删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

华北平原灌溉麦田水分利用效率的SEM多因素影响研究

本站小编 Free考研考试/2022-01-01

张传伟1, 2,,
齐永青1,
戴茂华3,
张玉翠1,,,
沈彦俊1, 2,,
1.中国科学院遗传与发育生物学研究所农业资源研究中心/中国科学院农业水资源重点实验室 石家庄 050022
2.中国科学院大学 北京 100049
3.河北省农林科学院旱作农业研究所 衡水 053000
基金项目: 国家重点研发计划课题2016YFC0401403
国家自然科学基金项目31870422
国家自然科学基金项目41930865
中国科学院青年创新促进会项目2017138

详细信息
作者简介:张传伟, 研究方向为农田多尺度水分利用效率及尺度传递。E-mail:zhangchuanwei0815@163.com
通讯作者:张玉翠, 研究方向为生态水文学与同位素水文学, E-mail:yczhang@sjziam.ac.cn
沈彦俊, 研究方向为水文学与水资源, E-mail:yjshen@sjziam.ac.cn
中图分类号:Q148

计量

文章访问数:1032
HTML全文浏览量:2
PDF下载量:225
被引次数:0
出版历程

收稿日期:2019-12-30
录用日期:2020-03-18
刊出日期:2020-06-01

Effects of multi-factor on water use efficiency as identified by the SEM method in irrigated wheat farmlands in the North China Plain

ZHANG Chuanwei1, 2,,
QI Yongqing1,
DAI Maohua3,
ZHANG Yucui1,,,
SHEN Yanjun1, 2,,
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Institute of Dry Farming, Hebei Academy of Agricultural and Forestry Sciences, Hengshui 053000, China
Funds: the National Key Research and Development Project of China2016YFC0401403
the National Natural Science Foundation of China31870422
the National Natural Science Foundation of China41930865
the Fund of Youth Innovation Promotion Association of Chinese Academy of Sciences2017138

More Information
Corresponding author:ZHANG Yucui, E-mail:yczhang@sjziam.ac.cn;SHEN Yanjun, E-mail:yjshen@sjziam.ac.cn


