何永美,
王吉秀,
李博,
蒋明,
李元,
云南农业大学资源与环境学院 昆明 650201
基金项目: 云南省重点研发计划项目2018BB017
云南省重点研发计划项目2019BC001-04
国家自然科学基金项目31560163
国家自然科学基金项目31860112
国家自然科学基金项目41761073
国家自然科学基金项目41967049
云南生物资源保护与利用国家重点实验室项目GZJS201902
详细信息
作者简介:秦丽, 主要研究方向为土壤重金属污染与修复。E-mail:qinli2975@ynau.edu.cn
通讯作者:李元, 主要研究方向为污染生态学与修复生态。E-mail:liyuan03@ynau.edu.cn
中图分类号:X503.231计量
文章访问数:315
HTML全文浏览量:5
PDF下载量:229
被引次数:0
出版历程
收稿日期:2019-12-02
录用日期:2020-04-08
刊出日期:2020-06-01
Lead accumulation and low-molecular-weight organic acids secreted by roots in Sonchus asper L.-Zea mays L. intercropping system
QIN Li,HE Yongmei,
WANG Jixiu,
LI Bo,
JIANG Ming,
LI Yuan,
College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
Funds: the Key Research and Development Project of Yunnan Province2018BB017
the Key Research and Development Project of Yunnan Province2019BC001-04
the National Natural Science Foundation of China31560163
the National Natural Science Foundation of China31860112
the National Natural Science Foundation of China41761073
the National Natural Science Foundation of China41967049
the Fund of the State Key Laboratory for Construction and Utilization of Bio-Resources in Yunnan of ChinaGZJS201902
More Information
Corresponding author:LI Yuan, E-mail:liyuan03@ynau.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为探明间作作物根系分泌低分子量有机酸对土壤重金属生物有效性的影响,采用矿区周边农田土壤进行室内盆栽试验,研究了云南本土超累积植物续断菊(Sonchus asper L.Hill)和玉米(Zea mays L.)间作下,植物生长、根系低分子量有机酸分泌量、根际土壤Pb提取形态以及植物Pb积累特点。结果表明:与单作相比,间作续断菊地上部和根部生物量、根长、根内径和根系体积均显著增加(P < 0.05);间作玉米根部生物量、根长、根内径和根系体积显著增加(P < 0.05)。柠檬酸、草酸是续断菊和玉米根系分泌的主要低分子量有机酸,间作导致续断菊根系低分子量有机酸的分泌量增加,玉米根系低分子量有机酸的分泌量降低。续断菊根际土壤生物有效态Pb含量增加85.2%(P < 0.05),而玉米根际土壤生物有效态Pb含量降低26.1%(P < 0.05)。续断菊体内Pb含量显著增加18.0%~43.2%(P < 0.05),富集系数提高26.0%,而转运系数降低42.0%;玉米地上部Pb含量显著降低24.3%(P < 0.05),转运系数降低43.1%。续断菊根系分泌的柠檬酸和草酸数量,均与土壤生物有效态Pb含量呈显著正相关,且土壤有效态Pb含量分别与续断菊地上部和根部的Pb含量呈显著正相关。表明间作增加了续断菊对Pb的吸收积累量,与间作体系植物根系分泌的低分子有机酸介导下的土壤有效态Pb含量增加密切相关。
关键词:Pb污染/
低分子量有机酸/
续断菊/
玉米/
间作
Abstract:There is a close relationship between low-molecular-weight organic acids (LMWOAs) secreted by plant roots and plant accumulation of heavy metals when intercropping accumulators and crops in heavy metal-contaminated soils. However, the specific mechanism behind this remains unclear. Sonchus asper L. Hill is a native hyper accumulator that can be found in Yunnan. Plant growth, amounts of LMWOAs secreted by plant roots, rhizosphere soil extractable lead (Pb) contents, and plant Pb accumulation characteristics were studied under S. asper-Zea mays L. intercropping in soil that was collected from a farmland surrounding a mining area, in order to investigate the effects of the LMWOAs produced by intercropping roots on heavy metal bioavailability in soils. The results showed that the aboveground and root biomass, root length, root inner diameter, and root volume of S. asper were significantly increased (P < 0.05), and that the root biomass, root length, root diameter, and root volume of Z. mays were significantly increased (P < 0.05) under the intercropping systems compared to under the monoculture systems. The major LMWOAs secreted by the