删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

施氮及添加硝化抑制剂对苜蓿草地N<sub>2</sub>O排放的影响

本站小编 Free考研考试/2022-01-01

倪红,
杨宪龙,
王刚,
来兴发,
邓建强,
沈禹颖,
兰州大学草地农业科技学院/兰州大学草地农业系统国家重点实验室 兰州 730020
基金项目: 国家自然科学基金项目31872416
教育部****和创新团队项目IRT17R50
国家牧草产业技术体系CARS-34

详细信息
作者简介:倪红, 主要研究方向为草田轮作系统水氮利用。E-mail:nih18@lzu.edu.cn
通讯作者:沈禹颖, 主要研究方向为草田系统养分利用和管理。E-mail:yy.shen@lzu.edu.cn
中图分类号:X511

计量

文章访问数:664
HTML全文浏览量:5
PDF下载量:477
被引次数:0
出版历程

收稿日期:2019-07-11
录用日期:2020-01-15
刊出日期:2020-03-01

Effects of nitrogen application and nitrification inhibitor addition on N2O emissions in Medicago sativa L. grassland

NI Hong,
YANG Xianlong,
WANG Gang,
LAI Xingfa,
DENG Jianqiang,
SHEN Yuying,
College of Pastoral Agriculture Science and Technology, Lanzhou University/State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
Funds: the National Natural Science Foundation of China31872416
the Program for Changjiang Scholars and Innovative Research Team of Ministry of Education of ChinaIRT17R50
the National Forage and Grass Research System of ChinaCARS-34

More Information
Corresponding author:SHEN Yuying: yy.shen@lzu.edu.cn


摘要
HTML全文
(5)(2)
参考文献(52)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为探究旱作紫花苜蓿(Medicago sativa L.)栽培草地氧化亚氮(N2O)排放对施氮水平及添加硝化抑制剂的响应特征,采用传统静态箱法研究了不同施氮水平[0 kg(N)·hm-2(N0)、50 kg(N)·hm-2(N50)、100 kg(N)·hm-2(N100)和150 kg(N)·hm-2(N150)]以及添加硝化抑制剂双氰胺(DCD)150 kg(N)·hm-2(N150+DCD)对陇东苜蓿草地N2O排放特征的影响。结果显示,监测期内N0、N50、N100和N150处理N2O平均排放速率分别为3.5 μg·m-2·h-1、4.1 μg·m-2·h-1、5.0 μg·m-2·h-1和6.1 μg·m-2·h-1,随着施氮梯度的增加,N2O排放速率呈增加趋势。添加硝化抑制剂DCD对N2O排放产生明显的抑制作用。与N150处理相比,N150+DCD处理下苜蓿草地N2O平均排放速率下降50.7%,N2O累计排放量显著降低61.6%(P < 0.05)。施氮对苜蓿产量没有显著影响,而N0、N50、N100和N150处理下单位苜蓿产量N2O排放量随氮肥梯度的增加而增加,各处理分别为6.5 mg·kg-1、7.8 mg·kg-1、11.3 mg·kg-1和12.5 mg·kg-1。N2O排放受土壤含水量影响深刻,生长季N2O排放通量与土壤水分呈显著正相关关系(P < 0.05),而与土壤温度无显著相关性(P>0.05)。综上,旱作紫花苜蓿栽培草地N2O排放通量随施氮水平的增加明显增加,在相同施氮水平下添加硝化抑制剂DCD能显著抑制N2O排放。相关研究结果对于该区域苜蓿草地合理施肥以及N2O减排具有一定的实践指导意义。
关键词:紫花苜蓿/
N2O排放通量/
氮肥用量/
硝化抑制剂
Abstract:Nitrous oxide (N2O) is undoubtedly one of important greenhouse gases in the atmosphere, which can destroy the ozone layer and aggravate global warming. Agricultural activities, such as fertilizer application, crop straw returning, and biological nitrogen fixation, are the main sources of globally increasing N2O. Therefore, the study of N2O emission characteristics and its impact is of great significance for control and mitigation of environmental pollution. This study investigated the N2O release flux of alfalfa grassland as influenced by nitrogen application and nitrification inhibitor addition, using the static chamber method in Longdong District. The treatments included nitrogen applications of 0 (N0), 50 (N50), 100 (N100), and 150 (N150) kg(N)·hm-2; and nitrification inhibitor (dicyanogen, DCD) addition (N150+DCD). The static chambers were mounted for the estimation of N2O emissions from the enclosed alfalfa chambers for two hours daily, and the radiation, air temperature, soil temperature, and moisture were investigated simultaneously. The results showed that the average N2O emission rates were 3.5, 4.1, 5.0, and 6.1 μg·m-2·h-1 for N0, N50, N100, and N150 during the growing season, respectively. The N2O emission flux was significantly higher in N150 than that in other treatments (P < 0.05). Meanwhile, an increasing trend in the N2O emission rate was observed with the increasing nitrogen application gradient. Compared to the N150 treatment, the average N2O emission rate in the N150+DCD treatment decreased by 50.7%, and the cumulative N2O emissions significantly decreased by 61.6% (P < 0.05), indicating that the addition of a nitrification inhibitor had a significant inhibitory effect on the N2O emissions. Moreover, the addition of a soil nitrification inhibitor reduced the accumulation of NO3--N in the 0-40 cm soil layer and inhibited nitrification in the soil. The dry matter yield of alfalfa per cutting was not influenced by nitrogen application, as there were no significant differences between the N0 treatment and nitrogen application treatments (P>0.05). The N2O emissions per unit alfalfa yield were 6.5, 7.8, 11.3, and 12.5 mg·kg-1 for the N0, N50, N100, and N150 treatments, respectively. Therefore, the N2O emissions increased with the increasing nitrogen fertilizer application rates. It was also discovered that the N2O emissions were deeply affected by the soil moisture content. During the growing season, the N2O emission flux had a significant positive correlation with the soil moisture (P < 0.05), but no correlation with the soil temperature. Therefore, it could be concluded that nitrogen application can significantly stimulate N2O emissions in alfalfa grassland, which is the main reason for the highest N2O emissions being experienced during the alfalfa growing season. In addition, nitrogen application also had an impact on the N2O emissions per unit yield of alfalfa. The application of nitrogen together with a nitrification inhibitor can effectively reduce the N2O emissions caused by fertilization. While temperature may not influence N2O emissions, precipitation can stimulate N2O emissions during the growing season. These findings will help to provide a theoretical basis for greenhouse gas emission reduction and reduce the uncertainty concerning climate change prediction in the study area.
Key words:Alfalfa/
N2O emission flux/
Nitrogen fertilization rate/
Nitrification inhibitor

