究了氮肥施用水平对红芸豆产量、氮素利用效率的影响。分别在山西省中部农业科学院东阳试验基地和西部地区岢岚县曹家沟村进行试验。东阳试验基地设置了4个氮水平(kg·hm-2)处理,分别为0(N1)、60(N2)、120(N3)和180(N4);岢岚县曹家沟村设置5个氮水平(kg·hm-2)处理,分别为0(N1)、60(N2)、120(N3)、180(N4)和240(N5)。结果表明,红芸豆在不同氮肥处理间籽粒产量、生物量和氮素累积量均表现出显著差异:籽粒产量随氮肥施用量的增加呈单峰曲线变化,两个试验点均表现为N3处理产量最高,分别为2 359.89 kg·hm-2和2 452.26 kg·hm-2,产量差异主要来自百粒重;干物质累积随生育进程呈现“慢—快—慢”的增长趋势,两个试验点均表现出N3处理单株籽粒所占总干物质比重最高,分别为49.97%与47.65%;植株氮素累积与分配与干物质累积的变化趋势大致相同,两个试验点单株籽粒最高含氮量分别在N4(东阳)和N3(岢岚)处理,分别为每株0.72 g和0.99 g。说明合理的氮肥施用可以提高籽粒的干物质累积量和氮素的转运效率,显著提高了红芸豆植株干物质向籽粒中的转移率,增加了植株对氮素的吸收和转运能力。山西省中部地区红芸豆推荐氮肥施用量为110.36 kg·hm-2,西部地区为126.31 kg·hm-2。
关键词:红芸豆/
籽粒产量/
施氮量/
氮素需求/
氮肥利用效率
Abstract:Red kidney bean (Phaseolus vulgaris) is one of the most important miscellaneous grain crops in Shanxi Province. However, its nitrogen requirement pattern has not been investigated, which has impeded nitrogen management. This research evaluated the nitrogen requirement pattern of the red kidney bean cultivar 'British Red' in Shanxi Province, China. The field experiments were conducted at Dongyang Agricultural Experimental Station, Shanxi Academy of Agricultural Sciences (central area of Shanxi Province), and at Caojiagou Village in Kelan County (western part of Shanxi Province). Four nitrogen application rates: 0 kg·hm-2 (N1), 60 kg·hm-2 (N2), 120 kg·hm-2 (N3), and 180 kg·hm-2 (N4), were applied at Dongyang, and five application rates: 0 kg·hm-2 (N1), 60 kg·hm-2 (N2), 120 kg·hm-2 (N3), 180 kg·hm-2 (N4), and 240 kg·hm-2 (N5), were applied at Kelan. The accumulation and distribution of biomass and nitrogen uptake in different parts of the plants were monitored during the growth period. The grain yields and nitrogen translocation efficiencies at different nitrogen application rates were also determined. The results showed that there were significant differences in grain yield, biomass, and nitrogen accumulation among different nitrogen application treatments. The grain yield against nitrogen application rates analysis produced an odd peak curve, and the highest grain yields were found in the N3 treatment, which were 2 359.89 kg·hm-2 and 2 452.26 kg·hm-2 at the two field experimental sites, respectively. The hundred-grain weight was the main contributory factor to the yield difference. The dry biomass accumulation showed a pattern of "slow-fast-slow" as red kidney bean growth progressed. The highest percentage of grain in the biomass was recorded in the N3 treatment, and reached 49.97% at Dongyang and 47.65% at Kelan, respectively. The nitrogen uptakes by grain in the N4 (Dongyang) and N3 (Kelan) treatments were 0.72 g·plant-1 and 0.99 g·plant-1, respectively, which were higher than in the other treatments. In conclusion, the application of reasonable rates of nitrogen improved the translocation of nitrogen from vegetative parts to grain and helped improve nitrogen uptake by grain and its translocation efficiency, which might be the mechanism underlying the grain yield increase. The appropriate nitrogen application rate is 110.36 kg·hm-2 in the central area of Shanxi Province and 126.31 kg·hm-2 in the western part of the province, which can be finely adjusted according to the actual soil fertility and variety.