roots of both S. asper and Z. mays were citric acid and oxalic acid. Intercropping resulted in an increase and decrease in the LMWOA contents secreted by S. asper and Z. mays roots, respectively. The bio-available Pb content in the rhizosphere soil of S. asper increased by 85.2% (P < 0.05), and that of Z. mays decreased by 26.1% (P < 0.05) under intercropping. The Pb content, enrichment factor, and transfer coefficient increased by 18.0%-43.2%, increased by 26.0%, and reduced by 42.0% in S. asper under intercropping, respectively. Compared to the monoculture system, the shoot Pb content and Pb transfer coefficient decreased by 24.3% and 43.1% (P < 0.05) in Z. mays under the intercropping system, respectively. The amounts of citric acid and oxalic acid secreted by S. asper roots were significantly positively correlated with the soil bio-available Pb content, and the bio-available Pb content in soil was significantly positively correlated with S. asper shoot and root Pb contents. The results indicate that intercropping increases the uptake and accumulation of Pb in S. asper. These are both closely correlated with increases in soil bio-available Pb, which is mediated by plant roots that secrete LMWOAs.
Key words:Pb pollution/
Low-molecular-weight organic acid/
Sonchus asper L. Hill/
Zea mays L./
Intercropping
HTML全文
图1有机酸标准品色谱图
1:草酸; 2:酒石酸; 3:柠檬酸; 4:苹果酸; 5:乳酸; 6:乙酸; 7:马来酸; 8:琥珀酸。
Figure1.HPLC chromatogram of the mixed standard solution of 8 organic acids
1: oxalic acid; 2: tartaric acid; 3: citric acid; 4: malic acid; 5: lactic acid; 6: acetic acid; 7: maleic acid; 8: succinic acid.
下载: 全尺寸图片幻灯片
图2间作对续断菊(A)和玉米(B)根系分泌低分子量有机酸数量和种类的影响
图中数据为均值±标准误差(n=3)。*表示同一植物单作和间作处理间在P < 0.05水平差异显著。
Figure2.Contents and types of low-molecular-weight organic acids (LMWOA) in root exudates of Sonchus asper L. Hill (A) and Zea mays L. (B) under intercropping
All values are mean ± standard error (n = 3). * means significant difference between monoculture and intercropping of the same crop at P < 0.05 level.
下载: 全尺寸图片幻灯片
图3间作对续断菊(A)、玉米(B)根际土壤不同提取形态Pb含量的影响
A:可交换态; B:碳酸盐结合态; C:铁锰氧化物结合态; D:有机结合态; E:残渣态。图中数据为均值±标准误差(n=3)。*表示同一植物单作和间作间在P < 0.05水平差异显著。
Figure3.Contents of different extracted Pb forms in the rhizosphere soil of Sonchus asper L. Hill (A) and Zea mays L. (B) under intercropping
A: exchangeable related Pb; B: carbonate related Pb; C: ferric manganese oxidation related Pb; D: organic complexation Pb; E: residual Pb. All values are mean ± standard error (n = 3). * means significant difference between monoculture and intercropping of the same crop at P < 0.05 level.
下载: 全尺寸图片幻灯片
图4间作对续断菊(A)、玉米(B)不同部位Pb含量的影响
图中数据为均值±标准误差(n=3)。*表示同一植物单作和间作处理间在P < 0.05水平差异显著。
Figure4.Pb contents in different organs of Sonchus asper L. Hill (A) and Zea mays L. (B) under intercropping
All values are mean ± standard error (n = 3). * means significant difference between monoculture and intercropping of the same crop at P < 0.05 level.
下载: 全尺寸图片幻灯片
表1不同种植方式对续断菊和玉米生长和根系形态的影响
Table1.Effect of cropping patterns on the growth and root morphology of Sonchus asper L. Hill and Zea mays L.
