删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

沼液施用条件下添加浮萍对稻田氮素流失和Cu、Pb变化的影响

本站小编 Free考研考试/2022-01-01

宋蝶1,,
何忠虎2,
董永华3,
戴巍1,
杨晓磊4,
曹林奎1,
沙之敏1,,
1.上海交通大学农业与生物学院 上海 200240
2.上海新农饲料股份有限公司 上海 201600
3.上海市农产品质量安全中心 上海 201799
4.上海市农业技术推广服务中心 上海 201103
基金项目: 国家重点研发计划课题2016YFD08011106
上海市科技兴农推广项目(2018) No. 4-7
上海市科技兴农推广项目(2019) No. 2-1

详细信息
作者简介:宋蝶, 主要研究方向为农业生态学。E-mail:lmtsd681@163.com
通讯作者:沙之敏, 主要研究方向为植物营养学与农业面源污染控制。E-mail:zhiminsha@sjtu.edu.cn
中图分类号:S157.1

计量

文章访问数:473
HTML全文浏览量:25
PDF下载量:435
被引次数:0
出版历程

收稿日期:2019-11-22
录用日期:2020-02-11
刊出日期:2020-04-01

Nitrogen losses and Cu, Pb changes of paddy field affected by adding duckweed under biogas slurry application

SONG Die1,,
HE Zhonghu2,
DONG Yonghua3,
DAI Wei1,
YANG Xiaolei4,
CAO Linkui1,
SHA Zhimin1,,
1. School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai 200240, China
2. Shanghai New Type Feed Co., Ltd, Shanghai 201600, China
3. Shanghai Agricultural Product Quality and Safety Center, Shanghai 201799, China
4. Shanghai Agricultural Technology Extension Service Center, Shanghai 201103, China
Funds: This study was supported by the National Key Research and Development Program of China2016YFD08011106
the Shanghai Science and Technology Promotion Project(2018) No. 4-7
the Shanghai Science and Technology Promotion Project(2019) No. 2-1

