删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Changes in agricultural resource input and productivity in Kenya and China

本站小编 Free考研考试/2022-01-01

DorrisChebeth1, 2,,
柏兆海1,,,
马林1,,
1.中国科学院农业水资源重点实验室/河北省土壤生态学重点实验室(筹)/中国科学院遗传与发育生物学研究所农业资源研究中心 石家庄 050022
2.中国科学院大学 北京 100049
基金项目: the National Natural Science Foundation of China31572210
the National Natural Science Foundation of China31872403
the National Natural Science Foundation of China71961137011
the Key Laboratory of Agricultural Water Resources of Chinese of Academy of SciencesZD201802
the Key Research Program of Chinese Academy of SciencesKFJ-STS-ZDTP-053
Hebei Dairy Cattle Innovation Team of Modern Agro-industry Technology Research System of ChinaHBCT2018120206
the Youth Innovation Promotion Association of Chinese Academy of Sciences2019101
the Outstanding Young Scientists Project of Natural Science Foundation of HebeiC2019503054

详细信息
通讯作者:柏兆海, 主要从事农畜牧业可持续发展研究, E-mail:baizh1986@126.com
马林, 主要从事养分资源管理和农业生态学研究, E-mail:malin1979@sjziam.ac.cn
中图分类号:F33;F304

计量

文章访问数:428
HTML全文浏览量:11
PDF下载量:341
被引次数:0
出版历程

收稿日期:2020-01-09
录用日期:2020-02-12
刊出日期:2020-06-01

Changes in agricultural resource input and productivity in Kenya and China

Dorris Chebeth1, 2,,
BAI Zhaohai1,,,
MA Lin1,,
1. Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences/Hebei Key Laboratory of Soil Ecology/Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Funds: the National Natural Science Foundation of China31572210
the National Natural Science Foundation of China31872403
the National Natural Science Foundation of China71961137011
the Key Laboratory of Agricultural Water Resources of Chinese of Academy of SciencesZD201802
the Key Research Program of Chinese Academy of SciencesKFJ-STS-ZDTP-053
Hebei Dairy Cattle Innovation Team of Modern Agro-industry Technology Research System of ChinaHBCT2018120206
the Youth Innovation Promotion Association of Chinese Academy of Sciences2019101
the Outstanding Young Scientists Project of Natural Science Foundation of HebeiC2019503054

More Information
Author Bio:Dorris Chebeth, E-mail:chebethdorris@gmail.com
Corresponding author:BAI Zhaohai, E-mail:baizh1986@126.com;MA Lin, E-mail:malin1979@sjziam.ac.cn


摘要
HTML全文
(7)(0)
参考文献(53)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:当前,肯尼亚和中国在生产足够粮食以保障粮食安全方面都面临着严峻的挑战。尤其是对于肯尼亚而言,因为其2100年预测的人口将达到2018年的1.4倍,且其粮食生产在过去并没有大幅度的改善。而中国近些年粮食生产能力显著提高。本文系统分析了肯尼亚和中国农业资源投入、种植业和畜牧业单产水平的历史变化,以及农业资源投入与产量之间的关系,为肯尼亚粮食危机和消灭贫困提供更多的理论支撑。研究结果表明,在20世纪60年代,肯尼亚耕地、草地和降水等自然资源人均占有量比中国高2~3倍,且人均食物能量和蛋白质供应显著高于中国。当前,肯尼亚人均资源拥有量仍高出中国约30%,但是其人均食品供应和粮食自给率却远低于中国平均水平。这是由于与肯尼亚相比,中国在种植业和畜牧业长期持续的投入,大幅度地增加了种植业和畜牧业能量或蛋白质单产水平。1961-2017年,中国和肯尼亚作物蛋白的平均单产分别增加282%和44%。中国的数据表明,种植业和畜牧业单产水平与肥料、精饲料、机械和农药的投入具有显著正相关性;农牧业生产结构对单产水平的变化影响也很大,如种植业中蔬菜和水果播种面积占比,畜牧业中单胃动物饲养占比等。总的来说,农业资源投入和农业结构对生产力的提高都有很大的影响,这可能是肯尼亚提高农业生产力的潜在选择。
关键词:肯尼亚/
中国/
能量生产力/
蛋白生产力/
农业资源/
农业结构/
粮食安全
Abstract:Both Kenya and China are facing great challenges in feeding their populations; this is particularly problematic in Kenya, where the population will be projected to increase by 1.4 times from 2018 to 2100. Food production has been greatly improved in China, but it still lags behind in Kenya. In this study, we systematically compared the changes in agricultural resources and crop/livestock productivity, as well as their relationships with the resource input levels and agricultural production structure, to try to provide insights into reducing food insecurity and poverty in Kenya. Our results revealed that Kenya had 2-3 times more natural resources, such as cropland, grassland, and annual precipitation, per capita than did China in the 1960s, which was similar to the daily food energy and protein supply. Currently, Kenya still has higher natural resources per capita, but has lower food security and quality when compared to China. This is due to the continued rapid increase in crop and livestock productivity regarding energy and protein production in China. From 1961 to 2017, crop protein productivity increased by 44% in Kenya, while in China it increased by 282%. Our results showed that crop and livestock productivity positively correlated with the input of fertilizers, concentrate feeds, machinery, and pesticides, as seen in China. Meanwhile, the structure of crop and livestock production also showed a large impact on the changes in productivity, such as the harvest area of vegetables/fruits to the total harvest area and the ratio of monogastric animals for livestock production. Overall, both agrochemicals and structure have strong impacts on the increase in productivity, and these could be potential options in Kenya to improve productivity due to the low input of resources into crop and livestock production.
Key words:Kenya/
China/
Energy productivity/
Protein productivity/
Agricultural resources/
Agricultural structure/
Food security