植物 Plant | 种植方式 Cropping pattern | 生长形态Growth morphology | 根系形态Root morphology | 生物量Biomass (g·plant-1) | |||||||
株高 Plant height (cm) | 叶片数 Number of blades | 茎径/冠幅 Stem diameter or crown width (cm) | 根长 Root length (cm) | 根内径 Root inner diameter (cm) | 根系体积 Root volume (mL) | 地上 Shoot | 根 Root | ||||
玉米Z. mays | 单作Monoculture | 126.4±17.9b | 10.0±1.5a | 1.28±0.07b | 28.32±5.54a | 0.73±0.06b | 7.75±1.50b | 8.93±0.96a | 1.44±0.25b | ||
间作Intercropping | 171.5±21.3a | 12.0±1.1a | 1.64±0.08a | 32.80±6.60a | 0.97±0.12a | 12.25±3.20a | 8.62±1.54a | 1.98±0.17a | |||
续断菊S. asper | 单作Monoculture | 11.58±1.06b | 12.0±1.4b | 19.56±5.93a | 11.17±0.76b | 0.93±0.15b | 5.67±1.53b | 0.80±0.09b | 0.20±0.01b | ||
间作Intercropping | 16.38±0.89a | 17.0±0.9a | 20.21±3.37a | 17.33±1.61a | 1.40±0.36a | 7.01±1.00a | 1.04±0.06a | 0.27±0.02a | |||
同列不同小写字母表示同一植物单作和间作在P < 0.05水平差异显著(Duncan法)。Different lowercase letters in the same column mean significant differences between monoculture and intercropping of the same crop at P < 0.05 leve1. |
下载: 导出CSV
表2间作对续断菊和玉米Pb累积特征的影响
Table2.Accumulation characteristics of Pb of Sonchus asper L. Hill and Zea mays L. under intercropping
种植方式 Planting pattern | 续断菊S. asper | 玉米Z. mays | |||||
富集系数 Enrichment factor | 转运系数 Transfer coefficient | 有效转运系数 Effective transfer coefficient | 富集系数 Enrichment factor | 转运系数 Transfer coefficient | 有效转运系数 Effective transfer coefficient | ||
单作Monoculture | 0.61 | 0.33 | 1.32 | 0.11 | 0.57 | 3.55 | |
间作Intercropping | 0.77 | 0.19 | 0.73 | 0.12 | 0.33 | 1.41 |
下载: 导出CSV
表3续断菊和玉米间作系统植物Pb含量与土壤Pb形态的相关性分析
Table3.Correlations between contents of different Pb forms in rhizosphere soil and plant Pb contents of Sonchus asper L. Hill and Zea mays L. intercropping system
植物Plant | 部分Part | A | B | A+B | C | D | E |
续断菊 S. asper | 地上Shoot | 0.926** | 0.862* | 0.934** | -0.858* | -0.893* | 0.187 |
根Root | 0.975** | 0.922** | 0.853* | -0.840* | 0.754 | -0.140 | |
玉米 Z. mays | 茎Stem | 0.832* | -0.832* | 0.964** | 0.883* | -0.715 | 0.674 |
叶Leaf | -0.875* | 0.809 | -0.828* | -0.869* | 0.702 | 0.674 | |
籽粒Grain | 0.259 | -0.024 | -0.118 | 0.516 | -0.149 | -0.009 | |
根Root | 0.960** | -0.789 | -0.917* | 0.899* | -0.880* | 0.501 | |
*: P < 0.05; **: P < 0.01. A:可交换态Pb; B:碳酸盐结合态Pb; C:铁锰氧化物结合态Pb; D:有机结合态Pb; E:残渣态Pb。A: exchangeable related Pb; B: carbonate related Pb; C: ferric manganese oxidation related Pb; D: organic complexation Pb; E: residuals Pb. |
下载: 导出CSV
表4续断菊和玉米间作系统根系分泌有机酸与土壤Pb形态的相关性分析
Table4.Correlations between contents of different Pb forms in the rhizosphere soil and contents of organic acids in root exudates of Sonchus asper L. Hill and Zea mays L. intercropping system
续断菊S. asper | 玉米Z. mays | ||||||||||
A | B | C | D | E | A | B | C | D | E | ||
草酸Oxalic acid | 0.936** | 0.759 | -0.899* | -0.229 | 0.786 | 0.948** | -0.196 | -0.692 | -0.812* | -0.901* | |
柠檬酸Citric acid | 0.969** | 0.875* | -0.908* | -0.414 | 0.921** | 0.955** | -0.619 | -0.512 | -0.723 | -0.759 | |
*: P < 0.05; **: P < 0.01. A:可交换态Pb; B:碳酸盐结合态Pb; C:铁锰氧化物结合态Pb; D:有机结合态Pb; E:残渣态Pb。A: exchangeable related Pb; B: carbonate related Pb; C: ferric manganese oxidation related Pb; D: organic complexation Pb; E: residuals Pb. |