More Information
Corresponding author:SHA Zhimin, E-mail:zhiminsha@sjtu.edu.cn


摘要
HTML全文
(5)(4)
参考文献(49)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:养分流失和重金属积累是沼液还田资源化利用过程中的主要问题。为探讨利用浮萍吸收氮磷、富集重金属的能力调控沼液施用中环境污染问题的可行性,在上海市金山区开展了水稻田间试验,研究沼液施用条件下添加浮萍对稻田氮素流失和Cu、Pb的影响。试验设置4个处理:常规化肥、常规化肥+浮萍、沼液全量替代化肥和沼液全量替代化肥+浮萍,测定并比较了不同处理下稻田田面水氮素浓度变化、径流水氮素流失负荷,土壤、水稻籽粒及秸秆中Cu和Pb含量差异。结果表明:不同处理田面水总氮、铵态氮(NH4+-N)浓度变化趋势基本一致,均在每次施肥后第1 d达到峰值,此后逐日递减,在施肥后第5 d降至峰值的30%以下;硝态氮(NO3--N)浓度峰值滞后3~7 d。稻田中添加浮萍能够显著降低田面水TN含量,沼液全量替代化肥+浮萍处理的TN总径流流失负荷为3.67 kg·hm-2,比常规化肥处理显著降低37.2%。沼液全量替代化肥+浮萍处理土壤Cu和Pb含量为22.65 mg·kg-1和49.05 mg·kg-1,与其他处理间无显著差异;但土壤有效态Cu和Pb含量较常规化肥处理显著提高18.6%和17.5%。不同处理水稻秸秆Cu和Pb、籽粒Pb含量无显著差异,但沼液全量替代化肥+浮萍处理水稻籽粒Cu含量较沼液全量替代化肥处理显著减少41.1%。综上,沼液施用条件下添加浮萍可以降低稻田氮素流失,在控制土壤、籽粒和秸秆中重金属Cu和Pb含量增加方面具有一定效果,在短期内可以作为沼液还田模式下水体和土壤污染有效的调控手段。
Abstract:Nutrient loss and heavy metal accumulation are major problems in the utilization of biogas slurry as a resource. Duckweed, which can absorb nitrogen and phosphorus and take up heavy metals, can be used to control environmental pollution in biogas slurry irrigation. To study the effects of duckweed on nitrogen loss and reduction in Cu and Pb heavy metals in a paddy field fertilized with biogas slurry, a field experiment was conducted in Jinshan District, Shanghai, China. The experiment comprised four treatments: (1) chemical fertilization (CF); (2) chemical fertilization + duckweed (CF + D); (3) biogas slurry (BS); (4) biogas slurry + duckweed (BS + D). The changes in nitrogen concentration in paddy field surface water, nitrogen-loss load in runoff water, and the levels of Cu and Pb in soil, rice grain and straw under different treatments were measured and compared. The results showed that the trends in the variation of total nitrogen (TN) and ammonia nitrogen (NH4+-N) concentrations in the surface water of different treatments were the same. The concentrations reached peak values on the first day after each fertilization, and then decreased day by day. On the fifth day after fertilization, they dropped below 30% of the peak. The peak value of nitrate nitrogen (NO3--N) concentration lagged by 3-7 days. The addition of duckweed when biogas slurry application significantly reduced TN content in surface water, and the total TN loss load of BS+D treatment was 3.67 kg·hm-2. Compared with the CF treatment, the TN loss load with BS+D treatment was lower by 37.2%. The Cu and Pb contents of the soil treated with BS+D was 22.65 mg·kg-1 and 49.05 mg·kg-1, which was not significantly different to levels in the other treatments, but the available Cu and Pb levels in the soil treated with BS+D treatment were significantly higher than those treated with CF, by 18.6% and 17.5%, respectively. There was no significant difference in the contents of Cu and Pb in rice straw and grain, but the grain content of Cu in BS+D treatment decreased by 41.1% compared with BS treatment. In summary, adding duckweed to field applied with biogas slurry can reduce nitrogen loss in paddy fields, and can control the increase of Cu and Pb in soil and rice grain and straw to a certain extent. It can be an effective means to control water and soil pollution under biogas slurry irrigation mode.

HTML全文


图1径流装置示意图
Figure1.Schematic diagram of runoff device


下载: 全尺寸图片幻灯片


图2浮萍对沼液施用条件下稻田田面水总氮(TN)、NH4+-N和NO3--N浓度的动态变化
Figure2.Dynamic changes of total nitrogen (TN), NH4+-N and NO3--Nconcentrations in surface water of paddy field with or without duckweed under biogas slurry application


下载: 全尺寸图片幻灯片


图3浮萍对沼液施用条件下稻田总氮(TN)径流流失动态变化
不同小写字母表示处理间差异显著(P < 0.05)。
Figure3.Dynamic change of total nitrogen (TN) runoff loss in paddy field with or without duckweed under biogas slurry application
Different lowercase letters indicate significant differences among treatments (P < 0.05).


下载: 全尺寸图片幻灯片


图4浮萍对沼液施用条件下水稻籽粒和秸秆的CuPb含量
不同小写字母表示处理间差异显著(P < 0.05)。
Figure4.Cu and Pb contents in rice grain and straw under treatments of duckweed and biogas slurry application
Different lowercase letters indicate significant differences among treatments (P < 0.05).