Key words:Red kidney bean/
Grain yield/
Nitrogen application rate/
Nitrogen demand/
Nitrogen use efficiency
HTML全文

图1不同试验地点不同氮肥施用量下红芸豆地上部生物量累积动态
V3:苗期; R1开花期; R3:结荚期; R6:鼓粒期; R8:生理成熟期。
Figure1.Dynamics of red kidney bean shoots biomass at different nitrogen application levels in different experimental sites
V3: seeding stage; R1: bloom stage; R3: pod bearing stage; R6: seed filling stage; R8: mature stage.


图2不同试验地点不同氮肥施用量下红芸豆地上部氮素累积动态
V3:苗期; R1开花期; R3:结荚期; R6:鼓粒期; R8:生理成熟期。
Figure2.Dynamics of red kidney bean shoot nitrogen accumulation at different nitrogen application levels in different experimental sites
V3: seeding stage; R1: bloom stage; R3: pod bearing stage; R6: seed filling stage; R8: mature stage.


图3不同试验地点不同氮肥施用量下红芸豆不同生育期各器官氮素累积量
不同小写字母表示同一时期不同处理间在P < 0.05水平差异显著。
Figure3.Nitrogen accumulation in organs of red kidney bean at different growth stages and different nitrogen application levels in different experimental sites
Different lowercase letters mean significant differences among different nitrogen application levels in the same period at P < 0.05 level.


图4不同试验地点不同氮肥施用量对红芸豆氮肥利用效率的影响
Figure4.Effect of nitrogen application levels on fertilizer-N use efficiency of red kidney bean in different experimental sites


图5红芸豆籽粒产量对氮肥用量的反应曲线
Figure5.Red kidney bean yield response to nitrogen application levels

表1不同试验地点0~20 cm土层基础土壤养分含量
Table1.Basic properties of the tested soil in the 0-20 cm layer in different experimental sites
地点 Site | 全氮 Total N (g·kg–1) | 有效磷 Available P (mg·kg–1) | 速效钾 Available K (mg·kg–1) | 有机质 Organic matter (g·kg–1) | pH |
东阳Dongyang | 0.65 | 10.63 | 145.28 | 11.45 | 8.30 |
岢岚Kelan | 0.79 | 18.29 | 170.57 | 13.49 | 7.89 |

表2不同处理肥料用量及施用时期
Table2.Fertilizer application rates at different stages of different fertilizer application treatments ?
处理 Treatment | 氮磷钾用量 Fertilizer application (N-P2O5-K2O) | 底肥 Basal fertilizer (N-P2O5-K2O) | 初花期追氮肥 Topdressing N at squaring stage | 始荚期追氮肥 Topdressing N at pod bearing stage |
N1 | 0-105-75 | 0-105-75 | 0 | 0 |
N2 | 60-105-75 | 18-105-75 | 30 | 12 |
N3 | 120-105-75 | 60-105-75 | 36 | 24 |
N4 | 180-105-75 | 90-105-75 | 54 | 36 |
N5 | 240-105-75 | 120-105-75 | 72 | 48 |

表3不同试验地点不同氮肥用量下红芸豆的产量及其构成因子
Table3.Grain yield and its components of red kidney bean at different nitrogen application levels in different experimental sites
地点 Site | 处理 Treatment | 实测籽粒产量 Actual grain yield (kg·hm-2) | 单株豆荚数 Pods number per plant | 每荚粒数 Number of grains per pod | 百粒重 100-grain weight (g) |
东阳 Dongyang | N1 | 1 562.18±66.08c | 7.28±1.69b | 2.78±0.13b | 38.04±0.92b |
N2 | 2 164.02±56.66b | 13.35±2.07a | 2.96±0.25a | 39.21±1.91ab | |
N3 | 2 359.89±110.10a | 12.53±3.83a | 3.26±0.26a | 40.92±1.50a | |
N4 | 2 111.27±165.37b | 12.85±1.15a | 3.21±0.43a | 39.20±1.92ab | |
岢岚 Kelan | N1 | 1 906.08±47.23d | 10.78±3.64a | 4.78±0.43a | 46.20±1.43b |
N2 | 2 233.33±114.09bc | 10.63±2.62a | 5.10±0.37a | 47.52±1.51ab | |