下载: 导出CSV
表5土壤可交换态Pb含量(X)与续断菊地上部和根Pb吸收量(Y)的逐步回归分析结果
Table5.Step regression analysis of content of exchangeable related Pb in soil (X) to amounts of Pb absorbed by shoot or root Sonchus asper L. Hill (Y)
逐步回归方程Stepwise regression equation | R | t | P | |
地上Shoot | Y=1.436X+71.695 | 0.926 | 4.901 | 0.008 |
根Root | Y=11.665X+147.460 | 0.975 | 0.711 | 0.001 |
下载: 导出CSV
参考文献
[1] | 段德超, 于明革, 施积炎.植物对铅的吸收、转运、累积和解毒机制研究进展[J].应用生态学报, 2014, 25(1): 287–296 http://d.old.wanfangdata.com.cn/Periodical/yystxb201401039 DUAN D C, YU M G, SHI J Y. Research advances in uptake, translocation, accumulation and detoxification of Pb in plants[J]. Chinese Journal of Applied Ecology, 2014, 25(1): 287–296 http://d.old.wanfangdata.com.cn/Periodical/yystxb201401039 |
[2] | ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals — Concepts and applications[J]. Chemosphere, 2013, 91(7): 869–881 doi: 10.1016/j.chemosphere.2013.01.075 |
[3] | GAO B, ZHOU H D, LIANG X R, et al. Cd isotopes as a potential source tracer of metal pollution in river sediments[J]. Environmental Pollution, 2013, 181: 340–343 doi: 10.1016/j.envpol.2013.05.048 |
[4] | LI N Y, LI Z A, ZHUANG P, et al. Cadmium uptake from soil by maize with intercrops[J]. Water, Air, and Soil Pollution, 2009, 199(1): 45–56 doi: 10.1007-s11270-008-9858-x/ |
[5] | 秦丽, 祖艳群, 湛方栋, 等.续断菊与玉米间作对作物吸收积累镉的影响[J].农业环境科学学报, 2013, 32(3): 471–477 QIN L, ZU Y Q, ZHAN F D, et al. Absorption and accumulation of Cd by Sonchus asper L. Hill. and maize in intercropping systems[J]. Journal of Agro-Environment Science, 2013, 32(3): 471–477 |
[6] | ASHRAFI A, ZAHEDI M, SOLEIMANI M. Effect of co-planted purslane (Portulaca oleracea L.) on Cd accumulation by sunflower in different levels of Cd contamination and salinity: A pot study[J]. International Journal of Phytoremediation, 2015, 17(9): 853–860 doi: 10.1080/15226514.2014.981239 |
[7] | MEHDAWI A F E, QUINN C F, PILON-SMITS E A H. Selenium hyperaccumulators facilitate selenium-tolerant neighbors via phytoenrichment and reduced herbivory[J]. Current Biology, 2011, 21(17): 1440–1449 doi: 10.1016/j.cub.2011.07.033 |
[8] | KOELBENER A, RAMSEIER D, SUTER M. Competition alters plant species response to nickel and zinc[J]. Plant and Soil, 2008, 303(1/2): 241–251 doi: 10.1007-s11104-007-9503-2/ |
[9] | HUANG W B, MA R, YANG D, et al. Organic acids secreted from plant roots under soil stress and their effects on ecological adaptability of plants[J]. Agricultural Science & Technology, 2014, 15(7): 1167–1173 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnnykjtx-e201407025 |
[10] | KIM J O, LEE Y W, CHUNG J. The role of organic acids in the mobilization of heavy metals from soil[J]. KSCE Journal of Civil Engineering, 2013, 17(7): 1596–1602 doi: 10.1007/s12205-013-0323-z |
[11] | ZUO Y M, ZHANG F S. Effect of peanut mixed cropping with gramineous species on micronutrient concentrations and iron chlorosis of peanut plants grown in a calcareous soil[J]. Plant and Soil, 2008, 306(1): 23–36 doi: 10.1007-s11104-007-9484-1/ |