下载: 全尺寸图片幻灯片


图5稻田土壤、水稻植株重金属含量与土壤理化性质的相关性
Soil TN:土壤全氮; Soil TP:土壤全磷; Soil TK:土壤全钾; Ec:电导率; OM:土壤有机质; Soil Pb:土壤总铅; Soil Cu:土壤总铜; Avail Pb:土壤有效铅; Avail Cu:土壤有效铜; Grain Cu:籽粒铜; Grain Pb:籽粒铅; Straw Pb:秸秆铅; Straw Cu:秸秆铜。
Figure5.Correlation analysis of soil and rice plant heavy metals contents and soil physicochemical properties of paddy field
Soil TN: soil total nitrogen content; Soil TP: soil total phosphorus content; Soil TK: soil total potassium content; Ec: soil electrical conductivity; OM: soil organic matter content; Soil Pb: soil Pb content; Soil Cu: soil Cu content; Avail Pb: soil available Pb content; Avail Cu: soil available Cu content; Grain Cu: grain Cu content; Grain Pb: grain Pb content; Straw Pb: straw Pb content; Straw Cu: straw Cu content.


下载: 全尺寸图片幻灯片

表1不同处理的施肥量
Table1.Fertilizers application rates of different treatments
处理
Treatment
沼液
Biogas slurry
[kg(N)?hm–2]
尿素
Urea
(kg?hm–2)
过磷酸钙
Calcium superphosphate
(kg?hm–2)
硫酸钾
Potassium sulfate
(kg?hm–2)
浮萍投入量
Duckweed
[kg(FW)?hm–2]
CF 常规化肥Chemical fertilizer 0 652 122 240 0
CF+D 常规化肥+浮萍Chemical fertilizer + duckweed 0 652 122 240 2 000
BS 沼液全量代替化肥Biogas slurry 300 0 0 0 0
BS+D 沼液全量代替化肥+浮萍Biogas slurry + duckweed 300 0 0 0 2 000


下载: 导出CSV
表2浮萍对沼液施用条件下稻田氮素总径流流失负荷
Table2.Total runoff loss load of nitrogen in paddy field with or without duckweed under biogas slurry application
处理
Treatment
总氮Total nitrogen NH4+-N
(kg?hm-2)
NO3--N
(kg?hm-2)
流失负荷
Loss load (kg?hm-2)
占施氮比
Proportion of N application (%)
CF 5.84±0.47a 1.95±0.14a 0.72±0.08a 2.13±0.45a
CF+D 4.17±0.17bc 1.39±0.24bc 0.99±0.13a 1.73±0.24ab
BS 5.27±1.07ab 1.76±0.11ab 1.04±0.12a 1.78±0.25ab
BS+D 3.67±0.79c 1.22±0.26c 0.71±0.18a 1.44±0.18b
不同小写字母表示处理间差异显著(P < 0.05)。Different lowercase letters indicate significant differences among treatments (P < 0.05).


下载: 导出CSV
表3假设产生10 mm径流排水量浮萍对沼液施用条件下不同施肥时期稻田总氮的流失负荷动态变化
Table3.Dynamic changes of total nitrogen loss load at different fertilization stages under assumed 10 mm runoff discharge kg?hm-2
处理
Treatment
第1次施肥后天数
Days after the first fertilization (d)
第2次施肥后天数
Days after the second fertilization (d)
第3次施肥后天数
Days after the third fertilization (d)
1 3 5 7 1 3 5 7 1 3 5 7
CF 4.51 2.69 0.98 0.62 2.38 1.77 0.60 0.51 2.95 1.12 0.35 0.29
CF+D 3.11 2.50 1.39 0.82 2.40 2.12 0.57 0.61 2.73 0.84 0.11 0.12
BS 4.59 2.10 0.80 0.61 2.05 1.98 0.70 0.47 2.10 1.05 0.46 0.22
BS+D 3.36 2.43 0.84 0.57 3.19 1.40 0.75 0.44 0.89 0.47 0.25 0.18


下载: 导出CSV
表4浮萍对沼液施用条件下稻田土壤CuPb全量和有效态含量
Table4.Total and available contents of Cu and Pb in soils of paddy field with or without duckweed under biogas slurry application mg?kg-1
处理
Treatment
全Cu
Total Cu
有效铜
Available Cu
全Pb
Total Pb
有效铅
Available Pb
CF 24.38±0.67a 5.01±0.19b 53.28±0.55a 2.68±0.15b
CF+D 23.35±0.26a 5.80±0.53ab 51.57±1.06a 3.03±0.27ab
BS 22.66±2.21a 5.46±0.59ab 48.45±4.99a 3.09±0.25ab
BS+D 22.65±1.82a 5.94±0.21a 49.05±4.97a 3.15±0.22a
同列不同小写字母表示处理间差异显著(P < 0.05)。Different lowercase letters in the same column indicate significant differences among treatments (P < 0.05).