HTML全文


图1试验地2017年气温、降雨量及多年逐月降雨量分布特征
Figure1.Distribution of temperature, precipitation in 2017 and multi-year monthly precipitation in the experimental site


下载: 全尺寸图片幻灯片


图2苜蓿草地生长季气温、降雨(a)和不同施氮和添加硝化抑制剂处理下N2O排放通量(b)的动态
N0、N50、N100、N150处理分别表示施氮0 kg(N)·hm-2、50 kg(N)·hm-2、100 kg(N)·hm-2和150 kg(N)·hm-2; N150+DCD处理表示施氮150 kg(N)·hm-2、添加硝化抑制剂双氰胺。N0, N50, N100 and N150 are treatments of application of 0, 50, 100 and 150 kg·hm-2 nitrogen, respectively; N150+DCD is treatment of 150 kg·hm-2 nitrogen application and nitrification inhibitor (dicyandiamide) addition.
Figure2.Dynamics of air temperature, precipitation (a) and N2O emission flux under different treatments of nitrogen application and nitrification inhibitor addition (b) of alfalfa grassland in growing season.


下载: 全尺寸图片幻灯片


图3不同施氮和添加硝化抑制剂处理下苜蓿草地第1次施氮后7 d(a)及全监测期(b)N2O平均排放通量
N0、N50、N100、N150处理分别表示施氮0 kg(N)·hm-2、50 kg(N)·hm-2、100 kg(N)·hm-2和150 kg(N)·hm-2; N150+DCD处理表示施氮150 kg(N)·hm-2、添加硝化抑制剂双氰胺。不同小写字母表示处理间差异显著(P < 0.05)。N0, N50, N100 and N150 are treatments of application of 0, 50, 100 and 150 kg·hm-2 nitrogen, respectively; N150+DCD is treatment of 150 kg·hm-2 nitrogen application and nitrification inhibitor (dicyandiamide) addition. Different lowercases indicate significant differences among treatments at 0.05 level.
Figure3.Average fluxes of N2O emission after 7 days of the first nitrogen application (a) and during the whole monitoring period (b) of alfalfa grassland under different treatments of nitrogen application and nitrification inhibitor addition