HTML全文


Figure1.Changes in natural resources from 1961 to 2017 in Kenya and China. (a) cropland area per capita, (b) grassland area per capita, (c) inland water per capita, and (d) precipitation per capita


下载: 全尺寸图片幻灯片


Figure2.Food consumption trends in terms of protein, energy, and food self-sufficiency rates in Kenya and China. (a and c) food energy supply, (b and d) protein supply, and (e and f) food self-sufficiency rate of plant and animal products. The self-sufficiency rate (SSR) refers to the extent to which a country can satisfy its own food production according to the FAO (1999).


下载: 全尺寸图片幻灯片


Figure3.Changes in (a and b) crop and (c and d) livestock productivity regarding energy and protein in Kenya and China


下载: 全尺寸图片幻灯片


Figure4.Relationships of the energy production with agrochemical inputs of (a) nitrogen (N), (b) phosphorus (P2O5), and (c) potash (K2O) fertilizers, as well as the (d) total pesticide and (e) total machinery (total agricultural tractors and combine harvesters in use)


下载: 全尺寸图片幻灯片


Figure5.Relationships of protein production with agrochemical inputs of (a) nitrogen (N), (b) phosphorus (P2O5), and (c) potash (K2O) fertilizers, as well as the (d) total pesticide and (e) total machinery (total agricultural tractors and combine harvesters in use)


下载: 全尺寸图片幻灯片


Figure6.Relationships of (a and b) energy production and (c and d) protein production with (a and c) cereal feeds from cereal crops, and (b and d) protein feeds from oil crops


下载: 全尺寸图片幻灯片


Figure7.Relationships of energy (a and b) and protein (c and d) productivity with the proportion of (a and c) cultivated area of vegetables and fruits and (b and d) ratio of monogastric animals