N3 | 2 452.26±101.95a | 10.98±2.91a | 4.88±0.33a | 48.52±1.51a | |
N4 | 2 362.96±120.35ab | 10.88±2.11a | 4.90±0.35a | 48.35±0.88a | |
N5 | 2 143.67±55.30c | 12.18±4.63a | 4.85±0.31a | 47.16±0.40ab | |
同列数据后不同小写字母表示同一地点不同处理间差异显著(P < 0.05)。Values of the same site followed by different lowercase letters in the same column are significantly different at P < 0.05 level. |

表4不同试验地点不同氮肥施用量下不同生育期红芸豆植株各器官干物质累积与分配
Table4.Dry matter accumulation and distribution in organs of red kidney bean at different growth stages and different nitrogen application levels in different experimental sites
地点 Site | 器官 Organ | 处理 Treatment | 累积量Accumulation amount (g·plant-1) | 分配比例Distribution ratio (%) | |||||||||
V3 | R1 | R3 | R6 | R8 | V3 | R1 | R3 | R6 | R8 | ||||
东阳 Dong- yang | 叶片 Leaf | N1 | 0.74±0.11a | 3.54±0.64b | 9.40±1.26c | 3.05±0.53b | 1.41±0.25b | 71.94 | 56.32 | 58.43 | 11.77 | 4.98 | |
N2 | 0.84±0.02a | 5.12±0.24a | 10.63±0.39bc | 4.03±1.05ab | 2.42±0.22ab | 71.71 | 63.06 | 58.93 | 13.12 | 7.30 | |||
N3 | 0.78±0.06a | 5.25±0.64a | 11.18±0.35b | 6.02±1.55ab | 3.14±.1.03a | 69.64 | 56.83 | 58.18 | 16.18 | 7.92 | |||
N4 | 0.79±0.05a | 6.11±0.72a | 12.76±0.33a | 6.42±2.54a | 2.91±0.99a | 69.39 | 53.06 | 61.48 | 16.18 | 7.13 | |||
茎秆 Stalk | N1 | 0.29±0.01b | 2.74±0.24c | 6.69±0.31b | 7.42±0.48b | 7.73±0.28b | 28.06 | 43.68 | 41.57 | 28.63 | 27.29 | ||
N2 | 0.33±0.03a | 3.00±0.22c | 7.41±0.86ab | 8.07±0.43ab | 8.83±0.67ab | 28.29 | 36.94 | 41.07 | 26.28 | 26.61 | |||
N3 | 0.34±0.02a | 3.99±0.50b | 8.04±0.34a | 8.87±1.08ab | 8.76±0.64ab | 30.36 | 43.17 | 41.82 | 23.82 | 22.11 | |||
N4 | 0.35±0.01a | 5.40±0.27a | 8.00±0.45a | 9.02±0.86a | 9.40±1.55a | 30.61 | 46.94 | 38.52 | 22.74 | 23.00 | |||
荚皮 Shell | N1 | 6.12±0.83c | 5.49±0.59b | 23.64 | 19.36 | ||||||||
N2 | 6.67±0.45c | 7.41±0.98ab | 21.70 | 22.36 | |||||||||
N3 | 7.61±0.17b | 8.66±1.89a | 20.45 | 21.88 | |||||||||
N4 | 9.05±0.27a | 8.02±0.86a | 22.84 | 19.63 | |||||||||
籽粒 Grain | N1 | 9.31±0.30c | 13.71±0.56b | 35.95 | 48.37 | ||||||||
N2 | 11.95±1.26b | 14.50±1.23b | 38.90 | 43.73 | |||||||||
N3 | 14.73±0.52a | 20.53±5.61a | 39.56 | 49.97 | |||||||||
N4 | 15.16±0.77a | 19.04±3.83ab | 38.24 | 48.36 | |||||||||
岢岚 Kelan | 叶片 Leaf | N1 | 0.86±0.02b | 7.79±1.180b | 11.26±1.01b | 8.74±2.35b | 2.99±0.78c | 72.39 | 65.18 | 54.89 | 19.78 | 6.41 | |
N2 | 0.91±0.02ab | 8.50±0.19ab | 13.28±1.09ab | 11.16±1.02ab | 4.02±1.05bc | 74.59 | 64.44 | 54.35 | 21.30 | 7.15 | |||
N3 | 0.94±0.08a | 11.43±2.06a | 15.00±1.54a | 11.01±0.78ab | 4.44±1.95abc | 75.00 | 71.23 | 59.58 | 20.04 | 7.39 | |||
N4 | 0.93±0.04ab | 11.29±1.17a | 15.32±1.41a | 12.54±1.87a | 6.29±1.45a | 74.53 | 67.48 | 57.55 | 22.70 | 10.12 | |||
N5 | 0.95±0.02a | 11.27±2.51a | 14.90±1.88a | 11.23±0.81ab | 5.91±1.30ab | 74.80 | 69.21 | 58.29 | 20.69 | 9.87 | |||
茎秆 Stalk | N1 | 0.33±0.05a | 4.16±0.16b | 9.25±0.84b | 10.04±0.97b | 11.06±1.33b | 27.61 | 34.82 | 45.11 | 22.72 | 23.76 | ||