下载: 全尺寸图片幻灯片


图4不同施氮和添加硝化抑制剂处理下苜蓿草地0~20 cm(a)、20~40 cm(b)和40~60 cm(c)土层土壤硝态氮含量动态变化
N0、N50、N100、N150处理分别表示施氮0 kg(N)·hm-2、50 kg(N)·hm-2、100 kg(N)·hm-2和150 kg(N)·hm-2; N150+DCD处理表示施氮150 kg(N)·hm-2、添加硝化抑制剂双氰胺。N0, N50, N100 and N150 are treatments of application of 0, 50, 100 and 150 kg·hm-2 nitrogen, respectively; N150+DCD is treatment of 150 kg·hm-2 nitrogen application and nitrification inhibitor (dicyandiamide) addition.
Figure4.Dynamics of soil NO3--N contents in 0-20 cm (a), 20-40 cm (b) and 40-60 cm (c) layers of alfalfa grassland under different treatments of nitrogen application and nitrification inhibitor addition


下载: 全尺寸图片幻灯片


图5苜蓿草地N2O排放通量与0~10 cm土壤温度(a)和土壤孔隙含水率(b)的关系
Figure5.Relationship between N2O emission flux and soil temperature (a), water-filled pore spaces (WFPS, b) of 0-10 cm layer of alfalfa grassland


下载: 全尺寸图片幻灯片

表1不同施氮和添加硝化抑制剂处理下苜蓿草地N2O累计排放量、排放系数和苜蓿产量
Table1.Cumulative N2O emissions, N2O emission factors of alfalfa grassland and alfalfa yield under different treatments of nitrogen application and nitrification inhibitor addition
处理Treatment 第1茬产量
Yield of the first crop
(kg·hm-2)
第2茬产量
Yield of the second crop
(kg·hm-2)
累计排放量
Cumulative N2O emission
(mg·m-2)
排放系数
N2O emission coefficient
(%)
苜蓿单位产量N2O排放量
Yield-scaled N2O emission
(mg·kg-1)
N0 6 276.3±531.6ab 3 774.6±589.6a 6.5±2.2b - 6.5±2.5b
N50 6 841.5±1 250.0a 3 429.4±721.9a 8.0±3.0ab 0.030 7.8±1.8ab
N100 5 652.9±548.2ab 3 726.6±937.8a 9.2±1.9ab 0.027 11.3±2.8ab
N150 5 472.7±208.4ab 3 516.5±275.3a 11.2±2.5a 0.031 12.5±3.1a
N150+DCD 4 282.1±531.6b 2 930.8±428.2a 4.3±1.7bc -0.015 6.0±1.4bc
N0、N50、N100、N150处理分别表示施氮0 kg(N)·hm-2、50 kg(N)·hm-2、100 kg(N)·hm-2和150 kg(N)·hm-2; N150+DCD处理表示施氮150 kg(N)·hm-2、添加硝化抑制剂双氰胺。同列不同小写字母表示处理间差异显著(P < 0.05)。N0, N50, N100 and N150 are treatments of application of 0, 50, 100 and 150 kg·hm-2 nitrogen, respectively; N150+DCD is treatment of 150 kg·hm-2 nitrogen application and nitrification inhibitor (dicyandiamide) addition. Different lowercases in the same column indicate significant differences among treatments at 0.05 level.


下载: 导出CSV
表2不同施氮和添加硝化抑制剂处理下苜蓿草地0~10 cm土壤温度和含水量与N2O排放通量相关性
Table2.Correlation of N2O emission fluxes with soil temperature and moisture of 0-10 cm layer of alfalfa grassland under different treatments of nitrogen application and nitrification inhibitor addition
处理
Treatment
土壤温度Soil temperature 土壤含水量Soil moisture
相关系数Correlation coefficient P 相关系数Correlation coefficient P
N0 0.393 0.087 0.458 < 0.05
N50 0.388 0.096 0.440 < 0.05
N100 0.348 0.133 0.750 < 0.01
N150 0.349 0.131 0.371 < 0.05
N150+DCD 0.406 0.076 0.646 < 0.01
N0、N50、N100、N150处理分别表示施氮0 kg(N)·hm-2、50 kg(N)·hm-2、100 kg(N)·hm-2和150 kg(N)·hm-2; N150+DCD处理表示施氮150 kg(N)·hm-2、添加硝化抑制剂双氰胺。N0, N50, N100 and N150 are treatments of application of 0, 50, 100 and 150 kg·hm-2 nitrogen, respectively; N150+DCD is treatment of 150 kg·hm-2 nitrogen application and nitrification inhibitor (dicyandiamide) addition.