下载: 导出CSV

参考文献(49)
[1]朱利群, 夏小江, 胡清宇, 等.不同耕作方式与秸秆还田对稻田氮磷养分径流流失的影响[J].水土保持学报, 2012, 26(6):6-10 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201206002
ZHU L Q, XIA X J, HU Q Y, et al. Effects of different tillage and straw return on nitrogen and phosphorus runoff loss from paddy fields[J]. Journal of Soil and Water Conservation, 2012, 26(6):6-10 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201206002
[2]杨诗贵, 洪宁, 李铸, 等.沼液施用背景下稻田土壤养分的含量特征[J].江苏农业科学, 2017, 45(2):239-244 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201702068
YANG S G, HONG N, LI Z, et al. Characteristics of soil nutrient content in paddy field under biogas slurry application[J]. Jiangsu Agricultural Sciences, 2017, 45(2):239-244 http://d.old.wanfangdata.com.cn/Periodical/jsnykx201702068
[3]GARG R N, PATHAK H, DAS D K, et al. Use of flyash and biogas slurry for improving wheat yield and physical properties of soil[J]. Environmental Monitoring and Assessment, 2005, 107(1/2/3):1-9 doi: 10.1007-s10661-005-2021-x/
[4]周杨, 章明奎.长三角城郊区沼液化学组分特点及其农用重金属污染风险评价[J].中国农学通报, 2016, 32(20):101-106 doi: 10.11924/j.issn.1000-6850.casb16040048
ZHOU Y, ZHANG M K. Characteristics of chemical component and agricultural potential risk assessment of heavy metals of biogas slurry in suburban areas of Yangtze Delta[J]. Chinese Agricultural Science Bulletin, 2016, 32(20):101-106 doi: 10.11924/j.issn.1000-6850.casb16040048
[5]OMAR A E D K, BELAL E B, EL-ABD A E N A. Effects of foliar application with compost tea and filtrate biogas slurry liquid on yield and fruit quality of Washington navel orange (Citrus sinenesis Osbeck) trees[J]. Journal of the Air & Waste Management Association, 2012, 62(7):767-772
[6]WU J, YANG Q, YANG G, et al. Effects of biogas slurry on yield and quality of oil-seed rape[J]. Journal of Plant Nutrition, 2013, 36(13):2084-2098 doi: 10.1080/01904167.2013.822511
[7]杨润, 孙钦平, 赵海燕, 等.沼液在稻田的精确施用及其环境效应研究[J].农业环境科学学报, 2017, 36(8):1566-1572 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201708016
YANG R, SUN Q P, ZHAO H Y, et al. Precision application of biogas slurry and its environmental effects in paddy fields[J]. Journal of Agro-Environment Science, 2017, 36(8):1566-1572 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201708016
[8]姜丽娜, 王强, 陈丁江, 等.沼液稻田消解对水稻生产、土壤与环境安全影响研究[J].农业环境科学学报, 2011, 30(7):1328-1336 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201107011
JIANG L N, WANG Q, CHEN D J, et al. Effects of paddy field disposal of biogas slurry on the rice production, soil quality and environmental safety[J]. Journal of Agro-Environment Science, 2011, 30(7):1328-1336 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201107011
[9]倪亮, 孙广辉, 罗光恩, 等.沼液灌溉对土壤质量的影响[J].土壤, 2008, (4):608-611 doi: 10.3321/j.issn:0253-9829.2008.04.019
NI L, SUN G H, LUO G E, et al. Effect of marsh gas sewage irrigation on soil quality[J]. Soils, 2008, (4):608-611 doi: 10.3321/j.issn:0253-9829.2008.04.019
