元晋川,
侯玉婷,
李彤,
廖允成,
西北农林科技大学农学院 杨凌 712100
基金项目: 国际(地区)合作与交流项目31761143003
详细信息
作者简介:赵德强, 主要研究方向为作物高产栽培与农田生态。E-mail:zhaodeqiang@nwafu.edu.cn
通讯作者:廖允成, 主要研究方向为作物栽培与耕作和农田生态。E-mail:yunchengliao@163.com
中图分类号:Q945.79计量
文章访问数:530
HTML全文浏览量:2
PDF下载量:563
被引次数:0
出版历程
收稿日期:2019-10-23
录用日期:2020-01-08
刊出日期:2020-05-01
Tempo-spatial dynamics of AMF under maize soybean intercropping
ZHAO Deqiang,YUAN Jinchuan,
HOU Yuting,
LI Tong,
LIAO Yuncheng,
College of Agronomy, Northwest Agriculture and Forestry University, Yangling 712100, China
Funds: the International (regional) Cooperation and Exchange Project of China31761143003
More Information
Corresponding author:LIAO Yuncheng, E-mail:yunchengliao@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为探究农田生态系统中不同种植模式下丛枝菌根真菌(AMF)生长发育及产生孢子和球囊霉素状况,本试验设置两种结构的间作模式(6M6S:6行玉米与6行大豆间作;3M3S:3行玉米与3行大豆间作)以及单作玉米(CKM)和单作大豆(CKS)4个处理,分析不同种植模式对AMF生长时空变化的影响。结果表明:菌根侵染率、侵染密度和菌丝密度随着AMF与作物共生期延长逐渐增加,丛枝丰度呈现先增加后减少的趋势。两年试验中,玉米乳熟期(大豆鼓粒期),3M3S处理的菌根侵染率、侵染密度和丛枝丰度,土壤孢子密度、易提取球囊霉素含量和总球囊霉素含量均显著高于单作。在作物生育期内,AMF的孢子密度从269.40个·(100g)-1增加至1 484.20个·(100g)-1,易提取球囊霉素含量从430.88 μg·g-1增加至600.78 μg·g-1,总球囊霉素含量从942.59 μg·g-1增加至1 304.03 μg·g-1。玉米乳熟期,间作边行玉米的菌丝密度、孢子密度、易提取球囊霉素和总球囊霉素含量最高;大豆鼓粒期,间作边行大豆的菌丝密度和易提取球囊霉素含量最高,孢子密度最低。相关性分析表明,总球囊霉素和易提取球囊霉素与菌丝密度呈极显著正相关,相关系数分别达0.71和0.73;孢子密度和菌丝密度与侵染率呈极显著正相关,相关系数分别达0.72和0.75。因此,农田生境中AMF能与根系建立良好的共生关系,并随着季节变化和作物生长呈现周期性变化。间作促进了AMF的侵染,增加了球囊霉素和孢子的产量,间作处理中AMF与各行作物共生表现出边际效应。3M3S处理是最有利于AMF生长的种植模式。
关键词:玉米||大豆间作/
丛枝菌根真菌/
侵染率/
球囊霉素/
孢子
Abstract:A field experiment was conducted to investigate whether AMF growth and yield of spores and glomalin were influenced by planting patterns. Four systems consisting of 6 rows of maize intercropped with 6 rows of soybean (6M6S), 3 rows of maize intercropped with 3 rows of soybean (3M3S), sole maize crop (CKM), and sole soybean crop (CKS) were used to examine spatial and temporal dynamics of AMF. The results showed that mycorrhizal colonization, colonization density, and hypha density increased gradually with the symbiotic period between AMF and crops; and mycorrhizal arbuscular richness at first showed an increase, then decreased. In the milking stage of maize (the filling stage of soybean), two-year results showed that mycorrhizal colonization, colonization density, arbuscular richness of mycorrhiza, soil spore density, and glomalin content of 3M3S were significantly higher than those of monoculture. With the growth of crops, the spore density of AMF increased from 269.40 spores·(100g)-1 to 1 484.20 spores·(100g)-1, the content of easily extractable glomalin increased from 430.88 μg·g-1 to 600.78 μg·g-1, and the content of total glomalin increased from 942.59 μg·g-1 to 1 304.03 μg·g-1. In the milking stage of maize, the border row of intercropped maize had the highest hypha density, spore density, easily extractable glomalin, and total glomalin. In the filling stage of soybean, the border row of intercropped soybean had the highest hypha density and easily extractable glomalin, and the lowest spore density. Correlation analysis indicated that contents of easily extractable glomalin and total glomalin were significantly positively correlated with hypha density, with coefficients up to 0.71 and 0.73, respectively. The spore density and hypha density were significantly positively correlated with colonization, with coefficients up to 0.72 and 0.75, respectively. Therefore, this study showed that AMF could establish a good symbiotic relationship with crops on agricultural land and showed periodical variation with both the change of seasons and the growth of crops. Intercropping promoted the colonization of AMF and increased the production of glomalin and spores, and the symbiosis between AMF and crops showed marginal effect. The 3M3S treatment was the most lucrative planting system for AMF.
Key words:Maize and soybean intercropping/
Arbuscular mycorrhizal fungi/
Colonization/
Glomalin/
Spore
HTML全文

