删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于分数阶微分的盐渍土电导率高光谱估算研究

本站小编 Free考研考试/2022-01-01

田安红1, 2,,
赵俊三2,
张顺吉1,
付承彪1,,,
熊黑钢3, 4
1.曲靖师范学院信息工程学院 曲靖 655011
2.昆明理工大学国土资源工程学院 昆明 650093
3.北京联合大学应用文理学院 北京 100083
4.新疆大学资源与环境科学学院 乌鲁木齐 830046
基金项目: 国家自然科学基金项目41901065
国家自然科学基金项目41671198
国家自然科学基金项目41761081
教育部产学合作协同育人项目201802156014
曲靖师范学院教师教育研究专项项目2019JZ001

详细信息
作者简介:田安红, 主要研究方向为盐渍土的高光谱反演。E-mail:tianfucb@163.com
通讯作者:付承彪, 主要研究方向为高光谱遥感图像处理。E-mail:fucb305@163.com
中图分类号:S151.9

计量

文章访问数:349
HTML全文浏览量:8
PDF下载量:365
被引次数:0
出版历程

收稿日期:2019-12-10
录用日期:2020-02-04
刊出日期:2020-04-01

Hyperspectral estimation of saline soil electrical conductivity based on fractional derivative

TIAN Anhong1, 2,,
ZHAO Junsan2,
ZHANG Shunji1,
FU Chengbiao1,,,
XIONG Heigang3, 4
1. College of Information Engineering, Qujing Normal University, Qujing 655011, China
2. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
3. College of Applied Arts and Science, Beijing Union University, Beijing 100083, China
4. College of Resource and Environment Sciences, Xinjiang University, Urumqi 830046, China
Funds: This study was supported by the National Natural Science Foundation of China41901065
This study was supported by the National Natural Science Foundation of China41671198
This study was supported by the National Natural Science Foundation of China41761081
the Industry-University Cooperation Collaborative Education Project of Ministry of Education of China201802156014
the Teacher Education Research Project of Qujing Normal University of China2019JZ001

More Information
Corresponding author:FU Chengbiao, E-mail:fucb305@163.com


摘要
HTML全文
(4)(2)
参考文献(30)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:传统电导率的反演模型采用整数阶微分(1阶或2阶)的预处理方法,忽略位于分数阶微分处的高光谱反射率信息。因此,本研究提出一种基于分数阶微分的盐渍土电导率高光谱估算方法,以新疆昌吉回族自治州境内的盐渍化土壤为研究靶区,于2017年5月采集0~20 cm的表层土壤样品,利用FieldSpec?3 Hi-Res光谱仪测量盐渍土的野外高光谱,并在实验室化验土壤的电导率理化参数。在Matlab 2019a软件中编程实现0阶-2.0阶的Grünwald-Letnikov分数阶微分计算(阶数间隔为0.1)。分析土壤高光谱与电导率的相关系数曲线在21种微分处的变化规律,选择每阶微分的最大相关系数大于0.5时对应的波长为敏感波长,采用逐步多元线性回归模型对电导率进行预测。结果表明:分数阶微分预处理方法能够把相关系数曲线位于不同分数阶时的变化细节呈现出来,在全波段范围内出现更多的波峰和波谷信息。电导率的8个敏感波长为400 nm、418 nm、567 nm、1 667 nm、2 132 nm、2 193 nm、2 257 nm和2 258 nm。估算电导率的最佳模型位于分数阶1.5阶,其验证集的RPD值为1.99,R2为0.81,RMSE为1.08,该模型因RPD值大于1.8对电导率的估算能力好。本研究探索了电导率在不同分数阶微分处的差异信息,为电导率的估算提供一种新的研究思路,对新疆干旱区盐渍土的改良提供了科学可靠的依据。
关键词:盐渍土/
电导率/
Grünwald-Letnikov分数阶微分/
敏感波长/
野外高光谱
Abstract:The integer-order differential (first-order or second-order) preprocessing method is often used in traditional electrical conductivity inversion models, but it ignores the hyperspectral reflectance information at the fractional-order differential. In this paper, a hyperspectral method based on fractional differential to estimate the electrical conductivity of saline soil was proposed. The salinized soil in Changji, Xinjiang was used as the research subject. The surface soil samples of 0-20 cm were collected in May 2017, the field hyperspectral of the saline soil was measured by a FieldSpec?3 Hi-Res spectrometer, and physical and chemical parameters of soil electrical conductivity were tested in the laboratory. Next, the Grünwald-Letnikov fractional derivative calculation between 0.0-order and 2.0-order was programmed in MATLAB 2019a software (order interval is 0.1). Then, the variation law of the correlation coefficient curves between soil hyperspectral and electrical conductivity under 21 kinds of differentials was analyzed. When the maximum correlation coefficient of each fractional derivative was greater than 0.5, the corresponding wavelength was selected as the sensitive wavelength. Finally, the stepwise multiple linear regression model was used to predict the electrical conductivity. The results showed that the fractional derivative preprocessing method could display the variation details of the correlation coefficient curve under different fractional orders, and more peaks and troughs appeared in the whole band. The eight sensitive wavelengths of electrical conductivity were 400 nm, 418 nm, 567 nm, 1 667 nm, 2 132 nm, 2 193 nm, 2 257 nm, and 2 258 nm. The best model for estimating electrical conductivity was located at the 0.5th-order. The relative percent difference (RPD) value of the verification set was 1.99, the determination coefficient (R2) was 0.81, and the root mean square error (RMSE) was 1.08. This model had the ability to estimate the electrical conductivity because the RPD value was greater than 1.8. This study explored the difference in electrical conductivity estimates under different fractional derivatives and provided a new method for electrical conductivity estimation, which could be of considerable value for research into improvement of saline soils in the arid regions of Xinjiang.
Key words:Saline soil/
Electrical conductivity/
Grünwald-Letnikov fractional derivative/
Sensitive wavelength/
Field hyperspectral