[10]LYU W L, WU J, GOU S Z, et al. The research of biogas slurry on yield and safety[J]. Applied Mechanics and Materials, 2011, 71/78:3142-3146 http://d.old.wanfangdata.com.cn/Periodical/xnnydxxb201601027
[11]王玮, 孙岩斌, 周祺, 等.国内畜禽厌氧消化沼液还田研究进展[J].中国沼气, 2015, 33(2):51-57 doi: 10.3969/j.issn.1000-1166.2015.02.009
WANG W, SUN Y B, ZHOU Q, et al. A review on irrigation of biogas slurry from livestock manure anaerobic fermentation in China[J]. China Biogas, 2015, 33(2):51-57 doi: 10.3969/j.issn.1000-1166.2015.02.009
[12]赵志鹏, 曹东杰, 谢志奎, 等.金山区水稻良种补贴政策实施效果及优化建议[J].上海农业学报, 2013, 29(3):82-85 doi: 10.3969/j.issn.1000-3924.2013.03.020
ZHAO Z P, CAO D J, XIE Z K, et al. The implementing effect and improvement proposal of subsidy policy of superior rice cultivars in Jinshan District of Shanghai[J]. Acta Agriculturae Shanghai, 2013, 29(3):82-85 doi: 10.3969/j.issn.1000-3924.2013.03.020
[13]张振宇.上海农业碳排估算、结构特征及经济脱钩弹性[J].上海农业学报, 2016, 32(3):150-154 http://d.old.wanfangdata.com.cn/Periodical/shnyxb201603029
ZHANG Z Y. Shanghai agricultural carbon emission:Estimation, structure and economic decoupling elasticity[J]. Acta Agriculturae Shanghai, 2016, 32(3):150-154 http://d.old.wanfangdata.com.cn/Periodical/shnyxb201603029
[14]曹其炜, 茅国芳, 吴永兴.沪郊农田化肥施用特点及其发展趋势探讨[J].上海农业学报, 2008, 24(4):20-24 doi: 10.3969/j.issn.1000-3924.2008.04.005
CAO Q W, MAO G F, WU Y X. Study on the characteristics and development trend of fertilizer application in the farmland of Shanghai suburb[J]. Acta Agriculturae Shanghai, 2008, 24(4):20-24 doi: 10.3969/j.issn.1000-3924.2008.04.005
[15]王玉军, 刘存, 周东美, 等.客观地看待我国耕地土壤环境质量的现状——关于《全国土壤污染状况调查公报》中有关问题的讨论和建议[J].农业环境科学学报, 2014, 33(8):1465-1473 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201408001
WANG Y J, LIU C, ZHOU D M, et al. A critical view on the status quo of the farmland soil environmental quality in China:Discussion[J]. Journal of Agro-Environment Science, 2014, 33(8):1465-1473 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201408001
[16]MUYUMBA D K, LIENARD A, MAHY G, et al. Characterization of soil-plant systems in the hills of the copper belt in Katanga. A review[J]. Biotechnologie, Agronomie Societe et Environnement, 2015, 19(2):204-214 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=45b51cbe408580602ea8d07720ac1b7d
[17]SHAHID M, DUMAT C, KHALID S, et al. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system[J]. Reviews of Environmental Contamination & Toxicology, 2016, 241:73-137 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2c0d2d8b2c77c2597f339c308f665995
[18]赵江宁, 王云霞, 沈春晓, 等.土壤铜污染对水稻产量形成的影响:5年定位试验[J].农业环境科学学报, 2012, 31(11):2073-2081 http://d.old.wanfangdata.com.cn/Thesis/Y1701891
ZHAO J N, WANG Y X, SHEN C X, et al. Effect of soil copper contamination on rice yield formation:A 5-year located experiment[J]. Journal of Agro-Environment Science, 2012, 31(11):2073-2081 http://d.old.wanfangdata.com.cn/Thesis/Y1701891