图1不同处理玉米、大豆间作及单作种植和取样示意图
6M6S: 6行玉米与6行大豆间作; 3M3S: 3行玉米与3行大豆间作; CKM:单作玉米; CKS:单作大豆。
Figure1.Schematic diagram of intercropping and monoculture of maize and soybean and soil sampling positions
6M6S: 6 rows of maize intercropped with 6 rows of soybean; 3M3S: 3 rows of maize intercropped with 3 rows of soybean; CKM: monoculture of maize crop; CKS: monoculture of soybean.


图22017年和2018年玉米||大豆间作系统的AMF侵染状况
不同小写字母表示同一生育期不同种植模式间P < 0.05水平差异显著。6M6S: 6行玉米与6行大豆间作; 3M3S: 3行玉米与3行大豆间作; CKM:单作玉米; CKS:单作大豆。
Figure2.Colonization rate of arbuscular mycorrhizal fungi of maize and soybean intercropping system in 2017 and 2018
Different lowercase letters mean significant differences at P < 0.05. 6M6S: 6 rows of maize intercropped with 6 rows of soybean; 3M3S: 3 rows of maize intercropped with 3 rows of soybean; CKM: monoculture of maize; CKS: monoculture of soybean.


图32017年和2018年玉米||大豆间作系统的AMF菌根丛枝丰度
不同小写字母表示同一生育期不同种植模式间P < 0.05水平差异显著。6M6S: 6行玉米与6行大豆间作; 3M3S: 3行玉米与3行大豆间作; CKM:单作玉米; CKS:单作大豆。
Figure3.Richness of arbuscular mycorrhizal fungi of maize and soybean intercropping system in 2017 and 2018
Different lowercase letters mean significant differences at P < 0.05. 6M6S: 6 rows of maize intercropped with 6 rows of soybean; 3M3S: 3 rows of maize intercropped with 3 rows of soybean; CKM: monoculture of maize; CKS: monoculture of soybean.


图42017年和2018年玉米||大豆间作系统的AMF侵染密度
不同小写字母表示同一生育期不同种植模式间P < 0.05水平差异显著。6M6S: 6行玉米与6行大豆间作; 3M3S: 3行玉米与3行大豆间作; CKM:单作玉米; CKS:单作大豆。
Figure4.Colonization density of arbuscular mycorrhizal fungi of maize and soybean intercropping system in 2017 and 2018
Different lowercase letters mean significant differences at P < 0.05. 6M6S: 6 rows of maize intercropped with 6 rows of soybean; 3M3S: 3 rows of maize intercropped with 3 rows of soybean; CKM: monoculture of maize; CKS: monoculture of soybean.


图52017年和2018年玉米||大豆间作系统的AMF菌丝密度
不同小写字母表示同一生育期不同种植模式间P < 0.05水平差异显著。6M6S: 6行玉米与6行大豆间作, 3M3S: 3行玉米与3行大豆间作; CKM:单作玉米; CKS:单作大豆。
Figure5.Hypha density of arbuscular mycorrhizal fungi of maize and soybean intercropping system in 2017 and 2018
Different lowercase letters mean significant differences at P < 0.05. 6M6S: 6 rows of maize intercropped with 6 rows of soybean; 3M3S: 3 rows of maize intercropped with 3 rows of soybean; CKM: monoculture of maize; CKS: monoculture of soybean.