下载: 导出CSV

参考文献(52)
[1]GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle:recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878):889-892 doi: 10.1126/science.1136674
[2]VITOUSEK P M, ABER J D, HOWARTH R W, et al. Human alteration of the global nitrogen cycle:sources and consequences[J]. Ecological Applications, 1997, 7(3):737-750 http://cn.bing.com/academic/profile?id=fd747f01f00a3ee0e6a109c70b621954&encoded=0&v=paper_preview&mkt=zh-cn
[3]张玉铭, 胡春胜, 张佳宝, 等.农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J].中国生态农业学报, 2011, 19(4):966-975 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201104041
ZHANG Y M, HU C S, ZHANG J B, et al. Research advances on source/sink intensities and greenhouse effects of CO2, CH4 and N2O in agricultural soils[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4):966-975 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201104041
[4]NAN W G, YUE S C, LI S Q, et al. Characteristics of N2O production and transport within soil profiles subjected to different nitrogen application rates in China[J]. Science of the Total Environment, 2016, 542:864-875 doi: 10.1016/j.scitotenv.2015.10.147
[5]BREMNER J M. Sources of nitrous oxide in soils[J]. Nutrient Cycling in Agroecosystems, 1997, 49(1/3):7-16 doi: 10.1023/A:1009798022569
[6]HUANG Y, ZOU J W, ZHENG X H, et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios[J]. Soil Biology and Biochemistry, 2004, 36(6):973-981 doi: 10.1016/j.soilbio.2004.02.009
[7]董艳芳, 黄景, 李伏生, 等.不同灌溉模式和施氮处理下稻田CH4和N2O排放[J].植物营养与肥料学报, 2017, 23(3):578-588 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201703003
DONG Y F, HUANG J, LI F S, et al. Emissions of CH4 and N2O under different irrigation methods and nitrogen treatments[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(3):578-588 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201703003
[8]王刚, 杨宪龙, 李渊, 等.陇东旱塬苜蓿草地N2O排放特征及其对施氮的响应[J].应用与环境生物学报, 2018, 24(3):450-456 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyyhjswxb201803004
WANG G, YANG X L, LI Y, et al. Characteristics of N2O emission from Medicago sativa stands and its response to nitrogen fertilizers in the Longdong dryland plateau[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(3):450-456 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyyhjswxb201803004
[9]KAISER E A, KOHRS K, KüCKE M, et al. Nitrous oxide release from arable soil:importance of perennial forage crops[J]. Biology and Fertility of Soils, 1998, 28(1):36-43 doi: 10.1007/s003740050460
[10]谭立山, 杨平, 徐康, 等.闽江河口短叶茳芏湿地及围垦后的养虾塘N2O通量比较[J].中国环境科学, 2017, 37(10):3929-3939 doi: 10.3969/j.issn.1000-6923.2017.10.038
TAN L S, YANG P, XU K, et al. Comparison of N2O flux following brackish Cyperus malaccensis marsh conversion to shrimp pond in the Min river estuary[J]. China Environmental Science, 2017, 37(10):3929-3939 doi: 10.3969/j.issn.1000-6923.2017.10.038
[11]王勇, 赵成义.不同水肥条件对绿洲农田土壤N2O排放的影响[J].干旱区研究, 2018, 35(4):938-944 http://d.old.wanfangdata.com.cn/Periodical/ghqyj201804023
WANG Y, ZHAO C Y. Effects of different irrigation and fertilization conditions on soil N2O emission from oasis farmland[J]. Arid Zone Research, 2018, 35(4):938-944 http://d.old.wanfangdata.com.cn/Periodical/ghqyj201804023