[19]张小敏, 张秀英, 钟太洋, 等.中国农田土壤重金属富集状况及其空间分布研究[J].环境科学, 2014, 35(2):692-703 http://d.old.wanfangdata.com.cn/Periodical/hjkx201402041
ZHANG X M, ZHANG X Y, ZHONG T Y, et al. Study on the enrichment and spatial distribution of heavy metals in farmland soils in China[J]. Environmental Science, 2014, 35(2):692-703 http://d.old.wanfangdata.com.cn/Periodical/hjkx201402041
[20]佟亚欧, 金兰淑.土壤铅污染现状及钝化修复技术探讨[J].农业科技与装备, 2010, (6):31-32 doi: 10.3969/j.issn.1674-1161.2010.06.009
TONG Y O, JIN L S. Discussion on the current soil lead pollution and inactivation restoring technology[J]. Agricultural Science & Technology and Equipment, 2010, (6):31-32 doi: 10.3969/j.issn.1674-1161.2010.06.009
[21]吴建勋, 张姗姗. Cr、Co、Pb单一胁迫对浮萍SOD、POD、MDA的影响[J].中国农学通报, 2013, 29(15):188-194 doi: 10.11924/j.issn.1000-6850.2012-3656
WU J X, ZHANG S S. Effect of metal icon Cr, Co, Pb on SOD, POD, MDA in Lemna minor L.[J]. Chinese Agricultural Science Bulletin, 2013, 29(15):188-194 doi: 10.11924/j.issn.1000-6850.2012-3656
[22]CAICEDO J. Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodela polyrrhiza)[J]. Water Research, 2000, 34(15):3829-3835 doi: 10.1016/S0043-1354(00)00128-7
[23]ORON G, WILLERS H. Effect of wastes quality on treatment efficiency with duckweed[M]//Water Pollution Research and Control. Brighton:Elsevier, 1988:639-645
[24]HOU W, XIAO C, SONG G, et al. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor)[J]. Plant Physiology Biochemistry (Paris), 2007, 45(1):62-69 doi: 10.1016-j.plaphy.2006.12.005/
[25]李天煜.稀脉萍(Lemna aequinoctialis)和紫萍(Spirodela polyrrhiza)的重金属生态毒理学研究[D]: 武汉: 武汉大学, 2003
LI T Y. Ecotoxicological of heavy metals on Lemna aequinoctialis and Spirodela polyrrhiza[D].Wuhan: Wuhan University, 2003
[26]ORON G, PORATH D, WILDSCHUT L R. Wastewater treatment and renovation by different duckweed species[J]. Journal of Environmental Engineering, 1986, 112(2):247-263 doi: 10.1061/(ASCE)0733-9372(1986)112:2(247)
[27]BASIGLINI E, PINTORE M, FORNI C. Effects of treated industrial wastewaters and temperatures on growth and enzymatic activities of duckweed (Lemna minor L.)[J]. Ecotoxicology and Environmental Safety, 2018, 153:54-59 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41954eefa9803e650f1529b04c2abef6
[28]沈根祥, 徐介乐, 胡双庆, 等.浅水体浮萍污水净化系统的除氮途径[J].生态与农村环境学报, 2006, 22(1):42-47 doi: 10.3969/j.issn.1673-4831.2006.01.010
SHEN G X, XU J L, HU S Q, et al. Nitrogen removal pathways in shallow-water duckweed-based wastewater treatment systems[J]. Journal of Ecology and Rural Environment, 2006, 22(1):42-47 doi: 10.3969/j.issn.1673-4831.2006.01.010
[29]唐利萍, 方扬, 靳艳玲, 等.重金属镉超富集浮萍品种筛选及其对水体中镉的去除效果[J].应用与环境生物学报, 2015, 21(5):830-836 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyyhjswxb201505008
TANG L P, FANG Y, JIN Y L, et al. Preliminary study on screening of cadmium hyperaccumulator duckweed strain and removal of cadmium in water[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(5):830-836 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyyhjswxb201505008