HTML全文


图1研究区土壤采样点示意图
Figure1.Schematic diagram of soil sampling points in the study area


下载: 全尺寸图片幻灯片


图2土壤高光谱与电导率在0-2.0阶之间的相关系数
< |P0.01|表示极显著相关。
Figure2.Correlation coefficients between soil hyperspectral and electrical conductivity from 0 order to 2.0 order
< |P0.01| shows extremely significant correlation.


下载: 全尺寸图片幻灯片


图3不同分数阶微分阶数对应的土壤高光谱和电导率最大相关系数和波长
Figure3.Maximum correlation coefficients between soil hyperspectral and electrical conductivity and wavelengths corresponding to different fractional differential orders


下载: 全尺寸图片幻灯片


图41.5(a)1.0(b)2.0(c)微分对应的土壤电导率实测值与预测值的散点图
Figure4.Scatter plots of measured and predicted soil electrical conductivities corresponding to different fractional differential orders of 1.5 order (a), 1.0 order (b), and 2.0 order (c)


下载: 全尺寸图片幻灯片

表1样本集土壤电导率的统计特征
Table1.Statistical characteristics of soil electrical conductivity of the sample sets
样本集
Samples set
样本数目
Number of
samples
极小值
Min. value
(mS·cm-1)
极大值
Max. value
(mS·cm-1)
平均值
Mean
(mS·cm-1)
标准差
Standard deviation
(mS·cm-1)
变异系数
Variable coefficient
(%)
全部样本?All samples 30 0.50 10.700 4.463 2.559 57.338
建模集样本?Samples of calibration set 18 0.50 9.700 4.328 2.699 62.361
验证集样本?Samples of validation set 12 1.70 10.700 4.667 2.435 52.175


