郝琨2, 3,
刘小刚1,,,
何红艳4,
刘利华2, 3,
杨启良1
1.昆明理工大学现代农业工程学院 昆明 650500
2.西安理工大学水利水电学院 西安 710048
3.省部共建西北旱区生态水利国家重点实验室 西安 710048
4.云南省农业科学院热带亚热带经济作物研究所 保山 678025
基金项目: 国家自然科学基金项目51469010
国家自然科学基金项目51979133
国家自然科学基金项目51769010
云南省应用基础研究项目2014FB130
详细信息
作者简介:韩志慧, 主要从事节水灌溉理论与新技术研究。E-mail:zhihuiim@126.com
通讯作者:刘小刚, 主要从事节水灌溉理论与新技术研究。E-mail:liuxiaogangjy@126.com
中图分类号:S571.2;S275.6计量
文章访问数:481
HTML全文浏览量:5
PDF下载量:408
被引次数:0
出版历程
收稿日期:2018-11-11
录用日期:2019-01-25
刊出日期:2019-10-01
Effects of shade cultivation and deficit irrigation on the growth and canopy structure of Coffea arabica L. in dry-hot region
HAN Zhihui1,,HAO Kun2, 3,
LIU Xiaogang1,,,
HE Hongyan4,
LIU Lihua2, 3,
YANG Qiliang1
1. Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China
2. Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, Xi'an 710048, China
3. State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an 710048, China
4. Tropical and Subtropical Economic Crops In-stitute, Yunnan Academy of Agricultural Sciences, Baoshan 678025, China
Funds: the National Natural Science Foundation of China51469010
the National Natural Science Foundation of China51979133
the National Natural Science Foundation of China51769010
the Basic Research Project of Yunnan Province2014FB130
More Information
Corresponding author:LIU Xiaogang, E-mail: liuxiaogangjy@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:干热区小粒咖啡水、光管理粗放,高效生产受到限制。通过大田试验,采用完全组合设计,设3个灌水水平[充分灌水(FI)、轻度亏缺灌水(DIL)和重度亏缺灌水(DIS)]和4个荫蔽栽培模式[无荫蔽(S0):单作咖啡;轻度荫蔽(SL):4行咖啡间作1行香蕉;中度荫蔽(SM):3行咖啡间作1行香蕉;重度荫蔽(SS):2行咖啡间作1行香蕉],研究香蕉荫蔽栽培下亏缺灌溉对干热区小粒咖啡生长和冠层结构的影响。结果表明:与FI相比,其余灌水处理的株高增量和新梢长度分别减少13.62%~23.94%和8.82%~13.96%,总定点因子增加9.55%~34.97%。与S0相比,其余荫蔽处理的株高增量、茎粗增量、冠幅增量、新梢长度和叶面积指数分别增加18.33%~33.65%、6.43%~15.47%、5.38%~12.60%、8.82%~24.69%和5.18%~22.85%,冠层开度、林隙分数、平均叶倾角、总定点因子和透光率分别减少4.42%~15.50%、4.85%~16.49%、5.50%~15.07%、13.78%~41.44%和10.36%~31.78%。相关分析表明,冠层开度、林隙分数、平均叶倾角、直接定点因子、间接定点因子、总定点因子、冠下直接辐射、冠下间接辐射、透光率和消光系数相互之间均呈显著正相关,且分别与冠层叶面积指数呈显著负相关。聚类分析表明,当类间距离为5时,可将12个处理分为3类,FISS、DILSS和FISM处理为第1类,FISL、DILSL、DILSM、DISSS、FIS0和DISSM处理为第2类,DILS0、DISSL和DISS0处理为第3类。其中第1类的生长状况最佳,可作为干热区小粒咖啡灌水处理和香蕉荫蔽栽培模式的优选组合。该结果可为干热区小粒咖啡水光管理提供理论指导。
关键词:小粒咖啡/
荫蔽栽培模式/
亏缺灌溉/
冠层结构/
聚类分析
Abstract:Highly efficient production of Coffea arabica L. is limited due to irrigation and light management challenges in dry-hot regions. To investigate the effects of an irrigation deficit on the growth and canopy structure of C. arabica under the shade of banana plants, a field experiment was performed using different irrigation levels and shade cultivation modes. A complete combination design was adopted, with three levels of irrigation, i.e. full irrigation (FI), light-deficit irrigation (DIL) and severe deficit irrigation (DIS), and four modes of shade cultivation, i.e. no shade cultivation (S0:monoculture C. arabica), light shade cultivation (SL:intercropping of four lines of C. arabica and one line of banana), moderate shade cultivation (SM:intercropping of three lines of C. arabica and one line of banana) and severe shade cultivation (SS:intercropping of