摘要
HTML全文
(8)(2)
参考文献(36)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:水分利用效率(WUE)常被嵌入到多种生态系统模型中,用于评估生态系统对气候变化的响应。然而,自然条件下多种因素不仅直接影响WUE,还通过影响冠层结构等间接影响WUE,其中的影响机制仍不明晰。为了明确多种因素对冬小麦WUE的协同影响,本研究基于2015年(温暖湿润年)和2016年(温暖干旱年)涡度相关系统观测的小麦关键生育期(返青、拔节、抽穗、灌浆)的数据,分析了WUE的变化,并借助结构方程模型(SEM),以叶面积指数(LAI)为中间变量,分析了多种因素[净辐射(Rn)、空气温度(Ta)、饱和水汽压差(VPD)、风速(WS)、土壤含水量(SWC)]对WUE的影响机制。结果表明,2015年平均WUE为1.52 g(C)·kg-1(H2O),2016年平均WUE为1.22 g(C)·kg-1(H2O)。不管在温暖湿润年还是温暖干旱年,Ta、LAI和VPD均是影响WUE的主要因素。WUE随LAI增加而增加,Ta增加也有助于提高WUE,而当温度相近时,VPD增加会降低WUE。Ta、LAI和VPD对WUE的影响在温暖湿润年和温暖干旱年重要性程度不同,温暖湿润年最重要的影响因素为LAI,温暖干旱年为Ta;VPD在温暖湿润年既直接影响WUE,同时又通过影响LAI的变化间接作用于WUE,但在温暖干旱年仅具有直接影响。Rn在温暖干旱年和温暖湿润年表现也不相同:在温暖湿润年对WUE具有显著的影响,在温暖干旱年影响不显著,这与温暖湿润年降雨量大及降雨频次高有关。显然,模拟WUE时考虑不同年份气象条件会使结果更为准确。WS未对WUE产生显著的影响,潜在原因可能是其对冠层上部接收辐射充足的叶片影响较大,而对冠层内部叶片无显著影响。农田生态系统不同生育阶段对辐射、温度等的耐受性及响应方式不同,SEM可以将LAI设置为中间变量以综合这种阶段性的变化,因此,对于冠层结构季节变幅大的生态系统,SEM是研究其环境控制机制的有力工具。这些研究结果可为今后精确模拟生态系统WUE以及预测WUE对气候变化的响应提供科学依据。
关键词:水分利用效率/
结构方程模型(SEM)/
涡度相关系统/
微气象/
冬小麦
Abstract:Water use efficiency (WUE) is usually embedded in a variety of ecosystem models to assess the ecosystem response to climate change. However, under natural conditions, multiple environmental factors affect WUE directly and indirectly by influencing the canopy structure. Currently, the mechanisms that influence WUE are not clear. In order to clarify the synergistic effect of various factors on the WUE of winter wheat, experiments were conducted in the Luancheng Agro-Ecosystem Experimental Station, Chinese Academy of Sciences. Variables were observed using an eddy covariance system during key growth stages (greening, jointing, heading, filling) of winter wheat in 2015 (warm and wet year) and 2016 (warm and dry year). The variation in winter wheat WUE and the controlling mechanisms of various factors (net radiation, Rn; air temperature, Ta; vapor pressure deficit, VPD; wind speed, WS; soil water content, SWC) were analyzed by means of a structural equation model (SEM). The structural equation model can systematically analyze the impacts of different factors on WUE on the basis of interactions among different factors. Compared to traditional univariate or multiple linear regression, SEM had intermediate variables, which can decompose the effects of micrometeorological factors into direct and indirect effects. In this study, leaf area index (LAI) was the intermediate variable. The results showed that average WUE in 2015 was 1.52 g(C)·kg-1(H2O), while it was 1.22 g(C)·kg-1(H2O) in 2016. Ta, LAI, and VPD were the main factors that influenced WUE, regardless of whether the year was warm and wet (WW) or warm and dry (WD). Leaf area index and Ta had positive effects on WUE, while VPD inhibited WUE, which means that under similar temperatures, increased water vapor content in the air can enhance WUE. Ta, LAI, and VPD were of different importance in WW and WD years. LAI was the most significant influencing factor in WW years, while Ta played a more important role in WD years. In WW years, VPD not only affected WUE directly but also indirectly through altering LAI, while it only had a direct effect in WD years. Rn also was different between WW and WD years, having a significant effect on WUE in WW year but no significant effect in WD year. This phenomenon was caused by the heavier and more frequent rainfall in WW year. Obviously, taking the climate conditions in different years into consideration will increase accuracy when simulating WUE. WS had no significant effect on WUE, probably because WS only affects the leaves receive sufficient radiation in the upper part of the canopy, and these effects can be ignored for leaves inside the canopy. Farmland ecosystems have different tolerances and responses to radiation and temperature at different growth stages. LAI can be set as an intermediate variable to reveal this stepwise change in SEM. Therefore, for ecosystems with large seasonal changes in canopy structure, SEM is a powerful tool to investigate mechanisms of environmental control. This research can provide a scientific basis for accurately simulating WUE and predicting the response of WUE to climate change.
Key words:Water use efficiency/
Structural equation model (SEM)/
Eddy covariance system/
Micro-meteorology/
Winter wheat

HTML全文


图11984—2016年研究区年均气温和降水量变化
Figure1.Variations of annual mean air temperature and precipitation in the study area from 1984 to 2016


下载: 全尺寸图片幻灯片


图2涡度相关系统水碳通量数据处理流程
Figure2.Disposing processes of water and carbon flux data of the eddy covariance system


下载: 全尺寸图片幻灯片


图3多种微气象因素与水分利用效率交互关系的结构方程模型逻辑图
Figure3.Logical diagram of structural equation model of interaction between multiple micro-meteorological factors and water use efficiency


下载: 全尺寸图片幻灯片


图42015—2016年研究区净辐射(Rn)、空气温度(Ta)、饱和水汽压亏缺(VPD)、风速(WS)、叶面积指数(LAI)和土壤含水量(SWC)的季节变化
Figure4.Seasonal variations of net radiation (Rn), air temperature (Ta), vapor pressure deficit (VPD), wind speed (WS), leaf area index (LAI) and soil water content (SWC) from 2015 to 2016 in the study area


下载: 全尺寸图片幻灯片


图5冬小麦水分利用效率季节变化
Figure5.Seasonal change of water use efficiency (WUE) of winter wheat


下载: 全尺寸图片幻灯片


图6微气象因子对水分利用效率影响的结构方程模型
线的粗细代表影响程度, 不显著路径以虚线表示。
Figure6.Structural equation model of the effects of micro-meteorological factors on water use efficiency
The thickness of lines represent the degree of influence, non-significant paths have been expressed with dashed lines.