[12]SEHY U, RUSER R, MUNCH J C. Nitrous oxide fluxes from maize fields:Relationship to yield, site-specific fertilization, and soil conditions[J]. Agriculture, Ecosystems & Environment, 2003, 99(1/3):97-111 doi: 10.1016-S0167-8809(03)00139-7/
[13]王海云, 邢光熹.不同施氮水平对稻麦轮作农田氧化亚氮排放的影响[J].农业环境科学学报, 2009, 28(12):2631-2636 doi: 10.3321/j.issn:1672-2043.2009.12.030
WANG H Y, XING G X. Effect of nitrogen fertilizer rates on nitrous oxide emission from paddy field under rice-wheat rotation[J]. Journal of Agro-Environment Science, 2009, 28(12):2631-2636 doi: 10.3321/j.issn:1672-2043.2009.12.030
[14]戴宇, 贺纪正, 沈菊培.双氰胺在农业生态系统中的应用效果及其影响因素[J].应用生态学报, 2014, 25(1):279-286 http://d.old.wanfangdata.com.cn/Periodical/yystxb201401038
DAI Y, HE J Z, SHEN J P. Effects and influence factors of dicyandiamide (DCD) application in agricultural ecosystem[J]. Chinese Journal of Applied Ecology, 2014, 25(1):279-286 http://d.old.wanfangdata.com.cn/Periodical/yystxb201401038
[15]孙志梅, 武志杰, 陈利军.硝化抑制剂的施用效果、影响因素及其评价[J].应用生态学报, 2008, 19(7):1611-1618 http://d.old.wanfangdata.com.cn/Periodical/yystxb200807033
SUN Z M, WU Z J, CHEN L J. Application effect, affecting factors, and evaluation of nitrification inhibitor:A review[J]. Chinese Journal of Applied Ecology, 2008, 19(7):1611-1618 http://d.old.wanfangdata.com.cn/Periodical/yystxb200807033
[16]赵颖, 张金波, 蔡祖聪.添加硝化抑制剂、秸秆及生物炭对亚热带农田土壤N2O排放的影响[J].农业环境科学学报, 2018, 37(5):1023-1034 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201805024
ZHAO Y, ZHANG J B, CAI Z C. Effects of nitrification inhibitor, crop residues, and biochar applications on N2O emissions by subtropical agricultural soils[J]. Journal of Agro-Environment Science, 2018, 37(5):1023-1034 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201805024
[17]马智勇, 贾俊香, 谢英荷, 等.硝化抑制剂和生物炭对菜地土壤N2O与CO2排放的影响[J].山西农业科学, 2019, 47(6):1019-1022 doi: 10.3969/j.issn.1002-2481.2019.06.22
MA Z Y, JIA J X, XIE Y H, et al. Effects of nitrification inhibitor and biochar on N2O and CO2 emissions from vegetable soil[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(6):1019-1022 doi: 10.3969/j.issn.1002-2481.2019.06.22
[18]ATWOOD J A, HELMERS G A, SHAIK S. Farm and nonfarm factors influencing farm size[C]//Annual Meeting of the Western Agricultural Economics Association. Long Beach, California, 2002: 28-31
[19]聂文静, 李博文, 郭艳杰, 等.氮肥与DCD配施对棚室黄瓜土壤NH3挥发损失及N2O排放的影响[J].环境科学学报, 2012, 32(10):2500-2508 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201210021
NIE W J, LI B W, GUO Y J, et al. Effects of nitrogen fertilizer and DCD application on ammonia volatilization and nitrous oxide emission from soil with cucumber growing in greenhouse[J]. Acta Scientiae Circumstantiae, 2012, 32(10):2500-2508 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201210021
[20]WEITZ A M, LINDER E, FROLKING S, et al. N2O emissions from humid tropical agricultural soils:effects of soil moisture, texture and nitrogen availability[J]. Soil Biology and Biochemistry, 2001, 33(7/8):1077-1093 doi: 10.1016/s0038-0717(01)00013-x
[21]王涛, 周莹, 王先之, 等.黄土高原旱塬区陇东苜蓿草地N2O释放动态及微生物驱动因子的研究[J].西北植物学报, 2013, 33(10):2113-2119 doi: 10.7606/j.issn.1000-4025.2013.10.2113
WANG T, ZHOU Y, WANG X Z, et al. N2O emission dynamics and its microbial mechanism of a 3-year-old alfalfa grassland in the arid loess plateau[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(10):2113-2119 doi: 10.7606/j.issn.1000-4025.2013.10.2113