下载: 全尺寸图片幻灯片


参考文献(53)
ASHBURNER J, KIENZLE J. 2011. Investment in Agricultural Mechanization in Africa: Conclusions and Recommendations of a Round Table Meeting of Experts[R]. Rome, Italia: FAO
BAI Z H, MA W Q, MA L, et al. 2018. China's livestock transition:driving forces, impacts, and consequences[J]. Science Advances, 4(7):eaar8534 doi: 10.1126/sciadv.aar8534
BAI Z H, MA L, QIN W, et al. 2014. Changes in pig production in China and their effects on nitrogen and phosphorus use and losses[J]. Environmental Science & Technology, 48(21):12742-12749 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b0f80fbc205e799f36f400a119f71b23
BROWN L H. 1968. Agricultural change in Kenya:1945-1960[J]. Food Research Institute Studies, 8(1):33-90 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_b2ad28421ad725f9eef1461b37ece671
CHEN Y Y, ZHOU L A. 2007. The long-term health and economic consequences of the 1959-1961 famine in China[J]. Journal of Health Economics, 26(4):659-681
DELGADO C L, ROSEGRANT M W, STEINFELD H, et al. 1999. The coming livestock revolution[J]. Choices, 14(4):5
DOBERMANN A, CASSMAN K G. 2005. Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption[J]. Science in China Series C:Life Sciences, 48(S2):745-758
FAO. 2011. The State of the World's Land and Water Resources for Food and Agriculture: Managing Systems at Risk[R]. Rome: Food and Agriculture Organization of the United Nations
FAO. 2019a. Food and Agricultural Organization of the United Nations[EB/OL].[2019-12-20]. http://www.fao.org/faostat/en/
FAO. 2019b. The State of Food Security and Nutrition in the World 2019: Safeguarding Against Economic Slowdowns and Downturns[M]. Food and Agriculture Organization of the United Nations, Rome
GALE F. 2015. Development of China's Feed Industry and Demand for Imported Commodities[R]. United States Department of Agriculture Economic Research Service, DOI: 10.13140/RG.2.1.2599.3685
GARCIA S M, ROSENBERG A A. 2010. Food security and marine capture fisheries:Characteristics, trends, drivers and future perspectives[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 365(1554):2869-2880 doi: 10.1098/rstb.2010.0171
GICHERE S K, OLADO G, ANYONA D N, et al. 2013. Effects of drought and floods on crop and animal losses and socio-economic status of households in the Lake Victoria Basin of Kenya[J]. Journal of Emerging Trends in Economics and Management Sciences, 4(1):31-41
GODFRAY H C J, BEDDINGTON J R, CRUTE I R, et al. 2010a. Food security:The challenge of feeding 9 billion people[J]. Science, 327(5967):812-818 doi: 10.1126/science.1185383
GODFRAY H C J, CRUTE I R, HADDAD L, et al. 2010b. The future of the global food system[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 365(1554):2769-2777 doi: 10.1098/rstb.2010.0180
GUO J H, LIU X J, ZHANG Y, et al. 2010. Significant acidification in major Chinese croplands[J]. Science, 327(5968):1008-1010 doi: 10.1126/science.1182570
HERRERO M, THORNTON P K, NOTENBAERT A M, et al. 2010. Smart investments in sustainable food production:Revisiting mixed crop-livestock systems[J]. Science, 327(5967):822-825 doi: 10.1126/science.1183725
HESKETH T, LU L, XING Z W. 2005. The effect of China's one-child family policy after 25 years[J]. New England Journal of Medicine, 353(11):1171-1176 doi: 10.1056/NEJMhpr051833
HUANG J K, ROZELLE S, ROSEGRANT M W. 1999. China's food economy to the twenty-first century:Supply, demand, and trade[J]. Economic Development and Cultural Change, 47(4):737-766 doi: 10.1086/452430
JAGGARD K W, QI A M, OBER E S. 2010. Possible changes to arable crop yields by 2050[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 365(1554):2835-2851 doi: 10.1098/rstb.2010.0153
JIANG Q B, LIU Y X. 2016. Low fertility and concurrent birth control policy in China[J]. The History of the Family, 21(4):551-577 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/1081602X.2016.1213179
JU X T, XING G X, CHEN X P, et al. 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 106(9):3041-3046 doi: 10.1073/pnas.0813417106
KIBATA G N, MAINA J M, THURANIRA E G, et al. 2002. Participatory development of weed management strategies in maize based cropping systems of Kenya[C]//Proceedings of 13th Australian Weeds Conference. Perth, Western Australia: Sheraton Perth Hotel, 343-344
LASSALETTA L, BILLEN G, GRIZZETTI B, et al. 2014. 50 year trends in nitrogen use efficiency of world cropping systems:the relationship between yield and nitrogen input to cropland[J]. Environmental Research Letters, 9(10):105011
LI X X, CHEN S Y, ALUOCH S O, et al. 2018. Maize production status and yield limiting factors of Kenya[J]. Chinese Journal of Eco-Agriculture, 26(4):567-573 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0410&flag=1
LIU Q, WANG J M, BAI Z H, et al. 2017. Global animal production and nitrogen and phosphorus flows[J]. Soil Research, 55(6):451-462 doi: 10.1071/SR17031
LIU X J, ZHANG Y, HAN W X, et al. 2013. Enhanced nitrogen deposition over China[J]. Nature, 494(7438):459-462 doi: 10.1038/nature11917