two lines of C. arabica and one line of banana). Compared with FI treatment, other treatments of irrigation decreased the height increment and shoot length by 13.62%-23.94% and 8.82%-13.96%, respectively, and increased the total fixed-point factor by 9.55%-34.97%. Compared with S0 treatment, other shading cultivation treatments increased the height increment, stem diameter increment, crown width increment, shoot length, and leaf area index of the canopy by 18.33%-33.65%, 6.43%-15.47%, 5.38%-12.60%, 8.82%-24.69% and 5.18%-22.85%, respectively; and decreased the opening, gap fraction, mean leaf dip angle, total fixed-point factor and transmittance of the canopy by 4.42%-15.50%, 4.85%-16.49%, 5.50%-15.07%, 13.78%-41.44% and 10.36%-31.78%, respectively. The opening, gap fraction, mean leaf dip angle, direct fixed-point factor, indirect fixed-point factor, total fixed-point factor, direct radiation of the crown, indirect radiation of the crown, transmittance, and extinction coefficient of the C. arabica canopy were significantly positively correlated with each other and were significantly negatively correlated with leaf area index. Cluster analysis indicated that the twelve treatments could be divided into three categories. The first category was FISS, DILSS and FISM; the second category was FISL, DILSL, DILSM, DISSS, FIS0 and DISSM; and the third category was DILS0, DISSL and DISS0, when the distances between classes was five. It was clear that the best growth condition was the first category, which can be used as a suitable combination of irrigation and banana shade cultivation mode for C. arabica in dry-hot regions. The results of this study provide theoretical guidance for the irrigation and light management of C. arabica in dry-hot regions.
Key words:Coffea arabica/
Shade cultivation modes/
Deficit irrigation/
Canopy structure/
Cluster analysis
HTML全文
图1荫蔽栽培与亏缺灌溉对小粒咖啡冠层透光率和消光系数的影响
FI、DIL和DIS分别表示充分灌水、轻度亏缺灌水和重度亏缺灌水, S0、SL、SM和SS分别表示无荫蔽栽培、轻度荫蔽栽培、中度荫蔽栽培和重度荫蔽栽培。不同小写字母表示P < 0.05水平下差异显著。
Figure1.Effects of shade cultivation and deficit irrigation on light transmittance and extinction coefficient of Coffea arabica L. canopy
FI, DIL and DIS mean full irrigation, light deficit irrigation and severe deficit irrigation, respectively. S0, SL, SM and SS mean no shade cultivation, light shade cultivation, moderate shade cultivation and severe shade cultivation, respectively. Different lowercase letters indicate significant difference at 0.05 level.
下载: 全尺寸图片幻灯片
图2小粒咖啡冠层结构参数的聚类分析谱系
FI、DIL和DIS分别表示充分灌水、轻度亏缺灌水和重度亏缺灌水, S0、SL、SM和SS分别表示无荫蔽栽培、轻度荫蔽栽培、中度荫蔽栽培和重度荫蔽栽培。
Figure2.Cluster dendrogram of eleven indicators of Coffea arabica L. canopy
FI, DIL and DIS mean full irrigation, light deficit irrigation and severe deficit irrigation, respectively. S0, SL, SM and SS mean no shade cultivation, light shade cultivation, moderate shade cultivation and severe shade cultivation, respectively.
下载: 全尺寸图片幻灯片
表1荫蔽栽培与亏缺灌溉对小粒咖啡生长的影响
Table1.Effects of shade cultivation and deficit irrigation on growth of Coffea arabica L.