下载: 全尺寸图片幻灯片


图72015年和2016年小麦关键生育期(2月15日—5月31日)平均气温以及总降雨量
垂直虚线代表1984—2018年小麦关键生育期平均气温, 水平虚线代表降雨量。
Figure7.Mean air temperature and total precipitation during key growing stages (Feb. 15 to May 31) of wheat in 2015 and 2016
The vertical and horizontal dashed lines represent mean air temperature and total precipitation during key growing stages of wheat from 1984 to 2018, respectively.


下载: 全尺寸图片幻灯片


图8温暖湿润年(2015年, A)和温暖干旱年(2016年, B)微气象因子对水分利用效率影响的结构方程模型
线的粗细代表影响程度, 不显著路径以虚线表示。
Figure8.Structural equation models of the effects of micro-meteorological factors on water use efficiency in the warm and wet year (2015, A) and warm and dry year (2016, B)
The thickness of lines represent the degree of influence, non-significant paths have been expressed with dashed lines.


下载: 全尺寸图片幻灯片

表1微气象因子对水分利用效率影响的标准化通径系数
Table1.Standardized path coefficients of the effects of micro-meteorological on water use efficiency
净辐射
Net radiation
饱和水汽压差
Vapor pressure deficit
气温
Air temperature
风速
Wind speed
土壤含水量
Soil water content
叶面积指数
Leaf area index
直接影响Direct effect -0.08 -0.39*** 0.50*** -0.10 -0.08 0.49***
间接影响Indirect effect -0.02 -0.06 0.15** 0.01 0.22** 0.00
总影响Total effect -0.10 -0.45*** 0.65*** -0.09 0.14 0.49***
**和***分别表示在P < 0.05和P < 0.01水平影响显著。** and *** mean significant effect at P < 0.05 and P < 0.01, respectively.


下载: 导出CSV
表22015年和2016年微气象因子对水分利用效率影响的标准化通径系数
Table2.Standardized path coefficients of the effects of micro-meteorological factors on water use efficiency
年份
Year
类型
Type
净辐射
Net radiation
饱和水汽压差
Vapor pressure deficit
气温
Air temperature
风速
Wind speed
土壤含水量
Soil water content
叶面积指数
Leaf area index
2015 直接影响Direct effect -0.33*** -0.29*** 0.39*** -0.14 -0.11 0.63***
间接影响Indirect effect 0.12 -0.22** 0.16** 0.06 0.23** 0.00
总影响Total effect -0.22** -0.51*** 0.55*** -0.08 0.12 0.63***
2016 直接影响Direct effect -0.14 -0.30*** 0.64*** -0.11 0.06 0.42***
间接影响Indirect effect 0.04 -0.05 0.16** -0.01 0.25** 0.00
总影响Total effect -0.10 -0.35*** 0.80*** -0.12 0.31*** 0.42***
**和***分别表示在P < 0.05和P < 0.01水平影响显著。** and *** mean significant effect at P < 0.05 and P < 0.01, respectively.