N2 | 0.31±0.05a | 4.69±0.83ab | 11.15±1.51a | 12.42±0.16ab | 13.18±1.08ab | 25.41 | 35.56 | 45.65 | 23.70 | 23.43 | |||
N3 | 0.31±0.01a | 4.62±0.58ab | 10.18±0.31ab | 11.95±1.43ab | 13.76±1.40ab | 25.00 | 28.77 | 40.42 | 21.75 | 22.91 | |||
N4 | 0.32±0.02a | 5.44±0.76a | 11.29±0.55a | 11.86±1.60ab | 14.02±2.481a | 25.47 | 32.52 | 42.45 | 21.47 | 22.56 | |||
N5 | 0.32±0.02a | 5.02±0.87ab | 10.66±0.38ab | 12.56±1.57a | 15.48±1.68a | 25.20 | 30.79 | 41.71 | 23.14 | 25.86 | |||
荚皮 Shell | N1 | 8.19±2.79bc | 10.93±1.05b | 18.54 | 23.48 | ||||||||
N2 | 7.72±1.08c | 13.62±1.27a | 14.73 | 24.20 | |||||||||
N3 | 9.61±0.44abc | 13.25±1.68a | 17.49 | 22.06 | |||||||||
N4 | 11.30±0.90a | 15.49±1.64a | 20.45 | 24.92 | |||||||||
N5 | 10.55±0.57ab | 14.34±1.36a | 19.44 | 23.95 | |||||||||
籽粒 Grain | N1 | 17.21±0.68c | 21.58±1.66b | 38.96 | 46.35 | ||||||||
N2 | 21.10±1.41ab | 25.44±1.63ab | 40.26 | 45.23 | |||||||||
N3 | 22.37±0.44a | 28.62±1.60a | 40.72 | 47.65 | |||||||||
N4 | 19.55±0.47b | 26.35±1.28a | 35.38 | 42.40 | |||||||||
N5 | 19.94±1.60b | 24.14±3.47ab | 36.73 | 40.32 | |||||||||
V3:苗期; R1开花期; R3:结荚期; R6:鼓粒期; R8:生理成熟期。同列数据后不同小写字母表示同一地点同一时期同一器官不同处理间差异显著(P < 0.05)。V3: seeding stage; R1: bloom stage; R3: pod bearing stage; R6: seed filling stage; R8: mature stage. Values in the same column of the same organ at the same growth stage in the same site followed by different lowercase letters are significantly different at P < 0.05 level. |

表5不同试验地点不同氮肥施用量下红芸豆植株氮转运量特征
Table5.Characteristics of nitrogen translocation in red kidney bean at different nitrogen application levels in different experimental sites
地点 Site | 氮素转运特征 Characteristics of nitrogen translocation | 氮肥处理 N fertilizer treatment | ||||
N1 | N2 | N3 | N4 | N5 | ||
东阳 Dongyang | 转运量Translocation amount (g·plant-1) | 0.34±0.12b | 0.39±0.31ab | 0.44±0.23ab | 0.49±0.58a | |
转运效率Translocation rate (%) | 63.65±3.20a | 69.00±3.63a | 73.70±3.25a | 70.71±2.51a | ||
对籽粒的贡献Contribution rate to grain (%) | 47.22±3.24b | 60.93±4.98a | 60.47±0.60a | 61.26±5.66a | ||
岢岚 Kelan | 转运量Translocation amount (g·plant-1) | 0.37±0.03c | 0.44±0.03bc | 0.50±0.02ab | 0.52±0.03a | 0.43±0.01bc |
转运效率Translocation rate (%) | 65.19±1.62a | 61.67±0.71a | 63.94±3.01a | 62.34±3.62a | 54.21±1.06b | |
对籽粒的贡献Contribution rate to grain (%) | 53.04±1.46a | 60.44±4.25a | 55.79±2.51a | 58.91±0.71a | 54.58±9.55a | |
同行数据后不同小写字母表示处理间在P < 0.05水平差异显著。Values followed by different lowercase letters in the same line are significantly different at P < 0.05 level. |

参考文献
[1] | KAN L J, NIE S P, HU J L, et al. Nutrients, phytochemicals and antioxidant activities of 26 kidney bean cultivars[J]. Food and Chemical Toxicology, 2017, 108:467-477 doi: 10.1016/j.fct.2016.09.007 |
[2] | 柴岩, 万富世.中国小杂粮产业发展报告[M].北京:中国农业科学技术出版社, 2007:84-90 CHAI Y, WAN F S. Minor Cereal Industry Development Report of China[M]. Beijing:China Agricultural Science and Technology Press, 2007:84-90 |