灌水水平 Irrigation level (I) | 荫蔽栽培模式 Shade cultivation mode (S) | 株高增量 Height increment (cm) | 茎粗增量 Stem diameter increment (mm) | 冠幅增量 Crown width increment (cm) | 新梢长度 New twig length (cm) |
FI | S0 | 23.95±1.11efg | 9.99±0.10d | 20.88±1.59bc | 15.82±0.81efg |
SL | 30.50±1.26b | 10.38±0.25c | 21.70±0.55abc | 17.13±0.75cd | |
SM | 32.15±2.12b | 10.78±0.08b | 22.58±0.83ab | 18.76±0.91ab | |
SS | 34.33±1.06a | 11.18±0.15a | 23.00±1.36a | 19.34±0.37a | |
DIL | S0 | 22.85±0.68g | 9.43±0.17e | 20.28±1.27cd | 14.41±1.12h |
SL | 25.35±1.74ef | 10.08±0.13d | 21.25±0.99abc | 15.40±0.40fgh | |
SM | 27.75±1.26cd | 10.44±0.10c | 22.18±0.81ab | 16.96±0.39cde | |
SS | 28.50±0.85c | 10.80±0.14b | 22.65±0.81ab | 18.01±0.78bc | |
DIS | S0 | 19.63±1.40h | 8.54±0.14f | 18.75±0.89d | 13.31±1.12i |
SL | 22.75±1.80g | 9.30±0.06e | 20.18±1.05cd | 14.84±0.73gh | |
SM | 23.65±1.06fg | 9.96±0.17d | 21.15±1.3bc | 16.05±0.75def | |
SS | 25.95±0.75de | 10.31±0.12c | 21.80±1.07abc | 16.93±0.38cde | |
显著性检验(F值) Significance test (F value) | |||||
I | 119.665** | 223.869** | 8.958** | 44.089** | |
S | 69.132** | 229.614** | 12.604** | 52.889** | |
I×S | 3.325* | 4.597** | 0.143 | 0.172 | |
数据为平均值±标准差(n=4), 同列数据后不同小写字母表示P < 0.05水平下差异显著, *表示5%显著水平, **表示1%显著水平。FI、DIL和DIS分别表示充分灌水、轻度亏缺灌水和重度亏缺灌水, S0、SL、SM和SS分别表示无荫蔽栽培、轻度荫蔽栽培、中度荫蔽栽培和重度荫蔽栽培。Data are expressed as mean ± SD (standard deviation, n=4). Different lowercase letters indicate significant difference at 0.05 level. * means significance at 5%, ** means significance at 1%. FI, DIL and DIS mean full irrigation, light deficit irrigation and severe deficit irrigation, respectively. S0, SL, SM and SS mean no shade cultivation, light shade cultivation, moderate shade cultivation and severe shade cultivation, respectively. |
下载: 导出CSV
表2荫蔽栽培与亏缺灌溉对小粒咖啡冠层结构参数的影响
Table2.Effects of shade cultivation and deficit irrigation on indicators of major indicators of Coffea arabica L. canopy
灌水水平 Irrigation level (I) | 荫蔽栽培模式 Shadecultivation mode (S) | Op (%) | GF (%) | LAI | MLDA (°) | DFPF (%) | IFPF (%) | TFPF (%) | DRC (mol?m-2?d-1) | IRC (mol?m-2?d-1) |
FI | S0 | 9.74±0.18b | 11.76±0.19cd | 4.10±0.06fg | 9.63±0.17bc | 5.52±0.70bc | 5.82±0.72bcde | 6.06±0.29cd | 2.26±0.08b | 0.31±0.01ab |
SL | 9.28±0.09c | 11.38±0.11def | 4.35±0.07e | 9.20±0.18cde | 5.44±0.19c | 4.78±1.22ef | 5.15±0.08efg | 1.94±0.10cd | 0.28±0.04ab | |
SM | 8.72±0.10d | 10.38±0.17h | 4.86±0.08b | 8.55±0.17fg | 4.14±0.52de | 4.60±0.67f | 4.34±0.37h | 1.66±0.07f | 0.27±0.03ab | |
SS | 7.96±0.15f | 9.63±0.15i | 5.15±0.06a | 8.23±0.26g | 3.43±0.57e | 4.98±0.40def | 3.49±0.13i | 1.41±0.02g | 0.27±0.03ab | |
DIL | S0 | 9.88±0.08b | 12.02±0.22c | 4.11±0.05fg | 9.78±0.28b | 6.38±0.54b | 6.73±0.82ab | 6.46±0.49c | 2.26±0.06b | 0.31±0.01a |
SL | 9.30±0.41c | 11.22±0.47efg | 4.39±0.28de | 9.30±0.36cd | 5.73±0.99bc | 5.37±1.01cdef | 5.25±0.65ef | 1.89±0.28cde | 0.30±0.01ab | |
SM | 8.95±0.38d | 10.86±0.64g | 4.70±0.37bc | 8.83±0.55ef | 5.11±0.73c | 5.55±0.58cdef | 4.64±0.60gh | 1.77±0.24def | 0.27±0.03ab | |