[22]路则栋, 杜睿, 杜鹏瑞, 等.农垦对草甸草原生态系统温室气体(CH4和N2O)的影响[J].中国环境科学, 2015, 35(4):1047-1055 http://d.old.wanfangdata.com.cn/Periodical/zghjkx201504011
LU Z D, DU R, DU P R, et al. Effect of reclamation on greenhouse gases (CH4 and N2O) fluxes in meadow-steppe ecosystem[J]. China Environmental Science, 2015, 35(4):1047-1055 http://d.old.wanfangdata.com.cn/Periodical/zghjkx201504011
[23]BREMNER J M, ROBBINS S G, BLACKMER A M. Seasonal variability in emission of nitrous oxide from soil[J]. Geophysical Research Letters, 1980, 7(9):641-644 doi: 10.1029/GL007i009p00641
[24]王俊, 李凤民, 贾宇, 等.半干旱黄土区苜蓿草地轮作农田土壤氮、磷和有机质变化[J].应用生态学报, 2005, 16(3):439-444 doi: 10.3321/j.issn:1001-9332.2005.03.009
WANG J, LI F M, JIA Y, et al. Dynamics of soil nitrogen, phosphorus and organic matter in alfalfa-crop rotated farmland in semiarid area of Northwest China[J]. Chinese Journal of Applied Ecology, 2005, 16(3):439-444 doi: 10.3321/j.issn:1001-9332.2005.03.009
[25]樊军, 郝明德, 邵明安.黄土高原沟壑区草地土壤深层干燥化与氮素消耗[J].自然资源学报, 2004, 19(2):201-206 doi: 10.3321/j.issn:1000-3037.2004.02.010
FAN J, HAO M D, SHAO M A. Soil desiccation and nitrogen consumption of artificial meadow in the Loess Plateau[J]. Journal of Natural Resources, 2004, 19(2):201-206 doi: 10.3321/j.issn:1000-3037.2004.02.010
[26]曾庆飞, 贾志宽, 韩清芳, 等.施肥对苜蓿生产性能及品质影响的研究综述[J].草业科学, 2005, 22(7):8-15 doi: 10.3969/j.issn.1001-0629.2005.07.002
ZENG Q F, JIA Z K, HAN Q F, et al. Review on the effect of fertilization on the production and quality of alfalfa[J]. Pratacultural Science, 2005, 22(7):8-15 doi: 10.3969/j.issn.1001-0629.2005.07.002
[27]丁洪, 王跃思, 秦胜金, 等.控释肥对土壤氮素反硝化损失和N2O排放的影响[J].农业环境科学学报, 2010, 29(5):1015-1019 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201005032
DING H, WANG Y S, QIN S J, et al. Effects of controlled release fertilizers on nitrogen loss by denitrification and N2O emission[J]. Journal of Agro-Environment Science, 2010, 29(5):1015-1019 http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201005032
[28]刘晓宏, 郝明德.长期种植苜蓿对土壤氮素营养的作用[J].中国生态农业学报, 2001, 9(2):82-84 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200102028
LIU X H, HAO M D. Effects of long-term plant Medicago sativa Linn. on soil nitrogen nutrient[J]. Chinese Journal of Eco-Agriculture, 2001, 9(2):82-84 http://d.old.wanfangdata.com.cn/Periodical/stnyyj200102028
[29]WANG D Q, CHEN Z L, WANG J, et al. Summer-time denitrification and nitrous oxide exchange in the intertidal zone of the Yangtze Estuary[J]. Estuarine, Coastal and Shelf Science, 2007, 73(1/2):43-53 doi: 10.1016-j.ecss.2006.11.002/
[30]HUANG T, YANG H, HUANG C C, et al. Effect of fertilizer N rates and straw management on yield-scaled nitrous oxide emissions in a maize-wheat double cropping system[J]. Field Crops Research, 2017, 204:1-11 doi: 10.1016/j.fcr.2017.01.004
[31]谢应忠, 徐坤.不同种植年限人工苜蓿地土壤N2O排放通量[J].生态学杂志, 2015, 34(5):1211-1217 http://d.old.wanfangdata.com.cn/Periodical/stxzz201505004
XIE Y Z, XU K. Soil N2O flux from artificial alfalfa in different planting years[J]. Chinese Journal of Ecology, 2015, 34(5):1211-1217 http://d.old.wanfangdata.com.cn/Periodical/stxzz201505004
[32]YAO Z S, ZHOU Z X, ZHENG X H, et al. Effects of organic matter incorporation on nitrous oxide emissions from rice-wheat rotation ecosystems in China[J]. Plant and Soil, 2010, 327(1/2):315-330 doi: 10.1007-s11104-009-0056-4/