[12] | LI L, LI S M, SUN J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192–11196 doi: 10.1073/pnas.0704591104 |
[13] | 秦丽.间作系统中续断菊与作物Cd、Pb累积特征和根系分泌低分子有机酸机理[D].昆明: 云南农业大学, 2017 QIN L. Accumulation characteristics of Cd, Pb and the root secretion mechanism of low molecular organic acids in Sonchus asper and crop intercropping system[D]. Kunming: Yunnan Agricultural University, 2017 |
[14] | 谭建波, 陈兴, 郭先华, 等.续断菊与玉米间作系统不同植物部位Cd、Pb分配特征[J].生态环境学报, 2015, 24(4): 700–707 http://d.old.wanfangdata.com.cn/Periodical/tryhj201504023 TAN J B, CHEN X, GUO X H, et al. Distribution characteristics of Pb and Cd in different parts of Sonchus asper and Zea mays in an intercropping system[J]. Ecology and Environmental Sciences, 2015, 24(4): 700–707 http://d.old.wanfangdata.com.cn/Periodical/tryhj201504023 |
[15] | 鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社, 2000 BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000 |
[16] | PENG X J, LIANG C, SHI L. Immobilization of phosphorus, copper, zinc and arsenic in swine manure by activated red mud[J]. Environmental Earth Sciences, 2014, 71(5): 2005–2014 doi: 10.1007/s12665-013-2602-x |
[17] | WIESHAMMER G, UNTERBRUNNER R, GARCíA T B, et al. Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri[J]. Plant and Soil, 2007, 298(1/2): 255–264 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e6364448e4a7592ce5b91b78d72f29e9 |
[18] | KN?RZER H, GRAEFF-H?NNINGER S, GUO B Q, et al. The rediscovery of intercropping in China: A traditional cropping system for future Chinese agriculture — A review[M]//LICHTFOUSE E. Climate Change, Intercropping, Pest Control and Beneficial Microorganisms. Dordrecht: Springer, 2009: 13–44 |
[19] | 赵财, 周海燕, 柴强, 等.不同供水水平下丁香酚和间作蚕豆对小麦根系生长的互作效应[J].草业学报, 2014, 23(2): 133–139 http://d.old.wanfangdata.com.cn/Periodical/caoyexb201402016 ZHAO C, ZHOU H Y, CHAI Q, et al. Effects of eugenol and intercropped faba-bean on wheat root growth under different water supply conditions[J]. Acta Prataculturae Sinica, 2014, 23(2): 133–139 http://d.old.wanfangdata.com.cn/Periodical/caoyexb201402016 |
[20] | ZHANG M K, FANG L P. Tea plantation–induced activation of soil heavy metals[J]. Communications in Soil Science and Plant Analysis, 2007, 38(11/12): 1467–1478 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3f9ca78103d39b6f5da8a3c0a2ed8f15 |
[21] | 吕越, 吴普特, 陈小莉, 等.玉米/大豆间作系统的作物资源竞争[J].应用生态学报, 2014, 25(1): 139–146 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201401019 Lü Y, WU P T, CHEN X L, et al. Resource competition in maize/soybean intercropping system[J]. Chinese Journal of Applied Ecology, 2014, 25(1): 139–146 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201401019 |
[22] | 白录顺, 范茂攀, 王自林, 等.间作模式下玉米/大豆的根系特征及其与团聚体稳定性的关系[J].水土保持研究, 2019, 26(1): 124–129 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj201901021 BAI L S, FAN M P, WANG Z L, et al. Relationship between root characteristics and aggregate stability in the field with maize and soybean intercropping[J]. Research of Soil and Water Conservation, 2019, 26(1): 124–129 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj201901021 |