下载: 导出CSV

参考文献(36)
[1]ALLEN S K, PLATTNER G K, NAUELS A, et al. Climate change 2013:The physical science basis. An overview of the Working Group 1 contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)[J]. Computational Geometry, 2007, 18(2):95-123
[2]NIU S L, YANG H J, ZHANG Z, et al. Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe[J]. Ecosystems, 2009, 12(6):915-926 doi: 10.1007/s10021-009-9265-1
[3]BEER C, CIAIS P, REICHSTEIN M, et al. Temporal and among-site variability of inherent water use efficiency at the ecosystem level[J]. Global Biogeochemical Cycles, 2009, 23(2):GB2018 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4965032e40421078b798bf8bd1617fd9
[4]XIE J, CHEN J Q, SUN G, et al. Ten-year variability in ecosystem water use efficiency in an oak-dominated temperate forest under a warming climate[J]. Agricultural and Forest Meteorology, 2016, 218/219:209-217 doi: 10.1016/j.agrformet.2015.12.059
[5]NIU S L, XING X R, ZHANG Z, et al. Water-use efficiency in response to climate change:From leaf to ecosystem in a temperate steppe[J]. Global Change Biology, 2011, 17(2):1073-1082 doi: 10.1111/j.1365-2486.2010.02280.x
[6]XUE B L, GUO Q H, OTTO A, et al. Global patterns, trends, and drivers of water use efficiency from 2000 to 2013[J]. Ecosphere, 2015, 6(10):174 doi: 10.1890/ES14-00416.1
[7]ZHANG T, PENG J, LIANG W, et al. Spatial-temporal patterns of water use efficiency and climate controls in China's Loess Plateau during 2000-2010[J]. Science of the Total Environment, 2016, 565:105-122 doi: 10.1016/j.scitotenv.2016.04.126
[8]LAW B E, FALGE E, GU L, et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation[J]. Agricultural and Forest Meteorology, 2002, 113(1/4):97-120 http://cn.bing.com/academic/profile?id=d9fa94c8eb78c5ed5b4f8da86269e78d&encoded=0&v=paper_preview&mkt=zh-cn
[9]SHEN Y J, ZHANG Y C, SCANLON B R, et al. Energy/water budgets and productivity of the typical croplands irrigated with groundwater and surface water in the North China Plain[J]. Agricultural and Forest Meteorology, 2013, 181:133-142 doi: 10.1016/j.agrformet.2013.07.013
[10]LASSLOP G, REICHSTEIN M, PAPALE D, et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach:Critical issues and global evaluation[J]. Global Change Biology, 2010, 16(1):187-208 doi: 10.1111/j.1365-2486.2009.02041.x
[11]REICHSTEIN M, FALGE E, BALDOCCHI D, et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration:Review and improved algorithm[J]. Global Change Biology, 2005, 11(9):1424-1439 doi: 10.1111/j.1365-2486.2005.001002.x
[12]WANG Y, ZHOU L, JIA Q, et al. Water use efficiency of a rice paddy field in Liaohe Delta, Northeast China[J]. Agricultural Water Management, 2017, 187:222-231 doi: 10.1016/j.agwat.2017.03.029
[13]KWON H, LAW B E, THOMAS C K, et al. The influence of hydrological variability on inherent water use efficiency in forests of contrasting composition, age, and precipitation regimes in the Pacific Northwest[J]. Agricultural and Forest Meteorology, 2018, 249:488-500 doi: 10.1016/j.agrformet.2017.08.006
[14]MA J Y, JIA X, ZHA T S, et al. Ecosystem water use efficiency in a young plantation in Northern China and its relationship to drought[J]. Agricultural and Forest Meteorology, 2019, 275:1-10 doi: 10.1016/j.agrformet.2019.05.004
[15]XIE J, ZHA T S, ZHOU C X, et al. Seasonal variation in ecosystem water use efficiency in an urban-forest reserve affected by periodic drought[J]. Agricultural and Forest Meteorology, 2016, 221:142-151 doi: 10.1016/j.agrformet.2016.02.013
[16]ZHOU S, YU B F, HUANG Y F, et al. The effect of vapor pressure deficit on water use efficiency at the subdaily time scale[J]. Geophysical Research Letters, 2014, 41(14):5005-5013 doi: 10.1002/2014GL060741
[17]ZHANG Q, FICKLIN D L, MANZONI S, et al. Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit[J]. Environmental Research Letters, 2019, 14(7):074023 doi: 10.1088/1748-9326/ab2603