[3] | 岢岚县人民政府.岢岚县概况[EB/OL].岢岚县人民政府网.[2018-01-10].http://klx.sxxz.gov.cn/zjkl/klgk/201801/t20180110_172145.html Kelan County People's Government. The summarize of Kelan County[EB/OL]. Kelan County People's Government Network.[2018-01-10]. http://klx.sxxz.gov.cn/zjkl/klgk/201801/t20180110_172145.html |
[4] | 龙静宜.食用豆类种植技术[M].北京:金盾出版社, 2002:164-166 LONG J Y. Edible Beans Planting Technique[M]. Beijing:Shield Press, 2002:164-166 |
[5] | 张福锁.科学认识化肥的作用[J].中国农技推广, 2017, 33(1):16-19 doi: 10.3969/j.issn.1002-381X.2017.01.005 ZHANG F S. Scientific understanding of chemical fertilizers' roles[J]. China Agricultural Technology Extension, 2017, 33(1):16-19 doi: 10.3969/j.issn.1002-381X.2017.01.005 |
[6] | 张福锁, 王激清, 张卫峰, 等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报, 2008, 45(5):915-924 doi: 10.3321/j.issn:0564-3929.2008.05.018 ZHANG F S, WANG J Q, ZHANG W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5):915-924 doi: 10.3321/j.issn:0564-3929.2008.05.018 |
[7] | 朱兆良.农田生态系统中化肥氮的去向和氮素管理[M]//朱兆良, 文启孝.中国土壤氮素.南京: 江苏科技出版社, 1992: 37-59 ZHU Z L. The fate of fertilizer N and nitrogen management in farmland ecosystem[M]//ZHU Z L, WEN Q X. Soil Nitrogen of China. Nanjing: Jiangsu Technology Press, 1992: 37-59 |
[8] | 乔秀平.不同施氮水平对芸豆产量的影响[J].山西农业科学, 2014, 42(7):694-696 doi: 10.3969/j.issn.1002-2481.2014.07.13 QIAO X P. Effects of nitrogen fertilizer application rates on yield of kidney bean[J]. Journal of Shanxi Agricultural Sciences, 2014, 42(7):694-696 doi: 10.3969/j.issn.1002-2481.2014.07.13 |
[9] | 宋谨同, 赵宏伟, 杨亮, 等.氮肥用量对芸豆氮肥利用率和产量影响的研究[J].农业现代化研究, 2013, 34(6):749-753 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyxdhyj201306024 SONG J T, ZHAO H W, YANG L, et al. Effect of nitrogen application on nitrogen use efficiency and yield of kidney bean[J]. Research of Agricultural Modernization, 2013, 34(6):749-753 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyxdhyj201306024 |
[10] | 畅建武, 郝晓鹏, 王燕, 等.红芸豆氮磷钾肥效试验研究[J].中国农学通报, 2015, 31(15):108-113 doi: 10.11924/j.issn.1000-6850.casb14120084 CHANG J W, HAO X P, WANG Y, et al. Fertilizer efficiency experiment of nitrogen phosphorus and potassium on red kidney bean[J]. Chinese Agricultural Science Bulletin, 2015, 31(15):108-113 doi: 10.11924/j.issn.1000-6850.casb14120084 |
[11] | 韩彦龙, 晋凡生, 郑普山, 等.红芸豆养分限制因子及养分吸收、积累和分配特征研究[J].中国生态农业学报, 2016, 24(7):902-909 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201607007 HAN Y L, JIN F S, ZHENG P S, et al. Nutrient restrictive factors, nutrient absorption and accumulation of red kidney bean[J]. Chinese Journal of Eco-Agriculture, 2016, 24(7):902-909 http://d.old.wanfangdata.com.cn/Periodical/stnyyj201607007 |
[12] | 晋凡生, 韩彦龙, 李晓平, 等.氮磷钾配比对红芸豆养分吸收规律及肥料利用率的影响[J].中国农学通报, 2017, 33(13):26-36 doi: 10.11924/j.issn.1000-6850.casb17020033 JIN F S, HAN Y L, LI X P, et al. Effects of different NPK rates on nutrient absorption and fertilizer use efficiency of red kidney beans[J]. Chinese Agricultural Science Bulletin, 2017, 33(13):26-36 doi: 10.11924/j.issn.1000-6850.casb17020033 |