下载: 导出CSV
表28个敏感波长对应的土壤高光谱在不同分数阶微分阶次的电导率预测模型和预测精度
Table2.Soil electrical conductivity prediction models and prediction accuracies of the soil hyperspectral corresponding to the eight sensitive wavelengths at different fractional differential orders
阶数
Order
回归模型
Regression model
建模集
Calibration
set
验证集
Validation
set
R2 RMSE R2 RMSE RPD
0 Y=12.6+1 298.3R400–1 382.8R418+244.6R567320.3R1667+250.9R2132–128.9R2193+75.9R2258 0.59 2.25 0.27 3.55 1.07
0.1 Y=13.8+915R400–1 345.4R418+365.1R567–691R1667+675R2132–149.9R2193+17.2R2257–110.9R2258 0.65 2.18 0.29 3.91 1.13
0.2 Y=14.1+610.4R400–1 259R418+548.2R567–1 239.9R1667+1 113.2R2132–208.3R2193+1.4R2257–147.8R2258 0.71 2.02 0.31 4.01 1.15
0.3 Y=10.2+441.2R400–1 315R418+663.2R567–1 464.3R1667+1 125.8R2132–367.3R2193+472.9R2257–396.6R2258 0.71 1.99 0.45 2.77 1.29
0.4 Y=6.3+347.7R400–1 448.1R418+708.2R567–1 378.3R1667+918.3R2132–537R2193+ 993.4R2257–800.9R2258 0.70 2.03 0.61 1.71 1.35
0.5 Y=5.3–20.6R400–15 763R418+12 194.1R567+30 150.2R1667+2 181.1R2132+979R2193–333.5R2257–272R2258 0.92 1.05 0.49 1.86 1.39
0.6 Y=4+213.5R400–2 434.8R418+593.5R567–877.3R1667+389.1R2132–772R2193+1 625.6R2257–1 133.9R2258 0.69 2.08 0.77 1.34 1.22
0.7 Y=4.4+161.5R400–3 474.7R418+190.1R567+214.4R1667+482.3R2132–784.5R2193+1 675R2257–1 272.4R2258 0.68 2.09 0.84 1.23 1.27
0.8 Y=5.2+104.7R400–5 205R418–444.6R567+3 652.2R1667+844.7R2132–555.2R2193+1 395.2R2257–1 348.1R2258 0.71 2.01 0.78 1.50 0.98
0.9 Y=5.3+45.3R400–6 731.3R418–312.7R567+9 880.3R1667+1 477.9R2132–12.4R2193+847.7R2257–1 315.6R2258 0.77 1.79 0.70 1.63 1.03
1.0 Y=5+1 396.6R400–16 527.4R418+1 467R567+19 953R1667+2 167.3R2132+1 075.9R2193+286.4R2257–1 425.5R2258 0.88 1.27 0.17 2.58 0.98
1.1 Y=3.8–3.6R400–7 335.3R418+3 375.6R567+20 255.9R1667+2 172.4R2132+843.2R2193+21.4R2257–963.6R2258 0.88 1.26 0.65 1.68 1.41
1.2 Y=3.3–11.7R400–8 254.8R418+5 383R567+23 314.2R1667+2 193.1R2132+898.4R2193–177R2257–748.2 R2258 0.91 1.10 0.59 1.69 1.48
1.3 Y=2.8–20.4R400–10 339.6R418+7 137.5R567+25 870.9R1667+2 133.9R2132+859.3R2193–280.5R2257–556.6R2258 0.93 0.99 0.57 1.68 1.49
1.4 Y=2.1–25.3R400–13 225.4R418+9 108.4R567+28 157.9R1667+2 112.5R2132+884.8R2193–324.9R2257–398.6R2258 0.93 0.98 0.55 1.71 1.47
1.5 Y=4.4+274.4R400–1 893R418+712.6R567–1 196.5R1667+677.5R2132–674.2R2193+1 379R2257–947.6R2258 0.69 2.06 0.81 1.08 1.99
1.6 Y=0.5–8.8R400–17 793R418+16 131.7R567+31 800.2R1667+2 319.6R2132+1 095.2R2193–327R2257–179.5R2258 0.95 1.17 0.49 1.95 1.39
1.7 Y=0.004+4.6R400–20 746.5R418+18 457.6R567+33 334.4R1667+2 581.3R2132+1 304.8R2193–364.9R2257–109.6R2258 0.87 1.34 0.43 2.19 1.31
1.8 Y=–0.7+20.2R400–24 526.6R418+18 405.9R567+34 954.1R1667+3 004R2132+1 615.2R2193–444.6R2257–43.7R2258 0.83 1.52 0.37 2.49 1.24
1.9 Y=–1.5+37.3R400–28 236.7R418+16 724.2R567+36 771R1667+3 497R2132+1 932.5R2193–491.9R2257–17.4R2258 0.79 1.72 0.33 2.81 1.20
2.0 Y=5.3–6 516.4R400+24 756.4R418+22 634.9R567–29 356.7R1667+1 859.7R2132–729.3R2193–3 933.7R2257–893.7R2258 0.59 2.38 0.01 3.45 0.80
R为高光谱反射率值, 下标数据为波长。R is hyperspectral reflectance, subscript data is the wavelength.