[33]李昊儒, 郝卫平, 梅旭荣, 等.不同灌溉施肥措施对夏玉米-冬小麦农田N2O排放和产量的影响[J].农业工程学报, 2018, 34(16):103-112 doi: 10.11975/j.issn.1002-6819.2018.16.014
LI H R, HAO W P, MEI X R, et al. Effect of different irrigation and fertilization managements on N2O emissions and yield in summer maize-winter wheat field[J]. Transactions of the CSAE, 2018, 34(16):103-112 doi: 10.11975/j.issn.1002-6819.2018.16.014
[34]肖玉, 谢高地, 鲁春霞, 等.施肥对稻田生态系统气体调节功能及其价值的影响[J].植物生态学报, 2005, 29(4):577-583 doi: 10.3321/j.issn:1005-264X.2005.04.008
XIAO Y, XIE G D, LU C X, et al. The impact of urea amendments on atmospheric gas regulation services in rice paddy ecosystems and their valuation[J]. Chinese Journal of Plant Ecology, 2005, 29(4):577-583 doi: 10.3321/j.issn:1005-264X.2005.04.008
[35]孙丽英, 马煜春, 邬明伟, 等.有机-无机氮肥施用对滨海盐土稻田CH4和N2O排放及综合温室效应的影响[J].生态环境学报, 2018, 27(11):2065-2072 http://d.old.wanfangdata.com.cn/Periodical/tryhj201811012
SUN L Y, MA Y C, WU M W, et al. Effects of organic and inorganic nitrogen fertilizer on CH4, N2O emissions and the global warming potentials in coastal saline rice paddy field[J]. Ecology and Environmental Sciences, 2018, 27(11):2065-2072 http://d.old.wanfangdata.com.cn/Periodical/tryhj201811012
[36]胡小康, 黄彬香, 苏芳, 等.氮肥管理对夏玉米土壤CH4和N2O排放的影响[J].中国科学:化学, 2011, 41(1):117-128 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cb201101014
HU X K, HUANG B X, SU F, et al. Effects of nitrogen management on methane and nitrous oxide emissions from summer maize soil in North China Plain[J]. Scientia Sinica:Chimica, 2011, 41(1):117-128 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cb201101014
[37]周莹.旱作条件下紫花苜蓿草地氧化亚氮排放及其影响因素的研究[D].兰州: 兰州大学, 2012: 17-28
ZHOU Y. Nitrous oxide emission from alfalfa stands and relation management factors[D]. Lanzhou: Lanzhou University, 2012: 17-28
[38]史云峰, 武志杰, 陈利军, 等. 3, 5-二甲基吡唑磷酸盐(DMPZP)对土壤硝化作用的影响[J].应用生态学报, 2007, 18(5):1033-1037 doi: 10.3321/j.issn:1001-9332.2007.05.015
SHI Y F, WU Z J, CHEN L J, et al. Effects of 3, 5-dimethylpyrazole phosphate (DMPZP) on soil nitrification[J]. Chinese Journal of Applied Ecology, 2007, 18(5):1033-1037 doi: 10.3321/j.issn:1001-9332.2007.05.015
[39]吴得峰, 姜继韶, 高兵, 等.添加DCD对雨养区春玉米产量、氧化亚氮排放及硝态氮残留的影响[J].植物营养与肥料学报, 2016, 22(1):30-39 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201601007
WU D F, JIANG J S, GAO B, et al. Effects of DCD addition on grain yield, N2O emission and residual nitrate-N of spring maize in rain-fed agriculture[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(1):30-39 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201601007
[40]齐鹏, 刘晓静, 刘艳楠, 等.施氮对不同紫花苜蓿品种氮积累及土壤氮动态变化的影响[J].草地学报, 2015, 23(5):1026-1032 http://d.old.wanfangdata.com.cn/Periodical/cdxb201505019
QI P, LIU X J, LIU Y N, et al. Effects of nitrogen fertilizer on nitrogen accumulation in alfalfa and the content of nitrogen in soil[J]. Acta Agrestia Sinica, 2015, 23(5):1026-1032 http://d.old.wanfangdata.com.cn/Periodical/cdxb201505019
[41]蔡国军, 张仁陟, 柴春山.半干旱黄土丘陵区施肥对退耕地紫花苜蓿生物量的影响[J].草业学报, 2012, 21(5):204-212 http://d.old.wanfangdata.com.cn/Periodical/caoyexb201205025
CAI G J, ZHANG R Z, CHAI C S. Effect of fertilization on biomass of alfalfa in returned farmland in semiarid loess hilly area[J]. Acta Prataculturae Sinica, 2012, 21(5):204-212 http://d.old.wanfangdata.com.cn/Periodical/caoyexb201205025