SS | 8.38±0.23e | 10.15±0.09h | 5.08±0.06a | 8.33±0.17g | 3.68±0.24e | 4.45±0.40f | 3.78±0.19i | 1.47±0.03g | 0.27±0.03b | |
DIS | S0 | 10.31±0.12a | 13.03±0.14a | 3.87±0.05h | 10.63±0.40a | 7.49±0.34a | 7.12±0.72a | 8.05±0.45a | 2.49±0.05a | 0.31±0.02a |
SL | 10.04±0.03ab | 12.44±0.15b | 3.96±0.03gh | 9.88±0.38b | 7.28±0.82a | 6.26±0.82abc | 7.34±0.21b | 2.40±0.02ab | 0.31±0.02a | |
SM | 9.43±0.12c | 11.47±0.24de | 4.27±0.13ef | 9.43±0.15bc | 5.28±0.25c | 6.12±0.49abcd | 5.53±0.33de | 2.05±0.10c | 0.29±0.04ab | |
SS | 8.96±0.05d | 10.97±0.27fg | 4.60±0.09cd | 8.95±0.19def | 4.86±0.51cd | 4.88±0.49ef | 4.78±0.25fgh | 1.73±0.03ef | 0.28±0.05ab | |
显著性检验(F值) Significance test (F value) | ||||||||||
I | 61.746** | 76.955** | 41.801** | 34.224** | 30.732** | 8.184** | 89.860** | 40.550** | 1.633 | |
S | 133.012** | 116.566** | 88.697** | 57.906** | 46.886** | 12.173** | 129.925** | 95.095** | 5.350** | |
I×S | 1.291 | 1.508 | 1.364 | 0.337 | 1.246 | 1.387 | 2.689* | 1.426 | 0.344 | |
数据为平均值±标准差(n=4), 同列数据后不同小写字母表示P < 0.05水平下差异显著, *表示5%显著水平, **表示1%显著水平。FI、DIL和DIS分别表示充分灌水、轻度亏缺灌水和重度亏缺灌水, S0、SL、SM和SS分别表示无荫蔽栽培、轻度荫蔽栽培、中度荫蔽栽培和重度荫蔽栽培。Op、GF、LAI、MLDA、DFPF、IFPF、TFPF、DRC和IRC分别表示开度、林隙分数、叶面积指数、平均叶倾角、直接定点因子、间接定点因子、总定点因子、冠下直接辐射和冠下间接辐射。Data are expressed as mean ± SD (n=4). Different lowercase letters indicate significant difference at 0.05 level. * means significance at 5%, ** means significance at 1%. FI, DIL and DIS mean full irrigation, light deficit irrigation and severe deficit irrigation, respectively. S0, SL, SM and SS mean no shade cultivation, light shade cultivation, moderate shade cultivation and severe shade cultivation, respectively. Op, GF, LAI, MLDA, DFPF, IFPF, TFPF, DRC and IRC mean opening, gap fraction, leaf area index, mean leaf dip angle, direct fixed-point factor, indirect fixed-point factor, total fixed-point factor, direct radiation of the crown and indirect radiation of the crown, respectively. |
下载: 导出CSV
表3小粒咖啡冠层结构参数的相关分析
Table3.Correlation coefficient matrix of major indicators of Coffea arabica L. canopy
Op | GF | LAI | MLDA | DFPF | IFPF | TFPF | DRC | IRC | Tr | EC | |
Op | 1.000 | ||||||||||
GF | 0.975** | 1.000 | |||||||||
LAI | -0.972** | -0.961** | 1.000 | ||||||||
MLDA | 0.923** | 0.941** | -0.932** | 1.000 | |||||||
DFPF | 0.891** | 0.910** | -0.880** | 0.865** | 1.000 | ||||||
IFPF | 0.688** | 0.684** | -0.667** | 0.694** | 0.677** | 1.000 | |||||
TFPF | 0.960** | 0.974** | -0.934** | 0.931** | 0.920** | 0.696** | 1.000 | ||||
DRC | 0.973** | 0.963** | -0.975** | 0.934** | 0.871** | 0.707** | 0.956** | 1.000 | |||
IRC | 0.497** | 0.499** | -0.502** | 0.493** | 0.503** | 0.435* | 0.536** | 0.455* | 1.000 | ||
Tr | 0.975** | 0.965** | -0.977** | 0.937** | 0.878** | 0.715** | 0.962** | 0.997** | 0.519** | 1.000 | |
EC | 0.917** | 0.918** | -0.973** | 0.897** | 0.853** | 0.596** | 0.877** | 0.906** | 0.465* | 0.908** | 1.000 |