下载: 导出CSV

参考文献(30)
[1]SCUDIERO E, SKAGGS T H, CORWIN D L. Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance[J]. Ecological Indicators, 2016, 70:276-284 doi: 10.1016/j.ecolind.2016.06.015
[2]PENG J, BISWAS A, JIANG Q S, et al. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China[J]. Geoderma, 2019, 337:1309-1319 doi: 10.1016/j.geoderma.2018.08.006
[3]孙永猛, 丁建丽, 瞿娟, 等.应用电磁感应和遥感的新疆绿洲区域尺度盐渍土识别[J].农业工程学报, 2012, 28(20):180-187 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201220026
SUN Y M, DING J L, QU J, et al. Saline soil identification based on electromagnetic induction and remote sensing in Xinjiang Oasis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(20):180-187 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201220026
[4]彭杰, 王家强, 向红英, 等.土壤含盐量与电导率的高光谱反演精度对比研究[J].光谱学与光谱分析, 2014, 34(2):510-514 doi: 10.3964/j.issn.1000-0593(2014)02-0510-05
PENG J, WANG J Q, XIANG H Y, et al. Comparative study on hyperspectral inversion accuracy of soil salt content and electrical conductivity[J]. Spectroscopy and Spectral Analysis, 2014, 34(2):510-514 doi: 10.3964/j.issn.1000-0593(2014)02-0510-05
[5]杨爱霞, 丁建丽, 李艳红, 等.基于表观电导率与实测光谱的干旱区湿地土壤盐分监测[J].中国沙漠, 2016, 36(5):1365-1373 http://d.old.wanfangdata.com.cn/Periodical/zgsm201605022
YANG A X, DING J L, LI Y H, et al. Apparent electronic conductivity and measured spectral for monitoring soil salt content in arid lakeside wetland[J]. Journal of Desert Research, 2016, 36(5):1365-1373 http://d.old.wanfangdata.com.cn/Periodical/zgsm201605022
[6]张亚坤, 罗斌, 潘大宇, 等.基于分数阶微分算法的大豆冠层氮素含量估测研究[J].光谱学与光谱分析, 2018, 38(10):3221-3230 http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201810041
ZHANG Y K, LUO B, PAN D Y, et al. Estimation of canopy nitrogen content of soybean crops based on fractional differential algorithm[J]. Spectroscopy and Spectral Analysis, 2018, 38(10):3221-3230 http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201810041
[7]LEYDEN K, GOODWINE B. Fractional-order system identification for health monitoring[J]. Nonlinear Dynamics, 2018, 92(3):1317-1334 doi: 10.1007/s11071-018-4128-y
[8]张东, 塔西甫拉提·特依拜, 张飞, 等.分数阶微分在盐渍土高光谱数据预处理中的应用[J].农业工程学报, 2014, 30(24):151-160 doi: 10.3969/j.issn.1002-6819.2014.24.018
ZHANG D, TASHPOLAT·TIYIP, ZHANG F, et al. Application of fractional differential in preprocessing hyperspectral data of saline soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(24):151-160 doi: 10.3969/j.issn.1002-6819.2014.24.018
[9]HONG Y S, LIU Y L, CHEN Y Y, et al. Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy[J]. Geoderma, 2019, 337:758-769 doi: 10.1016/j.geoderma.2018.10.025
[10]WANG X P, ZHANG F, KUNG H, et al. New methods for improving the remote sensing estimation of soil organic matter content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China[J]. Remote Sensing of Environment, 2018, 218:104-118 doi: 10.1016/j.rse.2018.09.020
[11]WANG J Z, DING J L, ABULIMITI A, et al. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake Wetland, Northwest China[J]. Peer J, 2018, 6:e4703 doi: 10.7717/peerj.4703
[12]王宁, 熊黑钢, 马利芳, 等.新疆有无人为干扰下土壤盐分估算的比较[J].干旱区研究, 2019, 36(2):323-330 http://d.old.wanfangdata.com.cn/Periodical/ghqyj201902007
WANG N, XIONG H G, MA L F, et al. Estimation and comparison of soil salinity under different intensities of human disturbance in Xinjiang[J]. Arid Zone Research, 2019, 36(2):323-330 http://d.old.wanfangdata.com.cn/Periodical/ghqyj201902007
[13]张子鹏, 丁建丽, 王敬哲.基于谐波分析算法的干旱区绿洲土壤光谱特性研究[J].光学学报, 2019, 39(2):0228003 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201902047
ZHANG Z P, DING J L, WAMG J Z. Spectral characteristics of oasis soil in arid area based on harmonic analysis algorithm[J]. Acta Optica Sinica, 2019, 39(2):0228003 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201902047
[14]CARDONE A, D'AMBROSIO R, PATERNOSTER B. A spectral method for stochastic fractional differential equations[J]. Applied Numerical Mathematics, 2019, 139:115-119 doi: 10.1016/j.apnum.2019.01.009