[23] | 王吉秀, 湛方栋, 李元, 等.铅胁迫下小花南芥与玉米间作对根系分泌物有机酸的影响[J].中国生态农业学报, 2016, 24(3): 365–372 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016311&flag=1 WANG J X, ZHAN F D, LI Y, et al. Effects of Arabisalpina L. var. parviflora Franch and Zea mays L. intercropping system on root-exudated organic acids under lead stress[J]. Chinese Journal of Eco-Agriculture, 2016, 24(3): 365–372 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016311&flag=1 |
[24] | MARQUES A P G C, RANGEL A O S S, CASTRO P M L. Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology[J]. Critical Reviews in Environmental Science and Technology, 2009, 39(8): 622–654 doi: 10.1080/10643380701798272 |
[25] | 陈有鑑, 黄艺, 曹军, 等.玉米根际土壤中铜形态的动态变化[J].生态学报, 2002, 22(10): 1666–1671 doi: 10.3321/j.issn:1000-0933.2002.10.013 CHEN Y J, HUANG Y, CAO J, et al. Transformation of copper speciation in maize rhizosphere[J]. Acta Ecologica Sinica, 2002, 22(10): 1666–1671 doi: 10.3321/j.issn:1000-0933.2002.10.013 |
[26] | 曹会聪, 栾兆擎, 王金达, 等.黑土中镉、铅的化学形态分布及其植物效应研究[J].中国生态农业学报, 2008, 16(2): 312–317 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20080270&flag=1 CAO H C, LUAN Z Q, WANG J D, et al. Distribution of different forms of Cd and Pb and their collective effect on plants in the black soils of Northeast China[J]. Chinese Journal of Eco-Agriculture, 2008, 16(2): 312–317 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20080270&flag=1 |
[27] | 肖靖秀, 郑毅, 汤利.小麦-蚕豆间作对根系分泌低分子量有机酸的影响[J].应用生态学报, 2014, 25(6): 1739–1744 http://d.old.wanfangdata.com.cn/Periodical/yystxb201406027 XIAO J X, ZHENG Y, TANG L. Effect of wheat and faba bean intercropping on root exudation of low molecular weight organic acids[J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1739–1744 http://d.old.wanfangdata.com.cn/Periodical/yystxb201406027 |
[28] | 徐卫红, 王宏信, 刘怀, 等. Zn、Cd单一及复合污染对黑麦草根分泌物及根际Zn、Cd形态的影响[J].环境科学, 2007, 28(9): 2089–2095 doi: 10.3321/j.issn:0250-3301.2007.09.035 XU W H, WANG H X, LIU H, et al. Effects of individual and combined pollution of Cd and Zn on root exudates and rhizosphere Zn and Cd fractions in ryegrass (Loliurn perenne L.)[J]. Chinese Journal of Environmental Science, 2007, 28(9): 2089–2095 doi: 10.3321/j.issn:0250-3301.2007.09.035 |
[29] | 刘江, 白雪, 黄京晶, 等.小分子有机酸对紫色土中Pb的活化机理研究[J].水土保持学报, 2014, 28(6): 309–313 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201406057 LIU J, BAI X, HUANG J J, et al. The mechanism of low-molecular-weight organic acids on lead desorption in purple soils[J]. Journal of Soil and Water Conservation, 2014, 28(6): 309–313 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201406057 |
[30] | SHAHID M, PINELLI E, DUMAT C. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands[J]. Journal of Hazardous Material, 2012, 219/220: 1–12 doi: 10.1016/j.jhazmat.2012.01.060 |
[31] | JIANG C A, WU Q T, ZENG S C, et al. Dissolution of different zinc salts and Zn uptake by Sedum alfredii and maize in mono- and co-cropping under hydroponic culture[J]. Journal of Environmental Sciences, 2013, 25(9): 1890–1896 doi: 10.1016/S1001-0742(12)60213-7 |