Op、GF、LAI、MLDA、DFPF、IFPF、TFPF、DRC、IRC、Tr和EC分别表示开度、林隙分数、叶面积指数、平均叶倾角、直接定点因子、间接定点因子、总定点因子、冠下直接辐射、冠下间接辐射、透光率和消光系数。*、**分别表示在0.05、0.01水平上显著相关。Op, GF, LAI, MLDA, DFPF, IFPF, TFPF, DRC and IRC mean opening, gap fraction, leaf area index, mean leaf dip angle, direct fixed-point factor, indirect fixed-point factor, total fixed-point factor, direct radiation of the crown, indirect radiation of the crown, transmittance and extinction coefficient, respectively. * and ** mean significant correlation at 0.05 and 0.01 levels, respectively. |
下载: 导出CSV
参考文献
[1] | HAO K, LIU X G, HAN Z H, et al. Effects of drip irrigation modes on growth and physiological characteristics of Arabica coffee under different N levels[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(10):912-920 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=pgjx201710013 |
[2] | 刘小刚, 李义林, 齐韵涛, 等.干热区小粒咖啡提质增产的灌水和遮荫耦合模式[J].应用生态学报, 2018, 29(4):1140-1146 http://d.old.wanfangdata.com.cn/Periodical/yystxb201804014 LIU X G, LI Y L, QI Y T, et al. Coupling mode of irrigation and shading for good quality and proper yield of Coffea arabica in dry-hot region[J]. Chinese Journal of Applied Ecology, 2018, 29(4):1140-1146 http://d.old.wanfangdata.com.cn/Periodical/yystxb201804014 |
[3] | CAI C T, CAI Z Q, YAO T Q, et al. Vegetative growth and photosynthesis in coffee plants under different watering and fertilization managements in Yunnan, SW China[J]. Photosynthetica, 2007, 45(3):455-461 doi: 10.1007/s11099-007-0075-4 |
[4] | 孙宏勇, 张喜英, 邵立威.调亏灌溉在果树上应用的研究进展[J].中国生态农业学报, 2009, 17(6):1288-1291 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200906043 SUN H Y, ZHANG X Y, SHAO L W. Regulated deficit irrigation and its application on fruit trees[J]. Chinese Journal of Eco-Agriculture, 2009, 17(6):1288-1291 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200906043 |
[5] | PATANè C, TRINGALI S, SORTINO O. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions[J]. Scientia Horticulturae, 2011, 129(4):590-596 doi: 10.1016/j.scienta.2011.04.030 |
[6] | 武阳, 王伟, 黄兴法, 等.亏缺灌溉对成龄库尔勒香梨产量与根系生长的影响[J].农业机械学报, 2012, 43(9):78-84 doi: 10.6041/j.issn.1000-1298.2012.09.016 WU Y, WANG W, HUANG X F, et al. Yield and root growth of mature Korla fragrant pear tree under deficit irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(9):78-84 doi: 10.6041/j.issn.1000-1298.2012.09.016 |
[7] | 刘小刚, 郝琨, 韩志慧, 等.水氮耦合对干热区小粒咖啡产量和品质的影响[J].农业机械学报, 2016, 47(2):143-150 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201602019 LIU X G, HAO K, HAN Z H, et al. Effect of water and nitrogen coupling on yield and quality of Arabica coffee in dry-hot area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2):143-150 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201602019 |
[8] | 郝琨, 刘小刚, 张岩, 等.干旱胁迫-复水与氮肥耦合对小粒咖啡生长和水氮生产力的影响[J].应用生态学报, 2017, 28(12):4034-4042 http://d.old.wanfangdata.com.cn/Periodical/yystxb201712026 HAO K, LIU X G, ZHANG Y, et al. Coupling effects of periodic rewatering after drought stress and nitrogen fertilizer on growth and water and nitrogen productivity of Coffea arabica[J]. Chinese Journal of Applied Ecology, 2017, 28(12):4034-4042 http://d.old.wanfangdata.com.cn/Periodical/yystxb201712026 |