[15]SHIRI B, BALEANU D. System of fractional differential algebraic equations with applications[J]. Chaos, Solitons & Fractals, 2019, 120:203-212 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=daf93ff712a8bbbfee504c3e5dde5594
[16]GARRAPPA R. Neglecting nonlocality leads to unreliable numerical methods for fractional differential equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 70:302-306 doi: 10.1016/j.cnsns.2018.11.004
[17]YUTTANAN B, RAZZAGHI M. Legendre wavelets approach for numerical solutions of distributed order fractional differential equations[J]. Applied Mathematical Modelling, 2019, 70:350-364 doi: 10.1016/j.apm.2019.01.013
[18]ARMAND A, ALLAHVIRANLOO T, ABBASBANDY S, et al. The fuzzy generalized Taylor's expansion with application in fractional differential equations[J]. Iranian Journal of Fuzzy Systems, 2019, 16(2):57-72
[19]MORET I, NOVATI P. Krylov subspace methods for functions of fractional differential operators[J]. Mathematics of Computation, 2019, 88(315):293-312 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=80f9d913237ab9c68ea853c565ea42d6
[20]HONG Y S, CHEN S C, LIU Y L, et al. Combination of fractional order derivative and memory-based learning algorithm to improve the estimation accuracy of soil organic matter by visible and near-infrared spectroscopy[J]. Catena, 2019, 174:104-116 doi: 10.1016/j.catena.2018.10.051
[21]KUANG B, MOUAZEN A M. Effect of spiking strategy and ratio on calibration of on-line visible and near infrared soil sensor for measurement in European farms[J]. Soil and Tillage Research, 2013, 128:125-136 doi: 10.1016/j.still.2012.11.006
[22]BALDOCK J A, HAWKE B, SANDERMAN J, et al. Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance mid-infrared spectra[J]. Soil Research, 2013, 51(8):577-595 doi: 10.1071/SR13077
[23]SHI Z, WANG Q L, PENG J, et al. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations[J]. Science China:Earth Sciences, 2014, 57(7):1671-1680 doi: 10.1007/s11430-013-4808-x
[24]王海峰, 张智韬, KARNIELI A, 等.基于灰度关联-岭回归的荒漠土壤有机质含量高光谱估算[J].农业工程学报, 2018, 34(14):124-131 doi: 10.11975/j.issn.1002-6819.2018.14.016
WANG H F, ZHANG Z T, KARNIELI A, et al. Hyperspectral estimation of desert soil organic matter content based on gray correlation-ridge regression model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14):124-131 doi: 10.11975/j.issn.1002-6819.2018.14.016
[25]TIAN A H, ZHAO J S, XIONG H G, et al. Application of fractional differential calculation in pretreatment of saline soil hyperspectral reflectance data[J]. Journal of Sensors, 2018, 2018:8017614 http://cn.bing.com/academic/profile?id=b9ce54930bb7e5ec9cf0571ab52df6b1&encoded=0&v=paper_preview&mkt=zh-cn
[26]李娟, 陈超, 王昭.基于不同变换形式的干旱区土壤盐分高光谱特征反演[J].水土保持研究, 2018, 25(1):197-201 http://d.old.wanfangdata.com.cn/Periodical/stbcyj201801033
LI J, CHEN C, WANG Z. Inversion of high spectral characteristics of soil salt in arid area based on different transform forms[J]. Research of Soil and Water Conservation, 2018, 25(1):197-201 http://d.old.wanfangdata.com.cn/Periodical/stbcyj201801033
[27]李相, 丁建丽, 侯艳军, 等.干旱半干旱区土壤含盐量和电导率高光谱估算[J].冰川冻土, 2015, 37(4):1050-1058 http://d.old.wanfangdata.com.cn/Periodical/bcdt201504023
LI X, DING J L, HOU Y J, et al. Estimating the soil salt content and electrical conductivity in semi-arid and arid areas by using hyperspectral data[J]. Journal of Glaciology and Geocryology, 2015, 37(4):1050-1058 http://d.old.wanfangdata.com.cn/Periodical/bcdt201504023
[28]ZHANG D, TIYIP T, DING J L, et al. Quantitative estimating salt content of saline soil using laboratory hyperspectral data treated by fractional derivative[J]. Journal of Spectroscopy, 2016, 2016:1081674 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a9b32f91cf2a3608c6ba2f13d9a5d8e0
[29]FU C B, GAN S, YUAN X P, et al. Impact of fractional calculus on correlation coefficient between available potassium and spectrum data in ground hyperspectral and landsat 8 image[J]. Mathematics, 2019, 7(6):488 doi: 10.3390/math7060488
[30]WANG J Z, TASHPOLAT T, DING J L, al. Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative[J]. PLoS One, 2017, 12(9):e0184836 doi: 10.1371/journal.pone.0184836

相关话题/光谱 土壤 分数 图片 新疆