MBITHI P M, WISNER B. 1973. Drought and famine in Kenya:Magnitude and attempted solutions[J]. Journal of Eastern African Research and Development, 3(2):113-143
Ministry of Agriculture of the People's Republic of China (MOA). 2015. China issue guideline for agricultural development[EB/OL]. (2015-05-18)[2019-12-20]]. http://english.agri.gov.cn/news/dqnf/201505/t20150528_25686.htm
MUCHERU-MUNA M, MUGENDI D, PYPERS P, et al. 2014. Enhancing maize productivity and profitability using organic inputs and mineral fertilizer in central Kenya small-hold farms[J]. Experimental Agriculture, 50(2):250-269 doi: 10.1017/S0014479713000525
NKEDIANYE D, DE LEEUW J, OGUTU J O, et al. 2011. Mobility and livestock mortality in communally used pastoral areas:The impact of the 2005-2006 drought on livestock mortality in Maasailand[J]. Pastoralism:Research, Policy and Practice, 1(1):17 doi: 10.1186/2041-7136-1-17
OLWANDE J, SIKEI G, MATHENGE M. 2009. Agricultural Technology Adoption: A Panel Analysis of Smallholder Farmers' Fertilizer Use in Kenya[R]. Berkeley: Centre of Evaluation for Global Action, University of California
QI X X, WANG R Y, LI J C, et al. 2018. Ensuring food security with lower environmental costs under intensive agricultural land use patterns:A case study from China[J]. Journal of Environmental Management, 213:329-340
SANCHEZ P A. 2002. Soil fertility and hunger in Africa[J]. Science, 295(5562):2019-2020 doi: 10.1126/science.1065256
SHEAHAN M, BARRETT C B. 2017. Ten striking facts about agricultural input use in Sub-Saharan Africa[J]. Food Policy, 67:12-25 doi: 10.1016/j.foodpol.2016.09.010
SID. 2004. Pulling Apart: Facts and Figures on Inequality in Kenya[R]. Nairobi: Society for International Development
SIMS B G, KIENZLE J. 2006. Farm Power and Mechanization for Small Farms in Sub-Saharan Africa[R]. Rome: Food and Agriculture Organization of the United Nations
SMALING E M A, NANDWA S M, PRESTELE H, et al. 1992. Yield response of maize to fertilizers and manure under different agro-ecological conditions in Kenya[J]. Agriculture, Ecosystems & Environment, 41(3/4):241-252
SULSER T B, MASON-D'CROZ D, ISLAM S, et al. 2015. Africa in the global agricultural economy in 2030 and 2050[M]//BADIANE O, MAKOMBE T. Beyond a Middle Income Africa: Transforming African Economies for Sustained Growth with Rising Employment and Incomes. Washington: International Food Policy Research Institute (IFPRI)
THOMSON A, METZ M. 1999. Implications of economic policy for food security: A training manual[R]. Rome: FAO, GTZ
THORNTON P K. 2010. Livestock production:Recent trends, future prospects[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 365(1554):2853-2867 doi: 10.1098/rstb.2010.0134
TILMAN D, BALZER C, HILL J, et al. 2011. Global food demand and the sustainable intensification of agriculture[J]. Proceedings of the National Academy of Sciences of the United States of America, 108(50):20260-20264 doi: 10.1073/pnas.1116437108
TILMAN D, CASSMAN K G, MATSON P A, et al. 2002. Agricultural sustainability and intensive production practices[J]. Nature, 418(6898):671-677 doi: 10.1038/nature01014
TITTONELL P, GILLER K E. 2013. When yield gaps are poverty traps:the paradigm of ecological intensification in African smallholder agriculture[J]. Field Crops Research, 143:76-90 doi: 10.1016/j.fcr.2012.10.007
TITTONELL P, ZINGORE S, VAN WIJK M T, et al. 2007. Nutrient use efficiencies and crop responses to N, P and manure applications in Zimbabwean soils:Exploring management strategies across soil fertility gradients[J]. Field Crops Research, 100(2/3):348-368
USAID. 2019. Food assistance fact sheet-Kenya[EB/OL].[2019-12-20]. https://www.usaid.gov/kenya/food-assistance
VAN ITTERSUM M K, VAN BUSSEL L G J, WOLF J, et al. 2016. Can sub-Saharan Africa feed itself?[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(52):14964-14969 doi: 10.1073/pnas.1610359113
VITOUSEK P M, NAYLOR R, CREWS T, et al. 2009. Nutrient imbalances in agricultural development[J]. Science, 324(5934):1519-1520 doi: 10.1126/science.1170261
WANG Y H, WANG X L, KONG Y H, et al. 2010. The Great Chinese Famine leads to shorter and overweight females in Chongqing Chinese population after 50 years[J]. Obesity, 18(3):588-592 doi: 10.1038/oby.2009.296
The World Bank. 2019. Countries and Economies[EB/OL].[2019-12-20]. https://data.worldbank.org/country
YU C Q, HUANG X, CHEN H, et al. 2019. Managing nitrogen to restore water quality in China[J]. Nature, 567(7749):516-520 doi: 10.1038/s41586-019-1001-1
ZHANG F S, CUI Z L, FAN M S, et al. 2011. Integrated soil-crop system management:Reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China[J]. Journal of Environmental Quality, 40(4):1051-1057
ZINGORE S, MURWIRA H K, DELVE R J, et al. 2007. Soil type, management history and current resource allocation:Three dimensions regulating variability in crop productivity on African smallholder farms[J]. Field Crops Research, 101(3):296-305 doi: 10.1016/j.fcr.2006.12.006

相关话题/农业 图片 资源 结构 生产