[13] | 晋凡生, 韩彦龙, 李洁, 等.氮磷钾配施对红芸豆养分吸收、干物质积累及产量构成因子的影响[J].华北农学报, 2018, 33(6):183-192 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201806025 JIN F S, HAN Y L, LI J, et al. Effect of NPK fertilizers on nutrient uptake and dry matter accumulation and yield components of red kidney beans[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(6):183-192 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201806025 |
[14] | 鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社, 2000 BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing:China Agriculture Press, 2000 |
[15] | 李俊华, 刘建国, 冯玉龙, 等.施肥量对奶花芸豆产量效应和养分吸收的影响[J].土壤, 2007, 39(6):1004-1008 doi: 10.3321/j.issn:0253-9829.2007.06.033 LI J H, LIU J G, FENG Y L, et al. Effect of fertilization amount on Phaseolus vulgarisl yield and nutrient absorption[J]. Soils, 2007, 39(6):1004-1008 doi: 10.3321/j.issn:0253-9829.2007.06.033 |
[16] | 刘建国, 李俊华, 翟孟茹, 等.奶花芸豆种植密度与施肥量优化组合模式的研究[J].西北农业学报, 2005, 14(4):57-60 doi: 10.3969/j.issn.1004-1389.2005.04.014 LIU J G, LI J H, ZHAI M R, et al. Study on optimum model of planting density and fertilizing for Phaseolus vulgarisl[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2005, 14(4):57-60 doi: 10.3969/j.issn.1004-1389.2005.04.014 |
[17] | 杨启, 马茂亭, 赵丽平, 等.不同施氮处理对芸豆产量和品质的影响[J].北方园艺, 2014(13):176-180 http://d.old.wanfangdata.com.cn/Periodical/bfyany201413050 YANG Q, MA M T, ZHAO L P, et al. Effect of different nitrogen fertilizer treatments on yield and quality of greenhouse kidney bean[J]. Northern Horticulture, 2014(13):176-180 http://d.old.wanfangdata.com.cn/Periodical/bfyany201413050 |
[18] | 宋谨同.氮肥用量对芸豆氮代谢关键酶活性及产质量影响的研究[D].哈尔滨: 东北农业大学, 2012 SONG J T. Effect of nitrogen fertilizer on key enzymes activities of nitrogen metabolism and yield and quality of kidney bean[D] Harbin: Northeast Agricultural University, 2012 |
[19] | 李晓平.氮磷钾配施对红芸豆生长和产量及土壤肥力的影响[D].太谷: 山西农业大学, 2016 LI X P. The effect of red kidney bean growth and yield and soil fertility on combined application of N, P and K[D]. Taigu: Shanxi Agricultural University, 2016 |
[20] | 蒋桂英, 刘建国, 李英贤, 等.奶花芸豆群体冠层结构特征及产量性状研究[J].干旱地区农业研究, 2006, 24(4):211-214 doi: 10.3321/j.issn:1000-7601.2006.04.044 JIANG G Y, LIU J G, LI Y X, et al. Study on canopy structure of population and yield of Phaseolus vulgarisl[J]. Agricultural Research in the Arid Areas, 2006, 24(4):211-214 doi: 10.3321/j.issn:1000-7601.2006.04.044 |
[21] | 王景伟, 金喜军, 杜文言, 等.干旱胁迫对芸豆籽粒干物质积累的影响及动态模型的建立[J].干旱地区农业研究, 2014, 32(2):147-150 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201402023 WANG J W, JIN X J, DU W Y, et al. Effect of drought stress on seed dry matter accumulation of kidney bean and the construction of dynamic model[J]. Agricultural Research in the Arid Areas, 2014, 32(2):147-150 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201402023 |