图62017年和2018年玉米||大豆间作系统中AMF菌丝密度的时空变化
6M6S: 6行玉米与6行大豆间作; 3M3S: 3行玉米与3行大豆间作; CKM:单作玉米; CKS:单作大豆。
Figure6.Tempo-spatial dynamics of hypha density of arbuscular mycorrhizal fungi of maize and soybean intercropping system in 2017 and 2018
6M6S: 6 rows of maize intercropped with 6 rows of soybean; 3M3S: 3 rows of maize intercropped with 3 rows of soybean; CKM: monoculture of maize; CKS: monoculture of soybean.


图72017年和2018年玉米||大豆间作系统的AMF孢子密度
不同小写字母表示同一生育期不同种植模式间P < 0.05水平差异显著。6M6S: 6行玉米与6行大豆间作, 3M3S: 3行玉米与3行大豆间作; CKM:单作玉米; CKS:单作大豆。
Figure7.Spore density of arbuscular mycorrhizal fungi of maize and soybean intercropping system in 2017 and 2018
Different lowercase letters mean significant differences at P < 0.05. M6S: 6 rows of maize intercropped with 6 rows of soybean; 3M3S: 3 rows of maize intercropped with 3 rows of soybean; CKM: monoculture of maize; CKS: monoculture of soybean.


图82017年和2018年玉米||大豆间作系统AMF孢子密度的时空变化
6M6S: 6行玉米与6行大豆间作; 3M3S: 3行玉米与3行大豆间作; CKM:单作玉米; CKS:单作大豆。
Figure8.Tempo-spatial dynamics of spore density of arbuscular mycorrhizal fungi of maize and soybean intercropping system in 2017 and 2018
6M6S: 6 rows of maize intercropped with 6 rows of soybean; 3M3S: 3 rows of maize intercropped with 3 rows of soybean; CKM: monoculture of maize; CKS: monoculture of soybean.


图92017年和2018年玉米||大豆间作系统的土壤易提取球囊霉素含量
不同小写字母表示同一生育期不同种植模式间P < 0.05水平差异显著。6M6S: 6行玉米与6行大豆间作; 3M3S: 3行玉米与3行大豆间作; CKM:单作玉米; CKS:单作大豆。
Figure9.Easily extractable glomalin content of soil of maize and soybean intercropping system in 2017 and 2018
Different lowercase letters mean significant differences at P < 0.05. 6M6S: 6 rows of maize intercropped with 6 rows of soybean; 3M3S: 3 rows of maize intercropped with 3 rows of soybean; CKM: monoculture of maize; CKS: monoculture of soybean.


图102017年和2018年玉米||大豆间作系统土壤易提取球囊霉素含量的时空变化
6M6S: 6行玉米与6行大豆间作; 3M3S: 3行玉米与3行大豆间作; CKM:单作玉米; CKS:单作大豆。
Figure10.Tempo-spatial dynamics of easily extractable glomalin content of soil of maize and soybean intercropping system in 2017 and 2018
6M6S: 6 rows of maize intercropped with 6 rows of soybean; 3M3S: 3 rows of maize intercropped with 3 rows of soybean; CKM: monoculture of maize; CKS: monoculture of soybean.


图112017年和2018年玉米||大豆间作系统的土壤总球囊霉素含量
不同小写字母表示同一生育期不同种植模式间P < 0.05水平差异显著。6M6S: 6行玉米与6行大豆间作; 3M3S: 3行玉米与3行大豆间作; CKM:单作玉米; CKS:单作大豆。
Figure11.Total glomalin content of soil of maize and soybean intercropping system in 2017 and 2018
Different lowercase letters mean significant differences at P < 0.05. 6M6S: 6 rows of maize intercropped with 6 rows of soybean; 3M3S: 3 rows of maize intercropped with 3 rows of soybean; CKM: monoculture of maize; CKS: monoculture of soybean.