[9] | CHEMURA A. The growth response of coffee (Coffea arabica L) plants to organic manure, inorganic fertilizers and integrated soil fertility management under different irrigation water supply levels[J]. International Journal of Recycling of Organic Waste in Agriculture, 2014, 3(2):59 doi: 10.1007/s40093-014-0059-x |
[10] | 刘小刚, 张岩, 程金焕, 等.水氮耦合下小粒咖啡幼树生理特性与水氮利用效率[J].农业机械学报, 2014, 45(8):160-166 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201408025 LIU X G, ZHANG Y, CHENG J H, et al. Biochemical property and water and nitrogen use efficiency of young Arabica coffee tree under water and nitrogen coupling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8):160-166 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201408025 |
[11] | PERDONá M J, SORATTO R P. Irrigation and intercropping with macadamia increase initial Arabica coffee yield and profitability[J]. Agronomy Journal, 2015, 107(2):615-626 doi: 10.2134/agronj14.0246 |
[12] | 李安节, 柳振峰.植物光系统Ⅱ捕光过程的超分子结构基础[J].生物化学与生物物理进展, 2018, 45(9):935-946 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swhx201809006 LI A J, LIU Z F. Supramolecular structural basis of the light-harvesting process in plants[J]. Progress in Biochemistry and Biophysics, 2018, 45(9):935-946 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swhx201809006 |
[13] | 郝琨, 刘小刚, 韩志慧, 等.不同荫蔽栽培下亏缺灌溉对干热区小粒咖啡水光利用和产量的影响[J].应用生态学报, 2018, 29(11):3550-3558 http://d.old.wanfangdata.com.cn/Periodical/yystxb201811006 HAO K, LIU X G, HAN Z H, et al. Effects of deficit irrigation on water-radiation use and yield of Coffea arabica under different shade cultivation modes in dry-hot region[J]. Chinese Journal of Applied Ecology, 2018, 29(11):3550-3558 http://d.old.wanfangdata.com.cn/Periodical/yystxb201811006 |
[14] | 刘小刚, 万梦丹, 齐韵涛, 等.不同遮阴下亏缺灌溉对小粒咖啡生长和水光利用的影响[J].农业机械学报, 2017, 48(1):191-197 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201701025 LIU X G, WAN M D, QI Y T, et al. Effect of deficit irrigation on growth and water-radiation use of Arabica coffee under different shading[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1):191-197 http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201701025 |
[15] | STEIMAN S, IDOL T, BITTENBENDER H C, et al. Shade coffee in Hawai'i-Exploring some aspects of quality, growth, yield, and nutrition[J]. Scientia Horticulturae, 2011, 128(2):152-158 doi: 10.1016/j.scienta.2011.01.011 |
[16] | BOSSELMANN A S, DONS K, OBERTHUR T, et al. The influence of shade trees on coffee quality in small holder coffee agroforestry systems in Southern Colombia[J]. Agriculture, Ecosystems & Environment, 2009, 129(1/3):253-260 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d9c1351436fa689f4afd49185bb1ab6c |
[17] | 晁海, 张大海, 徐麟, 等.杏树冠层内光合有效辐射(PAR)分布规律及结构优化初探[J].新疆农业科学, 2008, 45(1):31-37 http://d.old.wanfangdata.com.cn/Periodical/xjnykx200801006 CHAO H, ZHANG D H, XU L, et al. Preliminary studies on distribution law of photosynthetically active radiation in apricot canopy and its structural optimization[J]. Xinjiang Agricultural Sciences, 2008, 45(1):31-37 http://d.old.wanfangdata.com.cn/Periodical/xjnykx200801006 |