[18]KRISHNAN P, BLACK T A, GRANT N J, et al. Impact of changing soil moisture distribution on net ecosystem productivity of a boreal aspen forest during and following drought[J]. Agricultural and Forest Meteorology, 2006, 139(3/4):208-223 http://cn.bing.com/academic/profile?id=910d1d1460122c6978fe879bb1b4366c&encoded=0&v=paper_preview&mkt=zh-cn
[19]GAO Y, MARKKANEN T, AURELA M, et al. Response of water use efficiency to summer drought in a boreal Scots pine forest in Finland[J]. Biogeosciences, 2017, 14(18):4409-4422 doi: 10.5194/bg-14-4409-2017
[20]ZHANG F M, JU W M, SHEN S H, et al. How recent climate change influences water use efficiency in East Asia[J]. Theoretical and Applied Climatology, 2014, 116(1/2):359-370 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=977f69b473503e1383024cb16565c3a3
[21]SUN H Y, ZHANG X Y, LIU X J, et al. Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain[J]. Agricultural Water Management, 2019, 211:202-209 doi: 10.1016/j.agwat.2018.09.046
[22]SUN H Y, ZHANG X Y, CHEN S Y, et al. Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain[J]. Industrial Crops and Products, 2007, 25(3):239-247 doi: 10.1016/j.indcrop.2006.12.003
[23]SHEN Y J, LEI H M, YANG D W, et al. Effects of agricultural activities on nitrate contamination of groundwater in a Yellow River irrigated region[J]. Water Quality:Current Trends and Expected Climate Change Impacts, 2011, 348:73-80
[24]WEBB E K, PEARMAN G I, LEUNING R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106(447):85-100 doi: 10.1002/qj.49710644707
[25]MOORE C J. Frequency response corrections for eddy correlation systems[J]. Boundary-Layer Meteorology, 1986, 37(1/2):17-35 http://cn.bing.com/academic/profile?id=80cd5178bc8395f8e3cab80c588cc133&encoded=0&v=paper_preview&mkt=zh-cn
[26]HOLLINGER D Y, KELLIHER F M, BYERS J N, et al. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere[J]. Ecology, 1994, 75(1):134-150 doi: 10.2307/1939390
[27]AUBINET M, VESALA T, PAPALE D. Eddy covariance:a practical guide to measurement and data analysis[J]. Springer Science & Business Media, 2012, 365-376
[28]ZHANG Y C, LEI H M, ZHAO W G, et al. Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain[J]. Agricultural Water Management, 2018, 198:53-64 doi: 10.1016/j.agwat.2017.12.027
[29]GAO L, ZHAO P, KANG S Z, et al. Surface soil water content dominates the difference between ecosystem and canopy water use efficiency in a sparse vineyard[J]. Agricultural Water Management, 2019, 226:105817 doi: 10.1016/j.agwat.2019.105817
[30]HU Z M, YU G R, WANG Q F, et al. Ecosystem level water use efficiency:a review[J]. Acta Ecologica Sinica, 2009, 29(3):1498-1507 http://d.old.wanfangdata.com.cn/Periodical/stxb200903048
[31]ZHANG D L, DU Q J, ZHANG Z, et al. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer[J]. Scientific Reports, 2017, 7:43461 doi: 10.1038/srep43461
[32]ZHANG Q, FICKLIN D L, MANZONI S, et al. Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit[J]. Environmental Research Letters, 2019, 14(7):074023 doi: 10.1088/1748-9326/ab2603
[33]ZHU X J, YU G R, WANG Q F, et al. Seasonal dynamics of water use efficiency of typical forest and grassland ecosystems in China[J]. Journal of Forest Research, 2014, 19(1):70-76 doi: 10.1007/s10310-013-0390-5
[34]TAN Z H, ZHANG Y P, DENG X B, et al. Interannual and seasonal variability of water use efficiency in a tropical rainforest:Results from a 9 year eddy flux time series[J]. Journal of Geophysical Research:Atmospheres, 2015, 120(2):464-479 doi: 10.1002/2014JD022535
[35]TONG X J, MU Y M, ZHANG J S, et al. Water stress controls on carbon flux and water use efficiency in a warm-temperate mixed plantation[J]. Journal of hydrology, 2019, 571:669-678 doi: 10.1016/j.jhydrol.2019.02.014
[36]SCHYMANSKI S J, OR D. Wind increases leaf water use efficiency[J]. Plant, Cell & Environment, 2016, 39(7):1448-1459 http://d.old.wanfangdata.com.cn/Periodical/zwstxb201405009

相关话题/结构 气象 图片 辐射 系统