图122017年和2018年玉米||大豆间作系统中土壤总球囊霉素含量的时空变化
6M6S: 6行玉米与6行大豆间作; 3M3S: 3行玉米与3行大豆间作; CKM:单作玉米; CKS:单作大豆。
Figure12.Tempo-spatial dynamics of total glomalin content of soil of maize and soybean intercropping system in 2017 and 2018
6M6S: 6 rows of maize intercropped with 6 rows of soybean; 3M3S: 3 rows of maize intercropped with 3 rows of soybean; CKM: monoculture of maize; CKS: monoculture of soybean.

表1AMF生长与球囊霉素的相关性分析
Table1.Correlation analysis between AMF growth and yield of spore and glomalin
侵染率 Colonization rate | 侵染密度 Colonization density | 丛枝丰度 Arbuscular richness | 菌丝密度 Hypha density | |
菌丝密度?Hypha density | 0.71** | 0.73** | 0.69** | 1.00 |
孢子密度?Spore density | 0.56* | 0.53* | 0.38 | 0.63* |
易提取球囊霉素?Easily extractable glomalin | 0.66* | 0.60* | 0.65* | 0.74** |
总球囊霉素?Total glomalin | 0.64* | 0.60* | 0.72** | 0.75** |
表中数据为相关系数, *和**分别表示P < 0.05和P < 0.01水平显著相关。Data in the table is correlation coefficient. * and ** mean signficant correlation at P < 0.05 and P < 0.01, respectively. |