[30]XU J L, SHEN G X. Growing duckweed in swine wastewater for nutrient recovery and biomass production[J]. Bioresource Technology, 2011, 102(2):848-853 doi: 10.1016/j.biortech.2010.09.003
[31]李妍, 席运官, 徐欣.浮萍净化与资源化利用沼液初步研究[J].安徽农业科学, 2012, 40(34):16739-16740 doi: 10.3969/j.issn.0517-6611.2012.34.082
LI Y, XI Y G, XU X. Initial study on purification and resource utilization of the biogas slurry by duckweed[J]. Journal of Anhui Agricultural Sciences, 2012, 40(34):16739-16740 doi: 10.3969/j.issn.0517-6611.2012.34.082
[32]沈根祥.利用浮萍净化氮磷污水机理及其优化工艺条件研究[D].杭州: 浙江大学, 2005
SHEN G X. Research on mechanism and technological conditions of nitrogen-phosphorus wastewater treatment by duckweed[D]. Hangzhou: Zhejiang University, 2005
[33]于斌.浮萍对污水中氮、磷去除作用的初步研究[D].扬州: 扬州大学, 2010
YU B. Studies on effects of duckweed on removal of nitrogen and phosphorus from polluted water bodies[D]. Yangzhou: Yangzhou University, 2010
[34]李发生, 韩梅, 熊代群, 等.不同浸提剂对几种典型土壤中重金属有效态的浸提效率研究[J].农业环境科学学报, 2003, 22(6):704-706 doi: 10.3321/j.issn:1672-2043.2003.06.016
LI F S, HAN M, XIONG D Q, et al. Efficiency of some extractants for available heavy metals from several typical soils[J]. Journal of Agro-Environmental Science, 2003, 22(6):704-706 doi: 10.3321/j.issn:1672-2043.2003.06.016
[35]沙之敏, 陈平, 曹林奎.稻田径流量预测及氮磷流失估测方法[P].中国专利: 109117984, 2019-01-01.
SHA Z M, CHEN P, CAO L K. Prediction of runoff and estimation of nitrogen and phosphorus loss in rice field[P]. Chinese patent: 109117984, 2019-01-01
[36]李娟.不同施肥处理对稻田氮磷流失风险及水稻产量的影响[D].杭州: 浙江大学, 2016
LI J. Effect of different fertilization treatments on rice yield and the risk of nitrogen and phosphorous losses from paddy field[D]. Hangzhou: Zhejiang University, 2016
[37]王子臣, 梁永红, 盛婧, 等.稻田消解沼液工程措施的水环境风险分析[J].农业工程学报, 2016, 32(5):213-220 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201605030
WANG Z C, LIANG Y H, SHENG J, et al. Analysis of water environment risk on biogas slurry disposal in paddy field[J]. Transactions of the CSAE, 2016, 32(5):213-220 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201605030
[38]李华, 陈英旭, 梁新强, 等.浮萍对稻田田面水中氮素转化与可溶性氮的影响[J].水土保持学报, 2006, 20(5):92-94 doi: 10.3321/j.issn:1009-2242.2006.05.022
LI H, CHEN Y X, LIANG X Q, et al. Influence of duckweed on N conversion and dissolved N in floodwater after urea application into paddy field[J]. Journal of Soil and Water Conservation, 2006, 20(5):92-94 doi: 10.3321/j.issn:1009-2242.2006.05.022
[39]史一鸣.稻田生态系统消解沼液的潜力及风险评估[D].杭州: 浙江大学, 2010
SHI Y M. The potential capacity for paddy field ecosystem to decontaminate biogas slurry and its risks assessment[D]. Hangzhou: Zhejiang University, 2010
[40]黄继川, 彭智平, 徐培智, 等.沼液稻田消解对水稻生产、土壤肥力及环境安全的影响[J].广东农业科学, 2016, 43(10):69-76 http://d.old.wanfangdata.com.cn/Periodical/gdnykx201610013