[42]FISHBECK K A, PHILLIPS D A. Combined nitrogen and vegetative regrowth of symbiotically-grown alfalfa[J]. Agronomy Journal, 1981, 73(6):975-978 doi: 10.2134/agronj1981.00021962007300060016x
[43]王丹, 何峰, 谢开云, 等.施氮对紫花苜蓿生长及土壤氮含量的影响[J].草业科学, 2013, 30(10):1569-1574 http://d.old.wanfangdata.com.cn/Periodical/caoyekx201310014
WANG D, HE F, XIE K Y, et al. Effects of nitrogen application on alfalfa plant growth and soil nitrogen content[J]. Pratacultural Science, 2013, 30(10):1569-1574 http://d.old.wanfangdata.com.cn/Periodical/caoyekx201310014
[44]EARDLY B D, HANNAWAY D B, BOTTOMLEY P J. Nitrogen nutrition and yield of seedling alfalfa as affected by ammonium nitrate fertilization1[J]. Agronomy Journal, 1985, 77(1):57 doi: 10.2134/agronj1985.00021962007700010014x
[45]CHAPUIS-LARDY L, WRAGE N, METAY A, et al. Soils, a sink for N2O? A review[J]. Global Change Biology, 2007, 13(1):1-17
[46]焦燕, 黄耀.影响农田氧化亚氮排放过程的土壤因素[J].气候与环境研究, 2003, 8(4):457-466 http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj200304008
JIAO Y, HUANG Y. Influence of soil properties on N2O emissions from farmland[J]. Climatic and Environmental Research, 2003, 8(4):457-466 http://d.old.wanfangdata.com.cn/Periodical/qhyhjyj200304008
[47]MCGOWAN A R, MIN D, WILLIAMS J R, et al. Impact of nitrogen application rate on switchgrass yield, production costs, and nitrous oxide emissions[J]. Journal of Environment Quality, 2018, 47(1):228 http://cn.bing.com/academic/profile?id=6c2a92a06ad6aaf8b52ba3d606b6beb9&encoded=0&v=paper_preview&mkt=zh-cn
[48]梁东丽, 方日尧, 李生秀, 等.硝、铵态氮肥对旱地土壤氧化亚氮排放的影响[J].干旱地区农业研究, 2007, 25(1):67-72 doi: 10.3321/j.issn:1000-7601.2007.01.014
LIANG D L, FANG R Y, LI S X, et al. Effects of nitrogen types on N2O emissions of dry-land soil[J]. Agricultural Research in the Arid Areas, 2007, 25(1):67-72 doi: 10.3321/j.issn:1000-7601.2007.01.014
[49]李渊, 王涛, 周莹, 等. 3种栽培草地N2O释放通量季节动态的研究[J].草地学报, 2015, 23(4):703-709 http://d.old.wanfangdata.com.cn/Periodical/cdxb201504006
LI Y, WANG T, ZHOU Y, et al. Research on N2O emission fluxes of 3 cultivated grasslands in growing seasons[J]. Acta Agrestia Sinica, 2015, 23(4):703-709 http://d.old.wanfangdata.com.cn/Periodical/cdxb201504006
[50]梁东丽, 同延安, Ove Emteryd, 等.干湿交替对旱地土壤N2O气态损失的影响[J].干旱地区农业研究, 2002, 20(2):28-31 doi: 10.3321/j.issn:1000-7601.2002.02.007
LIANG D L, TONG Y A, EMTERYD O, et al. The effects of wetting and drying cycles on N2O emission in dryland[J]. Agricultural Research in the Arid Areas, 2002, 20(2):28-31 doi: 10.3321/j.issn:1000-7601.2002.02.007
[51]张振贤, 华珞, 尹逊霄, 等.农田土壤N2O的发生机制及其主要影响因素[J].首都师范大学学报:自然科学版, 2005, 26(3):114-120 http://d.old.wanfangdata.com.cn/Periodical/sdsfdxxb-zr200503024
ZHANG Z X, HUA L, YIN X X, et al. Nitrous oxide emission from agricultural soil and some influence factors[J]. Journal of Capital Normal University, 2005, 26(3):114-120 http://d.old.wanfangdata.com.cn/Periodical/sdsfdxxb-zr200503024
[52]郑循华, 王明星, 王跃思, 等.华东稻麦轮作生态系统的N2O排放研究[J].应用生态学报, 1997, 8(5):495-499 doi: 10.3321/j.issn:1001-9332.1997.05.010
ZHENG X H, WANG M X, WANG Y S, et al. N2O emission from rice wheat ecosystem in Southeast China[J]. Chinese Journal of Applied Ecology, 1997, 8(5):495-499 doi: 10.3321/j.issn:1001-9332.1997.05.010

相关话题/土壤 农田 生态 农业 环境科学