参考文献
[1] | HODGE A, HELGASON T, FITTER A H. Nutritional ecology of arbuscular mycorrhizal fungi[J]. Fungal Ecology, 2010, 3(4):267-273 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_e49f718aad5094c043116b786fd2e260 |
[2] | PARNISKE M. Arbuscular mycorrhiza:The mother of plant root endosymbioses[J]. Nature Reviews Microbiology, 2008, 6(10):763-775 doi: 10.1038-nrmicro1987/ |
[3] | WORKMAN R E, CRUZAN M B. Common mycelial networks impact competition in an invasive grass[J]. American Journal of Botany, 2016, 103(6):1041-1049 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.3732/ajb.1600142 |
[4] | DRIVER J D, HOLBEN W E, RILLIG M C. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi[J]. Soil Biology and Biochemistry, 2005, 37(1):101-106 doi: 10.1016/j.soilbio.2004.06.011 |
[5] | REINHARDT D R, MILLER R M. Size classes of root diameter and mycorrhizal fungal colonization in two temperate grassland communities[J]. New Phytologist, 1990, 116(1):129-136 doi: 10.1111/j.1469-8137.1990.tb00518.x |
[6] | SANDERS I R, FITTER A H. The ecology and functioning of vesicular-arbuscular mycorrhizas in co-existing grassland species:Ⅰ. Seasonal patterns of mycorrhizal occurrence and morphology[J]. New Phytologist, 1992, 120(4):517-524 http://www.researchgate.net/publication/229466584_The_ecology_and_functioning_of_vesiculararbuscular_mycorrhizas_in_coexisting_grassland_species |
[7] | MANDYAM K, JUMPPONEN A. Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment[J]. Mycorrhiza, 2008, 18(3):145-155 doi: 10.1007/s00572-008-0165-6 |
[8] | 唐宏亮, 刘龙, 王莉, 等.土地利用方式对球囊霉素土层分布的影响[J].中国生态农业学报, 2009, 17(6):1137-1142 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200906016 TANG H L, LIU L, WANG L, et al. Effect of land use type on profile distribution of glomalin[J]. Chinese Journal of Eco-Agriculture, 2009, 17(6):1137-1142 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200906016 |
[9] | WANG Q, WANG W J, HE X Y, et al. Role and variation of the amount and composition of glomalin in soil properties in farmland and adjacent plantations with reference to a primary forest in North-Eastern China[J]. PLoS One, 2015, 10(10):e0139623 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004498345 |
[10] | WRIGHT S F, UPADHYAYA A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 1998, 198(1):97-107 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e0d8e59dbc7572944d7bed66cbd4f800 |
[11] | HART M M, READER R J, KLIRONOMOS J N. Plant coexistence mediated by arbuscular mycorrhizal fungi[J]. Trends in Ecology & Evolution, 2003, 18(8):418-423 http://www.sciencedirect.com/science/article/pii/S0169534703001277 |
[12] | COURTY P E, BUéE M, DIEDHIOU A G, et al. The role of ectomycorrhizal communities in forest ecosystem processes:New perspectives and emerging concepts[J]. Soil Biology and Biochemistry, 2010, 42(5):679-698 http://www.sciencedirect.com/science/article/pii/S0038071709004696 |
[13] | ZHANG Q, YANG R Y, TANG J J, et al. Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion[J]. PLoS One, 2010, 5(8):e12380 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000003249618 |
[14] | BEDINI S, PELLEGRINO E, AVIO L, et al. Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices[J]. Soil Biology and Biochemistry, 2009, 41(7):1491-1496 doi: 10.1016/j.soilbio.2009.04.005 |
[15] | CHERN E C, TSAI D W, OGUNSEITAN O A. Deposition of glomalin-related soil protein and sequestered toxic metals into watersheds[J]. Environmental Science & Technology, 2007, 41(10):3566-3572 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4ac9cda90be89acc03dc9b578652e9da |
[16] | HAMMER E C, RILLIG M C, KIRSTEN N. The influence of different stresses on glomalin levels in an arbuscular mycorrhizal fungus-salinity increases glomalin content[J]. PLoS One, 2011, 6(12):e28426 http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3236182 |
[17] | BEDINI S, TURRINI A, RIGO C, et al. Molecular characterization and glomalin production of arbuscular mycorrhizal fungi colonizing a heavy metal polluted ash disposal island, downtown Venice[J]. Soil Biology and Biochemistry, 2010, 42(5):758-765 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=62b8d569e371a06923267717b4814ec6 |
[18] | ADDO-QUAYE A A, DARKWA A A, OCLOO G K. Yield and productivity of component crops in a maize-soybean intercropping system as affected by time of planting and spatial arrangement[J]. Journal of Agricultural and Biological Science, 2011, 6(9):50-57 |
[19] | 李媛媛, 王晓娟, 豆存艳, 等.四种宿主植物及其不同栽培密度对AM真菌扩繁的影响[J].草业学报, 2013, 22(5):128-135 http://d.old.wanfangdata.com.cn/Periodical/caoyexb201305015 LI Y Y, WANG X J, DOU C Y, et al. Effects of four host plants and different cultivation densities on the propagation of arbuscular mycorrhizal fungi[J]. Acta Prataculturae Sinica, 2013, 22(5):128-135 http://d.old.wanfangdata.com.cn/Periodical/caoyexb201305015 |
[20] | MENG L B, ZHANG A Y, WANG F, et al. Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system[J]. Frontiers in Plant Science, 2015, 6:339 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004616979 |