HUANG J C, PENG Z P, XU P Z, et al. Effects of paddy field disposal of biogas slurry on rice production, soil fertility and environmental safety[J]. Guangdong Agricultural Sciences, 2016, 43(10):69-76 http://d.old.wanfangdata.com.cn/Periodical/gdnykx201610013
[41]赵麒淋, 伍钧, 陈璧瑕, 等.施用沼液对土壤和玉米重金属累积的影响[J].水土保持学报, 2012, 26(2):251-255 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201202050
ZHAO Q L, WU J, CHEN B X, et al. Effect of biogas slurry on heavy metal accumulation of soil and maize[J]. Journal of Soil and Water Conservation, 2012, 26(2):251-255 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201202050
[42]谷兆萍.复合污染下浮萍(Lemna minor L.)对重金属吸收、富集特征和机理[D].昆明: 昆明理工大学, 2011
GU Z P. Heavy metal uptake, accumulation and mechanisms in duckweed (Lemna minor L.) under metal-combined pollution conditions[D]. Kunming: Kunming University of Science and Technology, 2011
[43]王强.漂浮植物浮萍对Pb2+, Cu2+, Mn2+的吸附特征的研究[D].济南: 山东大学, 2007
WANG Q. Biosorption characteristics for Pb2+, Cu2+, Mn2+ onto aquatic plant: Lemna minor[D]. Jinan: Shandong University, 2007
[44]姚荣江, 杨劲松, 谢文萍, 等.沿海滩涂区土壤重金属含量分布及其有效态影响因素[J].中国生态农业学报(中英文), 2017, 25(2):287-298 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170216&flag=1
YAO R J, YANG J S, XIE W P, et al. Content and bioavailability factors of soil heavy metals in mudflat coastal areas[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2):287-298 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170216&flag=1
[45]钟晓兰, 周生路, 李江涛, 等.土壤有效态Cd、Cu、Pb的分布特征及影响因素研究[J].地理科学, 2010, 30(2):254-260 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201002014
ZHONG X L, ZHOU S L, LI J T, et al. Soil available Cd, Cu, Pb distribution characteristic and its influencing factors[J]. Scientia Geographica Sinica, 2010, 30(2):254-260 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201002014
[46]DEAN J R. Heavy metal bioavailability and bioaccessibility in soil[J]. Methods in Molecular Biology, 2010, 599:15-36 http://cn.bing.com/academic/profile?id=29df18b82230356bceea99f5efdf0dae&encoded=0&v=paper_preview&mkt=zh-cn
[47]王宏康.土壤中若干有毒元素的环境质量基准研究[J].农业环境保护, 1993, (4):162-165 http://www.cnki.com.cn/Article/CJFDTotal-NHBH199304007.htm
WANG H K. Environmental quality standard of several toxic elements in siol[J]. Agro-Environmental Protection, 1993, (4):162-165 http://www.cnki.com.cn/Article/CJFDTotal-NHBH199304007.htm
[48]GUO X F, WEI Z B, PENN C J, et al. Effect of soil washing and liming on bioavailability of heavy metals in acid contaminated soil[J]. Soil Science Society of America Journal, 2013, 77(2):432-441 doi: 10.2136/sssaj2011.0371
[49]孟昭福, 张增强, 张一平, 等.几种污泥中重金属生物有效性及其影响因素的研究[J].农业环境科学学报, 2004, 23(1):115-118 doi: 10.3321/j.issn:1672-2043.2004.01.027
MENG Z F, ZHANG Z Q, ZHANG Y P, et al. Bioavailability of heavy metals and affecting factors in sewage sludge[J]. Journal of Agro-Environmental Science, 2004, 23(1):115-118 doi: 10.3321/j.issn:1672-2043.2004.01.027

相关话题/土壤 农业 上海 环境科学 环境