[22] | 曾玲玲, 崔秀辉, 李清泉, 等.氮磷钾配施对芸豆产量的效应研究[J].黑龙江农业科学, 2013(2):39-43 doi: 10.3969/j.issn.1002-2767.2013.02.010 ZENG L L, CUI X H, LI Q Q, et al. Study on the effects of application ratios of nitrogen, phosphorus and potassium on yield of kidney bean[J]. Heilongjiang Agricultural Sciences, 2013(2):39-43 doi: 10.3969/j.issn.1002-2767.2013.02.010 |
[23] | 郑伟, 何萍, 高强, 等.施氮对不同土壤肥力玉米氮素吸收和利用的影响[J].植物营养与肥料学报, 2011, 17(2):301-309 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201102006 ZHENG W, HE P, GAO Q, et al. Effect of N application on nitrogen absorption and utilization of spring maize under different soil fertilities[J]. Plant Nutrition and Fertilizer Science, 2011, 17(2):301-309 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201102006 |
[24] | 章建新, 倪丽, 翟云龙.施氮对高产春大豆氮素吸收分配的影响[J].大豆科学, 2005, 24(1):38-42 doi: 10.3969/j.issn.1000-9841.2005.01.009 ZHANG J X, NI L, ZHAI Y L, et al. Effect on nitrogen fertilizer application to the absorption and distribution of nitrogen in spring soybean[J]. Soybean Science, 2005, 24(1):38-42 doi: 10.3969/j.issn.1000-9841.2005.01.009 |
[25] | 王树起, 韩晓增, 乔云发, 等.施氮对大豆根系形态和氮素吸收积累的影响[J].中国生态农业学报, 2009, 17(6):1069-1073 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200906003 WANG S Q, HAN X Z, QIAO Y F, et al. Root morphology and nitrogen accumulation in soybean (Glycine max L.) under different nitrogen application levels[J]. Chinese Journal of Eco-Agriculture, 2009, 17(6):1069-1073 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200906003 |
[26] | 杨广东, 胡尊艳, 王强, 等.高寒地区芸豆氮肥与密度优化组合模式研究[J].干旱地区农业研究, 2016, 34(5):98-102 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201605015 YANG G D, HU Z Y, WANG Q, et al. Investigation on optimal mode of nitrogen and planting density for kidney bean in frigid region[J]. Agricultural Research in the Arid Areas, 2016, 34(5):98-102 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201605015 |
[27] | 夏玄, 龚振平.氮素与豆科作物固氮关系研究进展[J].东北农业大学学报, 2017, 48(1):79-88 doi: 10.3969/j.issn.1005-9369.2017.01.011 XIA X, GONG Z P. Research advance on the relationship between nitrogen and leguminous nitrogen fixation[J]. Journal of Northeast Agricultural University, 2017, 48(1):79-88 doi: 10.3969/j.issn.1005-9369.2017.01.011 |
[28] | 姜妍, 王清泉, 李远明, 等.施氮水平对7S亚基缺失大豆根系形态和结瘤固氮的影响[J].大豆科学, 2017, 36(2):267-273 http://d.old.wanfangdata.com.cn/Periodical/ddkx201702017 JIANG Y, WANG Q Q, LI Y M, et al. Effect of different nitrogen application levels on the root morphology, nodulation and nitrogen fixation in 7S subunit lacked soybean[J]. Soybean Science, 2017, 36(2):267-273 http://d.old.wanfangdata.com.cn/Periodical/ddkx201702017 |
[29] | 龚振平, 金喜军, 马春梅, 等.春大豆对不同来源氮素吸收利用的研究[J].土壤通报, 2010, 41(5):1138-1141 http://d.old.wanfangdata.com.cn/Periodical/trtb201005024 GONG Z P, JIN X J, MA C M, et al. Study on the absorption and utilization of various source nitrogen by spring soybean[J]. Chinese Journal of Soil Science, 2010, 41(5):1138-1141 http://d.old.wanfangdata.com.cn/Periodical/trtb201005024 |