[21] | TROUVELOT A, KOUGH J L, GIANINAZZI-PEARSON V. Mesure du taux de mycorhization VA d'un système radiculaire. Recherche de méthodes d'estimation ayant une signification fonctionnelle[M]//GIANINAZZI-PEARSON V, GIANINAZZI S. Physiological and Genetical Aspects of Mycorrhizae. Paris: INRA, 1986: 217-221 |
[22] | ABBOTT L K, ROBSON A D, DE BOER G. The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum[J]. New Phytologist, 1984, 97(3):437-446 |
[23] | IANSON D C, ALLEN M F. The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from arid sites[J]. Mycologia, 1986, 78(2):164-168 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00275514.1986.12025227 |
[24] | WRIGHT S F, UPADHYAYA A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science, 1996, 161(9):575-586 doi: 10.1097-00010694-199609000-00003/ |
[25] | LI L, SUN J H, ZHANG F S, et al. Root distribution and interactions between intercropped species[J]. Oecologia, 2006, 147(2):280-290 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210018432/ |
[26] | GIANINAZZI-PEARSON V. Plant cell responses to arbuscular mycorrhizal fungi:Getting to the roots of the symbiosis[J]. The Plant Cell, 1996, 8(10):1871-1883 doi: 10.2307/3870236 |
[27] | HODGE A, CAMPBELL C D, FITTER A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature, 2001, 413(6853):297-299 doi: 10.1038-35095041/ |
[28] | CANDIDO V, CAMPANELLI G, D'ADDABBO T, et al. Growth and yield promoting effect of artificial mycorrhization on field tomato at different irrigation regimes[J]. Scientia Horticulturae, 2015, 187:35-43 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=743f0980daef6c9d3f789f1ca25f803b |
[29] | YANG H S, ZANG Y Y, YUAN Y G, et al. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi:Evidence from ITS rDNA sequence metadata[J]. BMC Evolutionary Biology, 2012, 12:50 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_48f6aaa38b2fc8075406ba22ba8ff1fb |
[30] | HIIESALU I, P?RTEL M, DAVISON J, et al. Species richness of arbuscular mycorrhizal fungi:Associations with grassland plant richness and biomass[J]. New Phytologist, 2014, 203(1):233-244 doi: 10.1111/nph.12765 |
[31] | SMITH S E, SMITH F A. Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport[J]. New Phytologist, 1990, 114(1):1-38 doi: 10.1111-j.1469-8137.1990.tb00370.x/ |
[32] | MCGONIGLE T P, MILLER M H, YOUNG D. Mycorrhizae, crop growth, and crop phosphorus nutrition in maize-soybean rotations given various tillage treatments[J]. Plant and Soil, 1999, 210(1):33-42 doi: 10.1023/A:1004633512450 |
[33] | KOLTAI H, KAPULNIK Y. Arbuscular Mycorrhizas:Physiology and Function[M]. 2nd ed. Dordrecht:Springer, 2010:47-68 |
[34] | PRASAD R B, BROOK R M. Effect of varying maize densities on intercropped maize and soybean in nepal[J]. Experimental Agriculture, 2005, 41(3):365-382 doi: 10.1017/S0014479705002693 |
[35] | GAO Y, DUAN A W, QIU X Q, et al. Distribution of roots and root length density in a maize/soybean strip intercropping system[J]. Agricultural Water Management, 2010, 98(1):199-212 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ebf76b4c368164595f61803c02c259fd |
[36] | FRIESE C F, ALLEN M F. The spread of VA mycorrhizal fungal hyphae in the soil:Inoculum types and external hyphal architecture[J]. Mycologia, 1991, 83(4):409-418 |
[37] | LI L F, ZHANG Y, ZHAO Z W. Arbuscular mycorrhizal colonization and spore density across different land-use types in a hot and arid ecosystem, Southwest China[J]. Journal of Plant Nutrition and Soil Science, 2007, 170(3):419-425 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b2f0cbe63291b17757a19f1b59a1e004 |
[38] | CARDOSO I M, BODDINGTON C, JANSSEN B H, et al. Distribution of mycorrhizal fungal spores in soils under agroforestry and monocultural coffee systems in Brazil[J]. Agroforestry Systems, 2003, 58(1):33-43 doi: 10.1023/A:1025479017393 |
[39] | FONTENLA S, GODOY R, ROSSO P, et al. Root associations in Austrocedrus forests and seasonal dynamics of arbuscular mycorrhizas[J]. Mycorrhiza, 1998, 8(1):29-33 doi: 10.1007/s005720050207 |
[40] | REN Y Y, LIU J J, WANG Z L, et al. Planting density and sowing proportions of maize-soybean intercrops affected competitive interactions and water-use efficiencies on the Loess Plateau, China[J]. European Journal of Agronomy, 2016, 72:70-79 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7a6409f636ddc55672afe66e8a63c7aa |
[41] | RILLIG M C, MUMMEY D L. Mycorrhizas and soil structure[J]. The New Phytologist, 2006, 171(1):41-53 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0214984081/ |
[42] | RILLIG M C, WRIGHT S F, NICHOLS K A, et al. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J]. Plant and Soil, 2001, 233(2):167-177 doi: 10.1023-A-1010364221169/ |
[43] | JANOS D P, GARAMSZEGI S, BELTRAN B. Glomalin extraction and measurement[J]. Soil Biology and Biochemistry, 2008, 40(3):728-739 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212601655/ |