[18] | 孙丰磊, 张玻, 曲延英, 等.花铃期干旱胁迫对不同棉花品种光合特性影响及抗旱性评价[J].干旱地区农业研究, 2018, 36(5):7-13 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201805002 SUN F L, ZAHNG B, QU Y Y, et al. Effects of drought stress during the blooming period on photosynthetic characteristics and assessment drought resistance of different cotton varieties[J]. Agricultural Research in the Arid Areas, 2018, 36(5):7-13 http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj201805002 |
[19] | PATRAS A, BRUNTON N P, DOWNEY G, et al. Application of principal component and hierarchical cluster analysis to classify fruits and vegetables commonly consumed in Ireland based on in vitro antioxidant activity[J]. Journal of Food Composition and Analysis, 2011, 24(2):250-256 doi: 10.1016/j.jfca.2010.09.012 |
[20] | PENG X B, ZHANG Y Y, CAI J, et al. Photosynthesis, growth and yield of soybean and maize in a tree-based agroforestry intercropping system on the Loess Plateau[J]. Agroforestry Systems, 2009, 76(3):569-577 doi: 10.1007/s10457-009-9227-9 |
[21] | 苏本营, 宋艳霞, 陈圣宾, 等.大豆幼苗对套作玉米遮荫环境的光合生理生态响应[J].生态学报, 2015, 35(10):3298-3308 http://d.old.wanfangdata.com.cn/Periodical/stxb201510019 SU B Y, SONG Y X, CHEN S B, et al. Photosynthetic responses of soybean (Glycine max) seedlings to shading caused by maize in an intercropping system[J]. Acta Ecologica Sinica, 2015, 35(10):3298-3308 http://d.old.wanfangdata.com.cn/Periodical/stxb201510019 |
[22] | 陈玉民, 郭国双, 王广兴, 等.中国主要农作物需水量与灌溉[M].北京:水利电力出版社, 1995:324-325 CHEN Y M, GUO G S, WANG G X, et al. Main Crop Water Requirement and Irrigation of China[M]. Beijing:Water Resources and Electric Power Press, 1995:324-325 |
[23] | 姜元华, 许轲, 赵可, 等.甬优系列籼粳杂交稻的冠层结构与光合特性[J].作物学报, 2015, 41(2):286-296 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201502011 JIANG Y H, XU K, ZHAO K, et al. Canopy structure and photosynthetic characteristics of Yongyou series of Indica-Japonica hybrid rice under high-yielding cultivation condition[J]. Acta Agronomica Sinica, 2015, 41(2):286-296 http://d.old.wanfangdata.com.cn/Periodical/zuowxb201502011 |
[24] | 郭素娟, 熊欢, 邹锋, 等.冠层分析仪在板栗冠层光辐射特征研究中的应用[J].中南林业科技大学学报, 2013, 33(6):12-16 http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201306003 GUO S J, XIONG H, ZOU F, et al. Study on canopy radiation characteristics of Castanea mollissima Bl. by using WinsCanopy 2006a[J]. Journal of Central South University of Forestry & Technology, 2013, 33(6):12-16 http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201306003 |
[25] | SAKAI E, BARBOSA E A A, DE CARVALHO SILVEIRA J M, et al. Coffee productivity and root systems in cultivation schemes with different population arrangements and with and without drip irrigation[J]. Agricultural Water Management, 2015, 148:16-23 doi: 10.1016/j.agwat.2014.08.020 |
[26] | LIU X G, QI Y T, LI F S, et al. Impacts of regulated deficit irrigation on yield, quality and water use efficiency of Arabica coffee under different shading levels in dry and hot regions of southwest China[J]. Agricultural Water Management, 2018, 204:292-300 doi: 10.1016/j.agwat.2018.04.024 |
[27] | EDIRIWEERA S, SINGHAKUMARA B M P, ASHTON M S. Variation in canopy structure, light and soil nutrition across elevation of a Sri Lankan tropical rain forest[J]. Forest Ecology and Management, 2008, 256(6):1339-1349 doi: 10.1016/j.foreco.2008.06.035 |
[28] | 黄慧敏, 董蓉, 何丹妮, 等.冠层结构和光环境的时空变化对紫耳箭竹种群特征的影响[J].应用生态学报, 2018, 29(7):2129-2138 http://d.old.wanfangdata.com.cn/Periodical/yystxb201807006 HUANG H M, DONG R, HE D N, et al. Effects of temporal and spatial variation of canopy structures and light conditions on population characteristics of Fargesia decurvata[J]. Chinese Journal of Applied Ecology, 2018, 29(7):2129-2138 http://d.old.wanfangdata.com.cn/Periodical/yystxb201807006 |
[29] | 张甜, 朱玉杰, 董希斌.抚育间伐对大兴安岭天然用材林冠层结构及光环境特征的影响[J].东北林业大学学报, 2016, 44(10):1-7 doi: 10.3969/j.issn.1000-5382.2016.10.001 ZHANG T, ZHU Y J, DONG X B. Canopy structure and light characters after tending felling in Daxing'an Mountains[J]. Journal of Northeast Forestry University, 2016, 44(10):1-7 doi: 10.3969/j.issn.1000-5382.2016.10.001 |
[30] | 高登涛, 韩明玉, 李丙智, 等.冠层分析仪在苹果树冠结构光学特性方面的研究[J].西北农业学报, 2006, 15(3):166-170 doi: 10.3969/j.issn.1004-1389.2006.03.040 GAO D T, HAN M Y, LI B Z, et al. The characteristic of light distribution in apple tree canopy using WinsCanopy2004a[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2006, 15(3):166-170 doi: 10.3969/j.issn.1004-1389.2006.03.040 |
[31] | 崔亮, 苏本营, 杨峰, 等.带状套作大豆群体冠层光能截获与利用特征[J].中国农业科学, 2015, 48(1):43-54 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201501005 CUI L, SU B Y, YANG F, et al. Relationship between light interception and light utilization of soybean canopy in relay strip intercropping system[J]. Scientia Agricultura Sinica, 2015, 48(1):43-54 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201501005 |
[32] | 刘伟伟, 潘存德, 杨伊欣, 等. '新温185号'核桃疏散分层形树形冠层内透光率和叶面积指数时节变化分析[J].中国农学通报, 2016, 32(25):10-15 doi: 10.11924/j.issn.1000-6850.casb15120096 LIU W W, PAN C D, YANG Y X, et al. Seasonal change analysis of leaf area index and light transmittance in evacuation layered shape canopy of 'Xinwen185'[J]. Chinese Agricultural Science Bulletin, 2016, 32(25):10-15 doi: 10.11924/j.issn.1000-6850.casb15120096 |
[33] | 公丽艳, 孟宪军, 刘乃侨, 等.基于主成分与聚类分析的苹果加工品质评价[J].农业工程学报, 2014, 30(13):276-285 doi: 10.3969/j.issn.1002-6819.2014.13.034 GONG L Y, MENG X J, LIU N Q, et al. Evaluation of apple quality based on principal component and hierarchical cluster analysis[J]. Transactions of the CSAE, 2014, 30(13):276-285 doi: 10.3969/j.issn.1002-6819.2014.13.034 |
[34] | 匡立学, 聂继云, 李志霞, 等.不同苹果品种果实矿质元素含量的因子分析和聚类分析[J].中国农业科学, 2017, 50(14):2807-2815 doi: 10.3864/j.issn.0578-1752.2017.14.016 KUANG L X, NIE J Y, LI Z X, et al. Factor analysis and cluster analysis of mineral elements contents in different apple varieties[J]. Scientia Agricultura Sinica, 2017, 50(14):2807-2815 doi: 10.3864/j.issn.0578-1752.2017.14.016 |